Academic Handbook

B.Tech. Programme

Academic Affairs

(2013-2014)

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Academic Hand Book

for

I year B.Tech Programme

Department of Humanities and Sciences National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester-wise Credit Distribution

Semester	Total Credits
Ι	24
II	23+1*
Total Credits	47+1*

* Physical Education

FIRST YEAR COURSE DETAILS I Semester Details

<u>Sl.</u>	<u>Sub.</u>	<u>Subjects</u>	<u>L-T- P</u>	<u>Credits</u>
<u>No</u>	<u>Code</u>			
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

<u>Sl.</u>	Sub.	<u>Subjects</u>	<u>L-T- P</u>	<u>Credits</u>
No	<u>Code</u>			
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic electrical science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry- Laboratory	0-0-3	2
8	EE152	Basic electrical scienceLab	0-0-3	2
9	PE150	Physical Education	1-0-0	1
		Total Credits		22

II Semester Details

Detailed Syllabi of Courses

Subject Code	Mathematics-I	Credits: 4 (4-0-0)	
MA 100		Total hours: 56	
Course	10+2 level Mathematics		
Prerequisites			
Course	This course provides requisite and relevant background ne	ecessary to understand	
Objectives	the other important engineering mathematics courses offe	red for Engineers and	
	Scientists. Important topics of applied mathematics, namel	y differential calculus,	
	integral calculus, sequence and series and vector calculus.		
Course	At the end of this course the students are expected to learn,	,	
Outcome	Importance of Mean value theorems and its applications, evaluation of multiple integrals, the powerful language of Vector calculus with physical understanding to deal with subjects such as Fluid Dynamics and Electromagnetic fields, convergence of sequence and series and Fourier series.		
Module 1	Differential Calculus	12 hours	
Review of limits,	continuity and differentiability; Mean value theorems, Tay	lor's and Maclaurin's	
theorems, Partia	• • •		
generalization, n	naxima and minima of functions of several variable, I	Lagrange's method of	
Multipliers; Chang	e of variables – Jacobians.		
Module 2	Integral Calculus	10 hours	
	em of Calculus, Improper integrals, applications to area, volu	ume. Double and	
Triple integrals			
Module 3	Vector Calculus	14	
	or fields; Vector Differentiation; directional derivative		
-	and Curl of a vector field - Laplacian - Line and surface in	ntegrals; Green's	
	Gauss Divergence theorem; Stokes' theorem.		
Module 4	Sequences and Series	10 hours	
, end and a second seco	quences and series, power series.		
Module 5	Fourier series and Fourier Transforms	10 hours	
Fourier series: Periodic functions, Euler's formulae, Dirichlet's condition, Even and odd			
functions, Half Ra	nge Series, Parseval's identity. Fourier Transform		
Texts/References	1. G. B. Thomas and R. L. Finney, <i>Calculus and Analytic Geometry</i> (9th Edition), ISE Reprint, Addison-Wesley, 1998.		
	2. E. Kreyszig, Advanced engineering mathematics (Wiley (1999).	8th Edition), John	

Subject Code		Credits: 3 (3-0-0)	
PH 100	Physics	Total hours: 45	
Course	10+2		
Prerequisites			
Course Objectives	To refurbish the understanding of fundamental physics and pr applied modern and advanced physics for equipping the studer of engineering and technology principles.	•	
Course Outcome	 Understanding basic concepts in Physics Sound knowledge of the application aspects of technology 	modern physics in	
Module 1	Dual nature of particle and waves	8 hours	
radiation, Dual Diffraction, Cor	of a wave, Phase and Group velocities, Black body radia nature of light and photoelectric effect, Properties of photon npton effect, Matter waves, de-Broglie principles, Davisson an show the existence of matter waves,	s, X-Rays and X-Ray	
Module 2	Quantum Mechanics	12 hours	
functions, Schrö independent Sch equation- Partic	Limitations of classical mechanics, The wave equation, State functions, Normalization of wave functions, Schrödinger equation, Time dependent form, operators and expectation values, Time independent Schrödinger equation, Eigenvalues and Eigenfunctions, Applications of Schrödinger equation- Particle in a box, Finite potential well, Potential barrier and tunneling, Harmonic oscillator, Uncertainty principle, Energy and time form of uncertainty principle, explanation of zero point		
Module 3	Statistical Mechanics	5 hours	
Statistical analys	sis: Maxwell-Boltzman distribution function, Bose-Einstein dist	ribution function,	
Fermi-Dirac dist	tribution function, Quantum free electrons theory of metals		
Module 4	Lasers, Fiber optics and Semiconductor photonic devices	10 hours	
	s and action, Types of lasers, Characteristics of laser light. Fiber Principle of optical fiber communication. Semiconductor photo	-	
Module 5	Modern Energy sources	10 hours	
Nuclear reactions, Nuclear fission and fusion; Nuclear reactors, Breeder and fusion reactors. Superconductivity, Basic principles, Messiner effect, Magnetic levitation, Applications of superconductivity, Levitating trains. Solar energy, Wind and wave as energy resource. Elementary particles and their interaction, Leptons and Hardons, Quraks, History of Universe.			
Course Code	Physics Laboratory	Credits-2 (0-0-3)	
PH101		3 hours for week	
List of Experin	nents		
 Helmho Newton Determi Determi Determi Determi Determi 	Yect ectric Effect ltz Resonator 's Rings Experiment nation of Wavelength of He-Ne Laser ine the width of single slit based on Diffraction pattern nation of dispersive power of prism nation of Optical absorption coefficient of materials using laser nation of Numerical aperture of an optical fiber	S	

Text	1. Franks S. Crawford, <i>Waves</i> , Tata Mc Graw Hills Publication		
/Reference Books	David Halliday, Robert Resnick, Walker Jearl, "Fundamentals Of Physics" Wilow India Part I td		
	 David Halliday, Robert Resnick, Walker Jearl, "Fundamentals Of Physics" Wiley India Pvt Ltd S Rai Choudhury, Shobhit Mahajan, Arthur Beiser, Concepts of Modern Physics, 6th Edition, Tata McGraw - Hill Education (2009) A. Goel, Wave Mechancs, Discovery Publishing House, Optoelectronics and Photonics-Principles and Practices, Safa O.Kasap, Pearson publications John W. Jewett, Raymond A. Serrway, "Physics for Scientists and Engineers"Brooks/Cole publisher. Ajoy Ghatak, Optics, 5th Edition, Mc Graw Hills Publication David Halliday, Robert Resnick, Walker Jearl PRINCIPLES OF PHYSICS, Willey India pvt. Ltd. Hugh D. Young, Roger A. Freedman, A. Lewis Ford, University Physics with Modern Physics, Willey India Pvt. Ltd. Elements of Solid state physics, M. Ali Omar : Pearson Publication 		
	11. M. N. Avadhanulu, P. G. Krish Sagar, "Engineering Physics"S. Chand		
	Publication. 12. V. Rajendran, A. Marikani , <i>Materials Science</i> , Publisher Tata McGraw - Hill		
	Education Publishers.		

Subject Code	Engineering Mechanics	Credits: 3
ME 100		Total hours: 44
Course	10+2	·
Prerequisites		
Course	To provide the students with a clear and thorough under	rstanding of the theory
Objectives	and application of engineering mechanics covering both	statics and dynamics
Unit 1	Fundamentals of mechanics	6 hours
mechanics, Elen point, moment ovector, moment position, resulta	mechanics, vector and scalar quantities, equality and equivale nents of vector algebra.Systems of forces: Position vector, more of a force about an axis, the couple and couple moment, cou- of a couple about a line.Equivalent force systems:Translation nt of a force system, simplest resultant of special force systems	ment of a force about a apple moment as a free of a force to a parallel
systems.	T	6 hours
Unit 2	Equations of equilibrium	6 hours
	ram, free bodies involving interior sections, general equa	ations of equilibrium,
• •	ilibrium, static indeterminacy.	
-	urfaces: First moment, centroid, second moments and the pr	·
	s, rotation of axes and polar moment of area, principal axes	and concept of second
order tensor tran		
Unit 3	Kinematics of a particle	8 hours
Introduction, ge	eneral notions, differentiation of a vector with respect t	o time, velocity and
acceleration cald	culations, rectangular components, velocity and acceleration	in terms of cylindrical
coordinates, sim	ple kinematical relations and applications.	
Unit 4	Particle Dynamics	8 hours
Introduction, re	ectangular coordinates, rectilinear translation, Newton's	law for rectangular
	ilinear translation, cylindrical coordinates, Newton's law for c	•
Unit 5	Kinetics of Plane Motion of Rigid Bodies	8 hours
	nentum equations, Pure rotation of a rigid body of revolution	
	ke bodies. General plane motion of rigid bodies	
Unit 6	Energy and momentum methods for a particle	8 hours
	single particle, conservative force field, conservation or	
•	of work-energy equation, Linear momentum, impulse and	
		momentum relations,
	entum, Method of momentum for particles.	
Text Books	1. Irving H. Shames, <i>Engineering Mechanics Sta</i> Pearson,2005.	
Reference	1. Beer & Johnston, <i>Mechanics for Engineers</i> , McGrav	-
Books	2. Timoshenko, S.P., Young, D.H., Rao, J. V. Engineer	ring Mechanics,
	 McGraw-Hill, 2006. 3. Merian, J.L, Kraige, L.G. <i>Engineering Mechanics</i> – Publishers, 2002. 	Statics, Wiley

Subject Code CS 100	Computer Programming and Problem	Credits: 2 (2-0-0)
	Solving	Total hours: 28
Course	Basic Mathematical Knowledge and logical thinking	
Prerequisites		
Course	The course is to make the students learn problem solving by wr	iting algorithms, flow
Objectives	charts and coding the min C language. The course helps	the students to write
	programs for solve Mathematical and Engineering problems.	
Course	Enabling Knowledge: Students will develop knowledge and exp	perience with the use
Outcome	of the standard C programming language, good programmi	ng style, standards
	and practices in programming.	
	Problem Solving and Critical Analysis: Students will further d	evelop their capacity
	to analyze and solve computing problems; develop suitable a	lgorithmic solutions
	which are the ncoded in the C programming language.	
Module 1		10 hours
Getting Starte	d: Problem solving techniques, C standards. What is C, Getting S	Started with C, The C
Character Set,	Constants, Variables and Keywords, Types of C Constants, Ru	ales for Constructing
Integer, Real and	nd Character Constants. Types of C Variables, Rules for Construc	ting Variable Names,
C Keywords. T	he First C Program: Compilation and Execution, Receiving Input.	Algorithms and flow
charts. C Instr	uctions: Type Declaration Instruction, Arithmetic Instructio	n, Integer and Float
Conversions, T	ype Conversion in Assignments, Hierarchy of Operations, Assoc	iativity of Operators,
Control Instruc	tions in C.	
The Decision	Control Structure: Decisions! Decisions! : The if Statement, T	The if-else Statement,
Nested if-elses	, Forms of if. Use of Logical Operators: The else if Clause,	The ! Operator, the
Conditional Op	erators.	
The Loop Cor	ntrol Structure: Loops: while Loop, for Loop, break statement	, continue statement,
do-while Loop.		
The Case Co	ntrol Structure: Decisions using switch, switch versus if-els	e Ladder, The goto
Keyword.		
Module 2		6 hours
	Pointers: Basics of Functions, Value Passing, Scope rules of	Ū.
	vanced Features of Functions. Introduction to Pointers, Pointer	
	Stack, Pointers to Functions, Functions returning pointers, Fun	nctions with variable
number of argu		
• •	e-examine: Integers- long, short, signed, unsigned. Chars-signed	l, unsigned. Floats &
Doubles. Storag		
	processor: Features of C Preprocessors, Macro Expansion	on, File Inclusion,
	ompilation, #if and #elif Directives, The Build Process.	
Module 3		6 hours
=	s of Arrays, Pointers & Arrays, Two Dimensional Arrays, Arra	ay of Pointers, Three
Dimensional Arrays.		
Strings: Basics of Strings, Pointers & Strings, Standard Library String Functions, Dynamic		
	memory, Two Dimensional Array of Characters, Array of pointer	s & Strings.
	nions: Basics, Declaration and Usage.	
Console Input and Output: Formatting output for functions in the printf () family, Formatting input		
	the scanf () family, Escape sequences.	
Module 4		6hours
File Processing	g: Opening and closing files, reading and writing sequential files,	Using argc and argv

Operations on Bits: Bitwise Operators, Hexadecimal Numbering System, Relation between Binary			
and Hex. Mixe	ed Features: Enumerated Data type, Typedef, Typecasting, Bit Fields, The volatile		
Qualifier.			
Text Books	 Joyce Farrell, A guide to Programming Logic & Design, Course Technology, Thomson learning, 2003. Brian W. Kernighan & Dennis M. Ritchie, The C Programming Language, Prentice Hall Inc., 2001. C Programming: A Modern Approach by K.N. King, 2nd Edition, W. W. Norton & Company 		
Reference Books	 Byron S. Gottfried, <i>Program with C</i>, Schaum's Outline series. Yashavanth Kanetkar, <i>Let us C</i>, BPB Publications. Balagurusamy, <i>C Programming</i> – TMH, 2002 		

Subject Code	Computer Programming and Problem	Credits: 2 (0-0-3)
CS 101	Solving (Lab)	Total hours: 42
Course	To enable students in developing programming skills using C	language. To improve
Objectives	their logical ability and to apply these skills for solving	problems in scientific,
	mathematical and business applications.	
	List of experiments	
1. Practice of and vi ed	of DOS Commands, Exposure to Windows environment, practicitor.	ce of UNIX commands
2. Programs	to demonstrate standard I/O functions	
3. Practice of	of writing simple programs like arithmetic operations, simple, cor	npound interests etc.
0	to demonstrate decision, loop & case control structures, use of b	reak and continue, etc.
0	involving arrays	
6. Programs	involving pointers.	
0	involving functions, recursion, use of arrays with subscripts and	pointers.
8. Programs	using structures in C	
9. Exercise	on file handling	
Reference	1. Joyce Farrell, "A guide to Programming Logic	& Design, Course
books	Technology", Thomson learning, 2003.	
	2. Brian W. Kernighan and Dennis M. Ritchie, "The C Pro	ogramming Language",
	Prentice Hall Inc., 2001.	
3. K.N. King, "C Programming: A Modern Approach", 2nd Edit		, 2nd Edition, W. W.
	Norton & Company	
	4. Byron S. Gottfried, "Schaum's Outline Series on Progra	amming with C"
	5. Yashavanth Kanetkar, "Let us C", BPB Publications.	-

Subject Code HU 100	Professional Communication-I	Credits: 3 (3-0-2) Total hours: 45	
Course	Basic Knowledge of English (10+2 level)		
Prerequisite			
Course	This course aims at developing the four skills of Language Lear	ning: Reading, Writing,	
Objectives	Listening and Speaking. Also it inculcates the power of el		
5	among the students.		
Course	At the end of this course, the students are expected to com	municate effectively in	
Outcome	English: be it written or be it oral.	2	
Module 1	Principles of Communication	12 hours	
a.Verbal Comm	nunication: Oral, Written, Visual and Audio-Visual, b. Non-V	Verbal Communication:	
Kinesics, Proxe	emics, Chronemics, Chromatics and Haptics. C. Types of Writ	ten Communication, d.	
Channels, Proc	ess and Network of communication, e. Feedback-Types, f. Nois	se-Types, g. Listening-	
Types, h. Spe	aking-Pronunciation, Vocabulary, Stress Pattern i. Compreh	ension, j. Professional	
Presentation			
Module 2	Listening and Speaking	8 hours	
Pronunciation,	Word and Sentence Stress and Professional Presentation		
Module 3	Elements of Effective Writing	8 hours	
Words, Phrases	, Sentences, Paragraphs, Reading Comprehension, Precis		
Module 4	Report Writing and Presentation	10 hours	
Types of Repor	t: different topics will be given to students to prepare Business Re	ports and then they	
will be asked de	eliver verbal presentation based on the reports followed by question	on answer session	
Module 5	Business Letters and Correspondences	7 hours	
Sales Letter, Le	tter of Enquiry, Letter of Order, Letter of Claim Adjustment, Lett	er of Recommendation,	
Letter of Prom	otion, Good News and Bad News Letter, Legal Letter, Appli	cation, Notice, Memo,	
Agenda, Minute	es, (followed by tutorials)		
Text Books	1. Kaul, Asha. <i>Effective Business Communication</i> , New Ltd, 2007	Delhi: Prentice Hall Pvt	
	2. Raman, Meenaakshi and Sangeeta Sharma, Technica	l Communication, IInd	
	Ed,2012, New Delhi, OUP (with Video CD)		
	3. Krishna Mohan and Meenakshi Raman, Advanced C	Communicative English,	
	2011, New Delhi: TataMcGraw Hill.4. Wren and Martin. <i>High School English Grammar and Composition</i>, New		
	4. Wren and Martin. <i>High School English Grammar of</i> Delhi: S. Chand, 2011	and Composition, New	
Reference	1. Rizvi, A.M. Effective Technical Communication, New	v Delhi: Tata Mc-Graw	
Books	Hill, 20052. English Dailies, <i>Periodicals: India Today</i>, Outlook and	Reader's Digest	

Subject Code ME 101	Engineering Drawing	Credits: 3 (1-0-3) Total hours: 52
Course	10+2	
Prerequisites		
Course	• To express the novel ideas through an engineering la	nguage.
Objectives	• To improve the visualization skills.	
	• Learn basic Auto Cad skills.	
Unit 1	Introduction to Engineering Graphics	4 hours
e	ments and their use - Different types of lines - Lettering & din	nensioning. Projection
of points.		
Unit 2	Orthographic Projections	8 hours
Introduction to	orthographic projections- Horizontal, vertical and profile plane	es – First angle and
third angle proj	ections.	
Unit 3	Projection of lines	8 hours
Projections of 1	ines inclined to one of the reference planes. Projections of line	s inclined to both the
planes – True le	engths of the lines and their angles of inclination with the refer	ence planes – Traces
of lines.		
Unit 4	Projection of planes	8 hours
Projection of pl	ane lamina of geometric shapes inclined to one of the referenc	e planes – inclined to
both the planes.	Traces of planes	
Unit 5	Projection of solids	8 hours
Projection of so	blids with axis parallel to one of the planes and parallel or perp	endicular to the other
plane-Projectio	ns with the axis inclined to one of the planes. Projections of so	lids with axis inclined
to both the plan	es. Isometric projection.	
Unit 6	Sections of Solids	8 hours
Sections of cyli	nders, Sections of prisms.	
Unit 7	Computer Aided Drafting.	8 hours
Introduction to	Auto CAD, Basic 2-D drawing, editing and viewing tools, Dir	nensioning.
	nd Isometric Projections.	-
Text Books	1. Bhatt N D., <i>Engineering Drawing</i> , Charotar Publication, 2006.	
Reference	2. Gopalkrishna K R, Engineering Graphics (Ist ang	
Books	Publication, 2002.	
	3. Engineering Drawing and Design - Cencil Jenser	n, Jay D. Helsel, and
	Dennis R. Short, Tata McGraw Hills Publication, 20	10.

Subject Code MA 150	Mathematics-II	Credits: 4 (4-0-0) Total hours: 56
Course	Mathematics-I	
Prerequisites		
Course	This Mathematics course provides requisite and relevant ba	ackground necessary to
Objectives	understand the other important engineering mathematics cours	es offered for Engineers
-	and Scientists. Important topics of applied mathematics, nat	mely the linear algebra,
	ordinary differential equations, laplace transforms and Z transfo	orms.
Course	At the end of this course the students are expected to learn,	
Outcome	1. To acquire necessary background in matrix methods a so as to appreciate their importance to engineering syst	e i
	 so as to appreciate their importance to engineering systems. 2. Basic skills in handling ordinary differential equations analytically and a understanding of how such equations are used in modeling. Students shall learn to solve systems of linear ordinary differential equations and usin Laplace transforms and some basics of Z-transforms. 	
Module 1	Linear Algebra	22 hours
	operations -Addition, Scalar Multiplication, Multiplication, Trar m of linear equations and Gaussian Elimination, Determinat	
Cramer's rule	Vector Space: Subspaces, Linear Dependence/Independence	dence, Basis dimension,
Standard Basis of	of R^n,linear transformations, matrix of a linear transformation	on, change of basis and
similarity, rank-r	nullity theorem. Inner product spaces, Gram-Schmidt process,	and orthonormal bases,
Eigenvalues and	eigenvectors, characteristic polynomials, eigenvalues of specia	al matrices (orthogonal,
unitary, hermiti	an, symmetric, skewsymmetric, normal). algebraic and	geometric multiplicity,
diagonalization b	y similarity transformations, spectral theorem for real symmet	ric matrices, application
to quadratic form	S.	
Module 2	Ordinary Differential Equations	20 hours
Introduction and	l Motivation to Differential Equations, First Order ODE	E $y'=f(x,y)$ - geometrical
-	solution, Equations reducible to separable form, Exact Equat	
Linear Equations	and variation of constant, Orthogonal trajectories, Picard's Th	eorem for IVP (without
proof), examples	on nonuniqueness. Second Order Linear differential equations:	Linear dependence and
,	el-Liouville formula. Linear ODE's with constant coefficient	,
equations. Cauch	hy-Euler equations. Method of undetermined coefficients. N	Method of variation of
parameters.		
Module 3	Laplace Transformations and Z-Transforms	14 hours
Laplace transfor	m - Inverse Laplace transform - properties of Laplace transform	ms - Laplace transforms
of unit step fur	ction, impulse function and periodic function - convolution	theorem - Solution of
ordinary differen	tial equations with constant coefficients and system of linea	r differential equations
with constant coefficients using Laplace transform and basic theory of Z-Transforms.		
Text/Reference	1. E. Kreyszig, <i>Advanced engineering mathematics</i> (8th H Wiley (1999).	Edition), John
	2. W. E. Boyce and R. DiPrima, <i>Elementary Differential</i> Edition), John Wiley (2005).	
	3. G. Strang, <i>Linear algebra and its applications</i> (4th Ed 2006).	
	 R. K Jain and S.R.K. Iyengar, Advanced Engineering M Narosa publications (2007) 	Aathematics, 3 rd edition,

Subject Code PH150	Material Science	Credits: 3 (3-0-0) Total hours: 46
Course	Physics, Mathematics and Chemistry	
Prerequisites		
Course	Understanding the nature, properties and applications of	of materials.
Outcome		
Module 1	Structure of Materials	6 hours
Atomic structur	e and chemical bonding, Classification of solids, P	eriodicity in crystals, Crystal
structure, Brava	s lattices, Crystal systems, Crystallographic planes	and Miller indices, Crystal
structure analysi	s, Structure determination by X-ray diffraction, The E	Bragg law of X-ray diffraction,
Crystal defects.		
Module 2	Conductors and Resistors	4 hours
The resisistivity	range, The free electron theory, Conduction by free ele	ctrons, Conductor and resistor
materials, Super	conducting materials.	
Module 3	Semiconductors and Dielectrics	12 hours
	: Energy gap in solids, Intrinsic semiconductor, Extrins	
	naterials, Fabrication of integrated circuits, Semiconduc	
	polar junction transistor. Dielectrics: Dielectric constar	-
• •	ti equation, ferro-electric materials, Electrostriction, Pie	
loss.		,,
Module 4	Magnetic Materials	6 hours
	als, Diamagnetic materials, Paramagnetic materials, Fer	
•	Paramagnetism, Ferromagnetism, Antiferromagnetism,	
-	al and applications.	i chimagnousin, son a mara
Module 5	Superconductivity	6 hours
	ty, Meissner effect, London penetration depth, Isotope	
-	, Type-II superconductors, Josephson effect and applic	
Module 6	Advanced materials	12 hours
	Conducting Polymers, Meta materials, Fluorescer	
	sics-size effect, Quantum confinement, and Coulor	-
1 1 2	effects. Characterization techniques for nano size-SEN	· •
Text/		
	1. William D. Callister, Jr, Materials science and John Wiley & Sons, Inc, 2007	engineering an introduction,
Reference Books	 V. Rajendran, A. Marikani ,<i>Materials Science</i>, 	Publisher Tata McGraw - Hill
	ducation Publishers.	
	3. S.L Kakani, Amit Kakani "Material Science" 1	New age international Limited.
	4. Brain S. Mitchell "An Introduction to Material	-
	science" Willey Interscience.	s for Engineering and
	science" Willey Interscience.5. R. Balasubramanian, Materials Science and Er	s for Engineering and
	science" Willey Interscience.5. R. Balasubramanian, Materials Science and Er Interscience.	s for Engineering and agineering, Willey
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Er Interscience. 6. V. Raghavan, "Material Science and Engineeric" 	s for Engineering and ngineering, Willey ing " PHI Publication.
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i>" 	s for Engineering and ngineering, Willey ing "PHI Publication. יי
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i> 	s for Engineering and ngineering, Willey ing "PHI Publication. n"
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i> 8. Julius Adams Stratton, "<i>Electromagnetic Theo</i> 	s for Engineering and ngineering, Willey ing "PHI Publication. n" ry" Tata McGraw - Hill
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i> 8. Julius Adams Stratton, "<i>Electromagnetic Theo</i> Education Publishers. 9. Ali Omar, "Elements of Solid State Physics" A 	s for Engineering and ngineering, Willey ing "PHI Publication. n" ry" Tata McGraw - Hill Addition Wesley,2000
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i> 8. Julius Adams Stratton, "<i>Electromagnetic Theo</i> Education Publishers. 9. Ali Omar, "Elements of Solid State Physics" A 10. Frederick J. Milford, John R. Reitz, Robert 	s for Engineering and ngineering, Willey ing "PHI Publication. n" Tata McGraw - Hill Addition Wesley,2000 W. Christy, "Foundations of
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i> 8. Julius Adams Stratton, "<i>Electromagnetic Theo</i> Education Publishers. 9. Ali Omar, "Elements of Solid State Physics" A 	Is for Engineering and Ingineering, Willey Ing "PHI Publication. n" Pry" Tata McGraw - Hill Addition Wesley,2000 W. Christy, "Foundations of Ingman Publishers.
	 science" Willey Interscience. 5. R. Balasubramanian, Materials Science and Err Interscience. 6. V. Raghavan, "Material Science and Engineeri 7. Edward M Purcell, "<i>Electricity and Magnetism</i> 8. Julius Adams Stratton, "<i>Electromagnetic Theo</i> Education Publishers. 9. Ali Omar, "Elements of Solid State Physics" A 10. Frederick J. Milford, John R. Reitz, Robert <i>Electromagnetic Theory</i>" Addison Wesley Lor 	as for Engineering and ngineering, Willey ing "PHI Publication. "" "ry" Tata McGraw - Hill Addition Wesley,2000 W. Christy, "Foundations of ngman Publishers. "Physics for Scientists and

McGraw Hill Education
13. <u>Hans-Eckhardt Schaefer</u> , "Nanoscience: The Science of the Small in Physics,
Engineering, Chemistry, Biology and Medicine" Springer

Subject	Chamistar	Credits: 3 (3-0-0)	
Code	Chemistry	Total hours: 42	
CY150			
Course	1. To understand the basic concepts	in chemistry in compliance with the	
Objectives	requirements for undergraduate engin	v 1	
Objectives	2. To get familiarised with analytical in		
	3. To develop awareness on the basics and chemistry involved in		
	electrochemical cells		
		oment and characterization of polymers	
Module 1	Organic Chemistry	7 hours	
and stereoch	reactions- SN1, SN2 reaction mechanisms, Fac emistry, Elimination reactions- E1, E2 reaction -selectivity of E1 and E2 reactions, Competitio	mechanisms and factors affecting	
Module 2	Chemical Bonding	9 hours	
Ionic and co	walent bonds; Valence bond theory (V.B.T) or	f covalency, VSEPR theory, Shapes of	
	cules, Molecular Orbital Theory (M.O.T), No		
-	n bonding; Co-ordinate bond, Metallic bond, C		
• •	l, octahedral, and square planer complexes		
Module 3	Instrumental Methods of	8 hours	
Analysis			
-	, UV-visible spectroscopy, Infra-red spectrosco		
-	and quantitative analysis, Conductometry and P	-	
Module 4	Water Technology	4 hours	
	water, Boiler troubles, Internal and external tre	-	
-	ssolved oxygen (OD), Biological oxygen demai	nd, Chemical oxygen demand and their	
	n, Sewage water treatment		
Module 5	Electrochemical Cells	8 hours	
_	ation, Energetics of cell reaction, Types of		
	on cells, Primary and secondary cells, Fuel cell		
Decompositi	on potential, Overvoltage, Electroplating and	Electroless plating of copper – PCB	
preparation			
Module 6	High Polymers	6 hours	
	ondensation and Coordination polymerization,		
and their det	erminations, Methods of polymerization, Tg &	Tm and factors affecting them, Teflon,	
PMMA and			
	P. Y. Bruice, Organic Chemistry, 4th Edition, P		
•-•·	W. R. Robinson, J. D. Odom, H. F. Holtzclaw,	General Chemistry, 10 th Edition,	
псе	AITBS Publishers, 2000		
	R. D. Madan, <i>Modern Inorganic Chemistry</i> , S.	· ·	
70	G. Chatwal, S. Anand, Instrumental Methods of Publishing House, 2003	Cnemical Analysis, S. D. Himalaya	
1	P. C. Jain, M. Jain, <i>Engineering Chemistry</i> , Dha	annat Rai & Sons 15 th edition 2004	
	V. R. Gowariker, N. V. Viswanathan, J. Sreedh		
	International (P) Limited, 2005	,,	
	D. G. Palanna, Engineering Chemistry, Tata Mo	Craw Hill Publishing Co. Ltd., 2012	
	8) B. R. Puri, L. R. Sharma, M. S. Pathania, <i>Principles of Physical Chemistry</i> , Vishal		
	Publishing Co., 41 st edition 2004		
9) S	9) S. Rattan, <i>Comprehensive Engineering Chemistry</i> , S.K. Kataria & Sons, Delhi, 2011		

Subject Code	Chemistry Laboratory	Credits: 2	(0-0-3)
CY151			
1. Estimat	ion of Iron in hematite		
2. Estimat	tion of copper in brass		
3. Determ	ination of pKa and Ka of weak acid		
4. Conduc	tometric titration of strong acids with Strong base		
5. Estimat	ion of total chromium by colorimetry		
6. Verifica	ation of Nernst Equation		
7. Determ	7. Determination of coefficient of viscosity of a liquid		
8. Determ	ination of COD in a given water sample		
9. Estimat	ion of total hardness of water		
	ion of chloride content in water		
	ination of percentage of composition by using Abbe's n	refractomete	r
12. Preparat	12. Preparation of alkyl chloride from alcohol		
Note: Any 8 exj	Note: Any 8 experiments have to be done		
Ref 1) A	A. I. Vogel, Text book of quantitative chemical analysis	, Prentice Ha	all, 2000
ere 2) A	A. I. Vogel, Text book of practical organic chemistry,	5th edition,	Prentice
	Iall ,1996		
	. Rattan, Experiments in applied chemistry, 3 rd edition	on, S. K. K	ataria &
ks S	ons, 2011.		

Subject Code ME150	Elements of Mechanical Engineering	Credits: 2 (2-0-0)
Course	10+2	I
Prerequisites		
Course Objectives	 To be able to use the Laws of Thermodyne fficiency of different components of power To teach the basic mechanical 	r generating systems
Unit 1	Introduction to Thermodynamics	8 hours
Thermodynamics	: Introduction and Basic Concepts, Application Areas	of Thermodynamics,
Systems and Con	ntrol Volumes, Properties of a System, State and Equil	ibrium, Processes and
Cycles, Temperat	ture and the Zeroth Law of Thermodynamics, Pressure.	
Energy Conversi	on and General Energy Analysis: Forms of Energy, Energ	ergy Transfer by Heat,
Energy Transfer	by Work, the First Law of Thermodynamics.	
Unit 2	Energy Analysis of Closed Systems	8 hours
Moving Boundar	y Work, Energy Balance for Closed Systems, Specific I	Heats, Internal Energy,
Enthalpy, and Sp	ecific Heats of Ideal Gases, Solids and Liquids.	
The Second Law	of Thermodynamics: Thermal Energy Reservoirs, Heat	Engines, Refrigerators
and Heat Pumps,	Perpetual-Motion Machines, Reversible and Irreversible	Processes, the Carnot
Cycle.		
Unit 3	Basics of Solid Mechanics	8 hours
Stress-Strain rela	tionship, Shear force and Bending Moment Diagrams.	
Unit 4	Manufacturing Process	6 hours
Welding, Brazing	and Soldering. Introduction to machine tools lathe and d	rilling machines.
Text Books	1. Michael A. Boles, Yunus A. Cengel,	Thermodynamics: An
	Engineering Approach, Tata McGraw Hill, 201	1.
	2. P. K. Nag, Engineering Thermodynamics, Tata	McGraw Hill, 2005.
Reference	1. Frank P. Incropera and David P. DeWitt, Fund	damentals of Heat and
Books	Mass Transfer, Wiley Publication, 2006.	
	2. Ferdinand L. Singer, Strength of Materials, Har	per and Row.
	3. Elements of Workshop Technology, S. K. Ha	ajra Choudhary, S. K.
	Bose, A. K. Hajra Choudhary, Media promote ltd., 2007	ers and publishers pvt.

Subject Code	Basic Electrical Science	Credits: 3 (3-0-0)
EE151	Dasic Electrical Science	Total hours: 45
Course	To expose students to basic electric devices and components characteristics and	
Objectives	techniques of analyzing them.	
Module 1	DC circuit Analysis	12 hours
Review of circ	uit elements, Voltage sources, Current sources, Ohm's Law	, Kirchoff's Laws,
Mesh and Not	le analysis of DC circuits, Source transformation, Star-Del	ta Transformation,
Network theore	ms, Time domain analysis of RC, RL, RLC with DC excitation	n.
Module 2	Magnetic circuit Analysis and AC circuit Analysis	12 hours
Electromagnetic	c Induction, Self and mutual inductances, Magnetic circuits	. Fundamentals of
A.C, Average a	and RMS values, Form and Peak factor, Concept of Phasors,	Complex operator,
Network theore	ms, Basic concepts of three phase circuits.	
Module 3	Semiconductor Devices and Circuits	14 hours
P-Njunction diode, Characteristics, Diode approximations, DC load line, AC equivalent circuits,		
Zener diodes H	Half-wave diode rectifier and Full-wave diode rectifier, Shu	int capacitor filter,
Ripple factor -	Approximate analysis of capacitor filters, Power supply per	formance, Voltage
regulators; Bip	olar Junction transistor, Characteristics, DC Load line and H	Bias Point, Biasing
circuit design, A	Amplifiers.	
Module 4	Elements of Digital Electronics	7 hours
Analog and Digital Signals, Introduction to Digital Electronics, Digital Logic Gates. Introduction to memory elements, SRAM, DRAM, ROM, PROM, EPROM, EEPROM.		
Text Books	 Del Toro, Electrical Engineering Fundamentals, Pearson Education, 2002. R.J. Smith, Circuits, Devices and Systems: A First Course in Electrical Engineering, Wiley-5th edition William H. Hayt Jr., Jack E. Kemmerly, Steven M. Durbin, Engineering Circuit Analysis, TMH, 2002. 	
Reference Books	1. A.S. Sedra& K.C Smith, <i>Microelectronic Circuits</i> , 1999.	Oxford Univ. Press

Subjec		Credits: 2 (0-0-3)	
t Code	Basic Electrical Science(Lab)	Total hours: 45	
EE152			
Course	To have hands on experience on principle of basic electronic	passive and active	
Object	components and their analysis.		
ives			
	List of Experiments		
1.	Verification of KVL and KCL circuit laws.		
2.	2. Designing and AC, Transient analysis of series and parallel RC, LC and RLC circuits .		
3.	Clipping, Clamping circuits & voltage multipliers with diodes.		
4.	Rectifiers with C, LC & CLC filters - half wave, full wave & Bridge.		
5.	Network Theorem - Superposition, Thevenin, Norton and Max	Network Theorem - Superposition, Thevenin, Norton and Maximum Power Transfer	
6.	Phasor Analysis of series and parallel RC,LC and RLC circuits		
7.	7. BJT and JFET Characteristics.		
8.	8. Transistor as an Amplifier.		
9.	Digital Combinational Logic gates.		
10.	10. Memory Elements.		
11.	11. Soldering and PCB design practice.		

Subject	Workshop Practices	Credits:	
Code		2(0-0-3)	
ME 151			
Course	10+2		
Prerequisite			
S			
Course	To impart knowledge and technical skills on basic manufacturing 1	methods	
Objectives			
Module 1	Mechanical Workshop36 hours		
Carpentry: De	emonstration of wood cutting machines, tools, and equipments, plan	ning, chiseling,	
marking and s	awing practice, Different joints		
Fitting: Demonstration of various tools and equipments used in fitting shop, chipping, filing, cutting,			
tapping, male and female joints, stepped joints			
Welding: Demonstration of various welding machines and equipments, Butt joint and Lap joint			
using electric	using electric arc welding		
Turning: Demonstration of lathe, drilling machines, grinding machines, milling machines.			
Reference	1. Elements of Workshop Technology, S. K. Hajra Choudhar	ry, S. K. Bose, A.	
Books	K. Hajra Choudhary, Media promoters and publishers pvt. ltd., 2007		

Subject	5		
Code-PE 150	Physical Education	Total Hours: 16	
maintain me relax and str session of rel on the topics	The particular topics will give an idea of minimum physical ntal and physical health to become healthy in society. The ess free from the hectic schedule of studies and job of stud laxation techniques will make students very fresh and active , students will be ready for doing physical activity to main ithout any kind of hypokinetic disease or lifestyle disease	contents will give lents. The practical in daily life. Based tain their health for	
Module 1	FITNESS	4 hours	
Definition and meaning of Physical fitness, Role and scope of physical fitness, Components of physical fitness, Types of physical fitness, Health related physical fitness, Skill related physical fitness, General and specific warming up. (Practical)			
Module 2	SPORTS FOR TECHNICAL FIELD	4 hours	
Relaxing techniques, Stress management, Sports for relax, Benefits of Exercise- Psychological and Physiological aspects, Self Confidence and Motivation.			
Module 3	ANATOMY AND PHYSIOLOGY	4 hours	
Basic anatom management	y, Exercise physiology, Body type, Sports Injury and pr	evention and their	
Module 4	LIFESTYLE DISEASE AND SPORTS	4 hours	
Diet, Heart attack, Blood pressure, Cholesterol, Obesity, Stress			
Reference 1. Mood, D, 1 Hill.	s: Musker, F and Rink, J. (1999). Sports and recreational activities. H	Boston: McGraw-	
 Rink, J.E. (1998). Teaching physical education for learning (3rd Ed.). Boston: McGraw-Hill. Dey Swapan Kumar (2012). A Textbook of Sports and Exercise Physiology, New Delhi: Jaypee Brothers Medical Publications.ISBN: 9789350258736. 			
Performan	er and Helen Marshall. (2013)Exercise Physiology: For Health and ce, Harlow/GB: Pearson Education Publication Limited. ISBN 13 0273778722.	-	
Energy and	McArdle, Frank I. Katch, Victor L. Katch. (2009)Exercise Physical Human Performance. United States: Lippincott Williams and Williams 218591.		
 Robert Weinberg and Daniel (2010) Gould Foundations of Sport and Exercise Psychology. USA Human Kinetics ISBN: 0736083235. 			
	Aidan.P.Moran (2012), Sport and Exercise Psychology A Critical Introduction, 2nd Edition, New work: Poutledge, ISBN: 078041543430		

york:Routledge, ISBN: 978041543430.

Academic Hand Book

for

Bachelor of Technology Programme

in

Computer Science and Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester	Total Credits
Ι	22
II	21+1
III	21
IV	20+1
V	21+3
VI	21
VII	21
VIII	18
Total Credits	170

I Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem Solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

II Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic Electrical Science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry Laboratory	0-0-3	2
8	EE152	Basic Electrical Science Lab	0-0-3	2
9	PE150	Physical Education	1-0-0	1
		Total Credits		22

III Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS200	Principles of Data Communications	3-1-0	4
2	CS201	Data Structures	3-1-0	4
3	CS202	Computer Organization and Architecture	3-1-0	4
4	CS203	Discrete Mathematics	3-1-0	4
5	MA200	Mathematics-III	3-0-0	3
6	CS204	Data Structures Laboratory	0-0-3	2
		Total Credits		21

IV Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS250	Digital Systems Design	3-0-0	3
2	HS250	Economics	3-0-0	3
3	CS251	Systems Programming	3-1-0	4
4	CS252	Object Oriented Programming	3-0-0	3
5	MA250	Mathematics-IV	3-0-0	3
6	CS253	Object Oriented Programming Laboratory	0-0-3	2
7	CS254	Digital Systems Laboratory	0-0-3	2
8	VE200	Value Education	1-0-0	1
		Total Credits		21

V Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS300	Operating Systems	3-1-0	4
2	CS301	Database Systems	3-1-0	4
3	CS302	Microprocessor and Microcontrollers	3-0-0	3
4	CS303	Theory of Computation	3-1-0	4
5	ES300	Environmental Studies	3-0-0	3
6	CS304	Operating Systems Laboratory	0-0-3	2
7	CS305	Database Systems Laboratory	0-0-3	2
8	CS306	Microprocessor and Microcontrollers Laboratory	0-0-3	2
		Total Credits		24

VI Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS350	Compiler Design	3-1-0	4
2	CS351	Design and Analysis of Algorithms	3-0-0	3
3	CS352	Software Engineering	3-0-0	3
4	CS353	Computer Networks	3-0-0	3
5	CS5** /HU501 and HU502	Elective-I	3-0-0	3
6	CS354	Compiler Design Laboratory	0-0-3	2
7	CS355	Networks Laboratory	0-0-3	2
8	CS356	Mini Project/Industrial training	0-0-3	1
		Total Credits		21

VII Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS400	Foundations of cryptography	3-1-0	4
2	CS401	Introduction to Machine Learning	3-0-0	3
3	CS5**	Elective-II	3-0-0	3
4	HS400	Management	3-0-0	3
5	CS402	Seminar	0-0-2	2
6	CS403	Security Laboratory	0-0-3	2
7	CS449	Major Project-I	0-0-4	4
		Total Credits		21

VIII Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS5**	Elective-III	3-0-0	3
2	CS5**	Elective- IV	3-0-0	3
3	CS5**	Elective- V	3-0-0	3
4	CS5**	Elective- VI	3-0-0	3
5	CS499	Major Project – II	0-0-6	6
		Total Credits		18

Subject Code	Principles of Data Communication(PDC)	Credits: 4 (3-1-0)
CS 200		Total hours:56
Course Objectives	This course provides an introduction to the field of data co course covers the principles of data communications, transmi Signals, media, encoding and modulation, multiplexing, dev and correction, data link control and protocols, data transmiss switching techniques and Local Area Network.	ission fundamentals: ices, error detection
Module 1		12 Hours
communication, F	communication signals, message, data, signal, mathematical ourier series, Fourier transform and signals, information spectre s, Parseval's theorem, basic of analog filters.	
Module 2		12 Hours
frequency domain	nodulation, types of modulation, channel and noise effects , signals and spectra in amplitude, phase and frequency mod sis of AM/FM/PM demodulation/detection system.	
Module 3		10 Hours
problem of quantiz	a, filtering, pass band need for quantization, aliasing, and reaction, quantizer design and noise.	
Module 4		8 Hours
representation, Sealength codebook,	source coding, Shannon's first coding theorem, optimality arch for uniquely decodable code book and the kraft inequalit Huffman coding, some other source coding algorithms - run ler o Ziv–Lempel coding.	y, fixed vs. variable
Module 5		10 Hours
detection and cont distribution for err	sion/storage, need for forward error detection and control, nee rol, field, group and algebra of error control coding, minimum d for detection and correction, code word design using hamming n - correction using syndrome, CRC and cyclic code.	listance and distance
Module 6		4 Hours
0	on concepts, architectures for receivers, communication network 802.11 standards, resource allocation and performance issue	
Reference books	 William Stallings, "Data and Computer Communications ar Edition, TMH, 2002. Behrouz A Forouzan, "Data Communications and Netwo TMH, 2002. Leon, Garcia and Widjaja, "Communication Networks", T 	rking", 2nd edition,

Subject Code	Data Structures (DS)	Credits: 4 (3-1-0)
CS 201		Total hours:56
Course	Following this course, students will be able to: 1) Assess ho	w the choice of data
Objectives	structures and algorithm design methods impacts the perform	nance of programs. 2)
	Choose the appropriate data structure and algorithm de	esign method for a
	specified application. 3) Solve problems using data structure	s such as linear lists,
	stacks, queues, hash tables, binary trees, heaps, tournament	trees, binary search
	trees, and graphs and writing programs for these solutions	
	using algorithm design methods such as the greedy method,	divide and conquer,
	dynamic programming, backtracking, branch and bound and	writing programs for
	these solutions.	1
Module 1		6 Hours
Introduction to d	data structures and objectives, basic concepts Arrays: one	dimensional, multi-
dimensional, Elen	nentary Operations.	
Module 2		8 Hours
Stacks: Represen	tation, elementary operations and applications such as infix	k to postfix, postfix
evaluation, paren	thesis matching, Queues: Simple queue, circular queue, c	lequeue, elementary
-		
operations and an	nlications	
operations and ap	plications.	
	plications.	10 Hours
Module 3	- 	10 Hours
Module 3 Linked lists: Line	ear, circular and doubly linked lists, elementary operations and	
Module 3 Linked lists: Line polynomial manip	ear, circular and doubly linked lists, elementary operations and	applications such as
Module 3 Linked lists: Line	ear, circular and doubly linked lists, elementary operations and	
Module 3 Linked lists: Line polynomial manip Module 4	ear, circular and doubly linked lists, elementary operations and	applications such as 12 Hours
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree	ear, circular and doubly linked lists, elementary operations and bulation.	applications such as 12 Hours y search tree, height
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like	e representation, tree traversal, complete binary tree, heap, binary	applications such as 12 Hours y search tree, height f trees.
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5	ear, circular and doubly linked lists, elementary operations and bulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of	applications such as 12 Hours y search tree, height f trees. 20 Hours
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer	ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of nation, adjacency list, graph traversal, path matrix, spanning	applications such as 12 Hours y search tree, heightf trees. 20 Hours tree; introduction to
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi	ear, circular and doubly linked lists, elementary operations and bulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of intation, adjacency list, graph traversal, path matrix, spanning s and design techniques, algorithms on sorting: Selection sor	applications such as 12 Hours y search tree, heightf trees. 20 Hours tree; introduction to
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi	ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of nation, adjacency list, graph traversal, path matrix, spanning	applications such as 12 Hours y search tree, height f trees. 20 Hours tree; introduction to
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represen algorithm analysi sort, merge sort, h	ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of natation, adjacency list, graph traversal, path matrix, spanning s and design techniques, algorithms on sorting: Selection sor neap sort, searching, linear and binary search.	applications such as 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi sort, merge sort, h Reference	 ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of nation, adjacency list, graph traversal, path matrix, spanning s and design techniques, algorithms on sorting: Selection sor heap sort, searching, linear and binary search. (1) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, 	applications such as 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represen algorithm analysi sort, merge sort, h	 ear, circular and doubly linked lists, elementary operations and bulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of the traversal of traversal o	applications such a 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick "Data structures &
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi sort, merge sort, h Reference	 ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of nation, adjacency list, graph traversal, path matrix, spanning s and design techniques, algorithms on sorting: Selection sor heap sort, searching, linear and binary search. (1) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, algorithms", Addison Wesley. 2003 (2) Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, "Fu 	applications such a 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick "Data structures & ndamentals of data
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi sort, merge sort, h Reference	 ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of tration, adjacency list, graph traversal, path matrix, spanning s and design techniques, algorithms on sorting: Selection sor heap sort, searching, linear and binary search. (1) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, algorithms", Addison Wesley. 2003 (2) Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, "Fu structures and algorithms using C++", 2nd edition, Galgotia 	applications such a applications such a 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick "Data structures & ndamentals of data a publications, 2006
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi sort, merge sort, h Reference	 ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of that and design techniques, algorithms on sorting: Selection sor meap sort, searching, linear and binary search. (1) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, algorithms", Addison Wesley. 2003 (2) Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, "Fu structures and algorithms using C++", 2nd edition, Galgotia (3) Michael T. Goodrich, Roberto Tamassia, "Data Structures" 	applications such a applications such a 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick "Data structures & ndamentals of data a publications, 2006
Module 3 Linked lists: Line polynomial manip Module 4 Trees: Binary tree balanced trees like Module 5 Graphs: Represer algorithm analysi sort, merge sort, h Reference	 ear, circular and doubly linked lists, elementary operations and pulation. e representation, tree traversal, complete binary tree, heap, binary e AVL tree and 2-3 tree and other operations and applications of tration, adjacency list, graph traversal, path matrix, spanning s and design techniques, algorithms on sorting: Selection sor heap sort, searching, linear and binary search. (1) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, algorithms", Addison Wesley. 2003 (2) Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, "Fu structures and algorithms using C++", 2nd edition, Galgotia 	applications such as 12 Hours y search tree, height f trees. 20 Hours tree; introduction to t, bubble sort, quick "Data structures & ndamentals of data a publications, 2006 es and algorithms in

Subject Code	Computer Organization and Architecture	Credits: 4 (3-1-0)
CS 202	(COA)	Total hours:56
Course Objectives	The course explores the hardware aspects of a computer syste	m design.
Module 1		8 Hours
organization, logic performance, proce	nputer Architecture & Organization, contrast between comp cal organization of computers; basic operational concep essor clock, basic performance equation, clock rate, performanc hine, instruction format, execution cycle; instruction types and	ots, bus structures, e measurement,
Module 2		10 Hours
and logical unit multiplication of po floating-point numb	tic: representation of integers and real numbers, fixed point a design, addition and subtraction of signed numbers, desi ositive numbers, signed operand multiplication, fast multiplicat bers and operations.	ign of fast adders, ion, integer division,
Module 3		8 Hours
-	Memory System: Semiconductor RAM memories, ROM me emories mapping functions, replacement algorithms, perform econdary storage.	-
Module 4		15 Hours
control, micro prog Serial I/O (study o	gn: Instruction sequencing, instruction interpretation, control grammed control and micro programmed computers. I/O organ f asynchronous and synchronous modes, USART & VART), jd: asynchronous, synchronous & interrupt driven modes, DIA controller.	ization, bus control, parallel data transfer
Module 5		15 Hours
computer architector control, reducing the Reference	 PU: Single vs. multiple data path, ISA, control unit, instruction ure, CISC, RISC, VLIW, introduction to ILP, pipeline hazards ne effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Com 5th Edition, Tata McGraw Hill, 2002. 	structural, data and puter organization",
	 (2) J. P. Hayes, "Computer architecture and organization", 3 Hill, 1998. (3) Patterson and Hennessy, "Computer architecture: A qua Morgan Kaufmann, 2000. (4) Hwang and Briggs, "Computer architecture and parallel pr Hill, 1985. (5) David A. Patterson& John L. Hennessy, "Computer organ Morgan Kaufmann, 4th edition, 2012. 	ntitative approach", rocessing", McGraw

Subject Code	Discrete Mathematics (DM)	Credits: 4 (3-1-0)
CS 203		Total hours:56
Course	This course introduces basic concepts of combinatory, notio	n of proofs, concept
Objectives	of generating functions, recurrence relations.	
Module 1		15 Hours
on probability, co tables, logic equiv predicate calculus	set operations and the laws of set theory, counting and Venn di untable and uncountable sets. Fundamentals of Logic: Basic C valence, the laws of logic, logical implication, rules of inferen- the use of quantifiers, quantifiers, definitions and the proofs	onnectives and truth ice, proportional and
	s to artificial intelligence.	1
Module 2		10 Hours
Properties of the I	ntegers: Mathematical Induction, the well ordering principle, rec	cursive definition.
Module 3		15 Hours
composition and	numbers of the second kind, special functions, the pigeon-hol inverse functions, properties of relations, computer recognition is, partial orders, Hasse diagrams, equivalence relations and par	n zero, one matrices
Module 4		10 Hours
-	ns, examples, elementary properties, costs, normal subgroups, , isomorphism, and cyclic groups, cosets and Lagrange's T ole applications.	
Module 5		6 Hours
Introduction to gr tree, algorithms.	raph theory, trees, planarity, connectivity, traversability, shortes	st path and spanning
Reference books	 J.P. Tremblay & R. Manohar, "Discrete mathematic applications to computer science", Tata McGraw Hill, 2008 C.L.Liu, "Elements of Discrete mathematics", 3rd ed. McGravette McGraw Hill, 2008 Kenneth Rosen, "Discrete mathematics and its applications" (4) Jean Gallier, "Discrete mathematics", Springer, 2011. Ralph P. Grimaldi, "Discrete and combinatorial mathematics", Pearson, 2003. 	raw Hill, 2008 ", TMH, 2011.

Subject Code MA 200	Mathematics-III	Credits: 3 Total hours 42	
Course Prerequisites	Mathematics-I & II		
Objectives	This Mathematics course provides requisite and relevant background necessary to		
	understand the other important engineering mathematics courses offered for		
	Engineers and Scientists. Important topics of applied mathematics, namely		
	complex analysis, power series solutions, Fourier series and transforms and		
	partial differential equations.		
Module 1	Complex Analysis	18 hours	
Complex Numbers, ge	ometric representation, powers and roots of complex numb	ers, Functions of a	
complex variable, Ana	alytic functions, Cauchy-Riemann equations; elementary fu	nctions, Conformal	
mapping (for linear tran	nsformation); Contours and contour integration, Cauchy's theor	em, Cauchy integral	
formula; Power Series	and properties, Taylor series, Laurent series, Zeros, singulari	ties, poles, essential	
singularities, Residue th	eorem, Evaluation of real integrals and improper integrals.		
Module 2	Power Series Solutions	9 hours	
Differential Equations	Power Series Method - application to Legendre equation, Leg	gendre Polynomials,	
Frobenious Method, Be	essel equation, Properties of Bessel functions, Sturm-Liouville	e BVPs, Orthogonal	
functions.			
Module 3	1	15 hours	
Introduction to PDE, I	pasic concepts, second order PDE and classification, D'Aler	mberts formula and	
Duhamel's principle for	r one dimensional wave equation, Laplace's and Poisson's	equations, Laplace,	
Wave, and Heat equation	ons using separation of variables. Vibration of a circular memb	orane. Heat equation	
in the half space.			
Texts/References	1. E. Kreyszig, Advanced engineering mathematics (8 Wiley (1999).		
	2. W. E. Boyce and R. DiPrima, Elementary Different Edition), John Wiley (2005).	ial Equations (8th	
	 R. V. Churchill and J. W. Brown, Complex variable (7th Edition), McGraw-Hill (2003). 	es and applications	

Subject Code	Data Structures Laboratory	Credits: 2 (0-0-3)	
CS 204		Total hours: 42	
Course Objectives	The course provides practical knowledge in implementing the standard data		
	structures in C		
List of Experimen	ts		
(1) Implementa	tion of array operations, Structures & Unions.		
(2) Stacks, Queues, Circular Queues, Priority Queues, Multiple stacks and queues.			
(3) Infix to postfix expression using stack			
(4) Implementation of linked lists: stacks, queues, single linked lists.			
(5) Implementation of polynomial operations. Doubly linked lists.			
(6) Tree traversal: AVL tree implementation, application of trees.			
(7) Implementa	tion of Hash Table.		
(8) Searching a	nd sorting.		
(9) Traversal of	f graph		
Reference	(1) Mark Allen Weiss, "Algorithms data structures and proble	em solving with C++",	
books	Addison Wesley, 1996.		
	(2) Seymour Lipschutz, G A VijayalalashmiPai, "Data	structure", Schaum's	
	outlines, TMH, 1986		
	(3) O.G. Kakde & P.S. Deshpandey, "Data structure	es and algorithms",	
	ISTE/EXCEL books, 2004.		
	(4) Aho Alfred V., Hopperoft John E., Ullman Jeffrey D.,	"Data Structures and	
	Algorithms", Addison Wesley, 1983.		

Subject Code	Digital Systems Design (DSD)	Credits: 3 (3-0-0)
CS 250		Total hours:45
Course Objective	s To understand the working of digital systems. Hardw computer can be studied in greater depth.	vare components of the
Module 1		10 Hours
Number Systems	And Boolean Algebra: Review of binary, octal & hexaded	cimal number systems,
excess 3 codes, gra	signed numbers, floating point number representation Be any code-error detecting & correcting codes. Boolean algebra: a, canonical forms, simplification of logic functions using	Postulates & theorems
Module 2		8 Hours
Combinational Log	gic Design: Logic gates, implementation of combinational lo	gic functions, encoders
	iplexers &demultiplexers, code converters, comparator, l	•
	hary adder, parity generator/checker, implementation of l	
Module 3		11 Hours
Sequential Logic	Design-I : RS, JK, JK master, slave, D&T flip flops, lev	el triggering and edge
	on tables, asynchronous & synchronous counters, modulus of	
	ing counter, timing waveforms, counter applications.	
Module 4		8 Hours
Sequential Logic	Design-II: Basic models of sequential machines, concer	ot of state table, state
diagram, state red	uction through partitioning & implementation of synchron	ous sequential circuits,
Introduction to asy	nchronous sequential logic design.	
Module 5		8 Hours
Programmable Log	gic Devices: Semicustom design, introduction to PLD's, RC	OM, PAL, PLA, FPGA
Architecture of P	LD's: PAL 22V10, PLS 100/101, implementation of di	
	-	igital functions. Logic
Families: RTL, I	LD's: PAL 22V10, PLS 100/101, implementation of di DTL, TTL families, Schottky, clamped TTL, Emitter O n Logic (IIL), MOS inverters, CMOS inverters, comparis	igital functions. Logic Coupled Logic (ECL),
Families: RTL, I	OTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparis	igital functions. Logic Coupled Logic (ECL),
Families: RTL, I Integrated Injection various logic famil	OTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparisies.	igital functions. Logic Coupled Logic (ECL), son of performance of
Families: RTL, I Integrated Injection various logic famil	OTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparis	igital functions. Logic Coupled Logic (ECL), son of performance of
Families: RTL, I Integrated Injection various logic families Reference books	 DTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparisies. (1) Alan B.Marcovitz, "Introduction to logic design", 3rd Professional, 2009. (2) Giovanni De Micheli, "Synthesis and optimization of 	igital functions. Logic Coupled Logic (ECL), son of performance of Edition, McGraw-Hill
Families: RTL, I Integrated Injection various logic famil Reference books	 DTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparisities. (1) Alan B.Marcovitz, "Introduction to logic design", 3rd Professional, 2009. (2) Giovanni De Micheli, "Synthesis and optimization of McGraw-Hill Education 2003. 	igital functions. Logic Coupled Logic (ECL), son of performance of Edition, McGraw-Hill E digital circuits", Tata
Families: RTL, I Integrated Injection various logic famil Reference books	 OTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparisies. (1) Alan B.Marcovitz, "Introduction to logic design", 3rd Professional, 2009. (2) Giovanni De Micheli, "Synthesis and optimization of McGraw-Hill Education 2003. (3) Zvi Kohavi, Niraj K. Jha, "Switching and finite autom 	igital functions. Logic Coupled Logic (ECL), son of performance of Edition, McGraw-Hill E digital circuits", Tata
Families: RTL, I Integrated Injectio various logic famil Reference books	 OTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparisies. (1) Alan B.Marcovitz, "Introduction to logic design", 3rd Professional, 2009. (2) Giovanni De Micheli, "Synthesis and optimization of McGraw-Hill Education 2003. (3) Zvi Kohavi, Niraj K. Jha, "Switching and finite autom Cambridge University Press, 2011. 	igital functions. Logic Coupled Logic (ECL), son of performance of Edition, McGraw-Hill E digital circuits", Tata nata theory", 3 rd Edition
Families: RTL, I Integrated Injectio various logic famil Reference books	 DTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparison is. (1) Alan B.Marcovitz, "Introduction to logic design", 3rd Professional, 2009. (2) Giovanni De Micheli, "Synthesis and optimization of McGraw-Hill Education 2003. (3) Zvi Kohavi, Niraj K. Jha, "Switching and finite autom Cambridge University Press, 2011. (4) Douglas A. Pucknell &Kamran Shrayhian, "Basic VL" 	igital functions. Logic Coupled Logic (ECL), son of performance of Edition, McGraw-Hill E digital circuits", Tata nata theory", 3 rd Edition
Families: RTL, I Integrated Injection various logic famil Reference books	 OTL, TTL families, Schottky, clamped TTL, Emitter On Logic (IIL), MOS inverters, CMOS inverters, comparisies. (1) Alan B.Marcovitz, "Introduction to logic design", 3rd Professional, 2009. (2) Giovanni De Micheli, "Synthesis and optimization of McGraw-Hill Education 2003. (3) Zvi Kohavi, Niraj K. Jha, "Switching and finite autom Cambridge University Press, 2011. 	igital functions. Logic Coupled Logic (ECL), son of performance of Edition, McGraw-Hill E digital circuits", Tata nata theory", 3 rd Edition SI design systems and

Subject Code	Economics	Credits: 3(3-0-0)
HS 250		Total hours: 45
Course Outcome	The fundamental objective of this course aims at providing a com the broad area of economics and its scenario. The course aspires the light of economic decision makings, and facilitates tohave grip	to bring the students into
Module 1	Introduction to Economics	2 hours
-	, Optimization and Equilibrium in market demand and supply, Con	nparative statistics and
asset allocation.	1	
Module 2	Utility, Choice, Budget Constraint and Consumer Preference	6 hours
and impact of Taxes,	structing a Utility Function, Budget constraint in case of two good Subsidies, and Rationing. Indifference curve, Marginal Rate of Sul ndifference curve from utility functions, Marginal Utility vs MRS	e e
Module 3	Demand, Revealed Preference & Slutsky Equation	6 hours
Douglas Preferences,	Goods, Income Offer Curves and Engel Curves, Perfect Substitute The Idea of Revealed Preference, From Revealed Preference stitution Effect, The Income Effect, Rate of Change and change of I	to reference, Recovering
Module 4	Consumer Surplus, Market Demand & Equilibrium	6 hours
to Market Demand, T and Demand, Market	e Good, Constructing Utility from DemandFrom, Change inConsur he Inverse Demand Function, The Extensive and the Intensive Mar Supply, Market equilibrium, Inverse Demand and Supply Curves	gin, Elasticity, Elasticity
Module 5	Technology and Profit Maximization	3 hours
Substitution, Diminis	Describing Technological Constraints, Properties of Technology hing Technical Rate of Substitution, Returns to Scale, Profits, Th Firms, Short-Run Profit Maximization, Profit Maximization turns to Scale	ne Organization of Firms,
Module 6	National Income Accounting	2 hours
National Income and	Related concepts, Nominal or real GDP, Methods of measuring NI.	
Module 7	Determinants of Equilibrium Output and IS – LM Model	8 hours
Aggregate demand a	nd Equilibrium output, Consumption function and aggregate de	emand, Multiplier, Govt.
sector, Budget and Full LM model	ull employment, Asset and Goods Market, Equilibrium and adjustm	nent to equilibrium in IS –
Module 8	Money and Fiscal policy and International Linkages	8 hours
Monetary and fiscal Exchange rate, Balan	policy, crowding out, composition of output and policy mix, lance of Trade and capital mobility, Mundell-Fleming model, Ca	Balance of Payment and
exchange rates		4.1
Module 9	Aggregate Demand, Supply and Growth	4 hours
	id policies, Aggregate Supply, Fiscal and monetary policy under Al	ternative supply
	ntity theory and neutrality of Money.	(IGDN: 0202020202)
Books Koutsoyiani Dornbusch a	R.: Intermediate Microeconomics, W.W. Norton & Co., New work his, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macn and Stanley Fisher: Macroeconomics, McGraw Hill rt J. "Macroeconomics, New York, John Wiley	

Subject Code	Systems Programming (SP)	Credits: 4 (3-1-0)
CS 251	Systems i rogramming (Sr)	Total hours:56
Course Objectives	To understand the relationship between system soft	ware and machine
Ŷ	architecture to design and implement assemblers, linkers ar	nd loaders.
Module 1		10 Hours
Components of a pro-	ogramming system: Assemblers, loaders, macros, compilers	, machine Structure:
Memory, registers, d	ata, instructions. Machine language: Address modification	using instructions as
data, address modific	ation using index registers, looping Assembly language.	
Module 2		15Hours
Assemblers: Basic a	ssembler functions with an example assembler, assembler	algorithm and data
structures, machine o	lependent assembler features, machine independent assembl	er features, one-pass
assemblers, multi-pas	ass assemblers, implementation example. Table processing: Se	earching and sorting.
Module 3		15 Hours
-	loader features, program linking, algorithms and data s loader features, automatic library search, loader design option on example.	-
Module 4		10 Hours
	asic macro processor functions, macro definition and expans gorithms, implementation example, discussion of ANSI C m	
Module 5		6 Hours
System Software Too	ols: Text editors, overview of the editing process, user interfa	ce, editor structure,
interactive debugging	g systems, debugging functions and capabilities, relationship	with other parts of
the system.		
books (2 (3	 John J. Donovan, "Systems Programming", Tata McGraw-J. Leland L. Beck, D. Manjula, "System software: An intr programming", Pearson education, 3rded, 2007. D.M. Dhamdhere, "Introduction to system software", Publications, 2002. John R. Levine, "Linkers & Loaders", Morgan Kaufmann H. 	oduction to systems Tata McGraw Hill

Subject Code	Object Oriented Programming (OOP)	Credits: 3 (3-0-0)
CS 252		Total hours:45
Course	This course focuses on principles of object oriented program	nming paradigm. The
Objectives	course also includes practice of writing programs in C++ and	d Java.
Module 1		10 Hours
Principles of OOP:	Programming paradigms, basic concepts, benefits of OOP, ap	plications of OOP
Introduction to C+-	+: History of C++, structure of C++, basic data types, type ca	sting, type modifiers,
operators and cont	rol structures, input and output statements in C++. Classe	es and objects: class
specification, mem	ber function specification, scope resolution operator, acces	s qualifiers, instance
creation .Function	s: Function prototyping, function components, passing	parameters, call by
reference, return b	y reference, inline functions, default arguments, overloade	d function. Pointers:
Array of objects, po	pinters to objects, this pointer, dynamic allocation operators, d	ynamic objects.
Module 2		10Hours
Constructors: Cons	tructors, parameterized constructors, overloaded constructo	rs, constructors with
default arguments,	copy constructors, static class members and static objects. C	Operator overloading:
Overloading unary	and binary operator, overloading the operator using frie	end function, stream
operator overloadin	g and data conversion.	
Module 3		8 Hours
Inheritance: Defini	ng derived classes, single inheritance, protected data with	private inheritance,
multiple inheritance	e, multi-level inheritance, hierarchical inheritance, hybrid in	heritance, multi path
inheritance, constru	actors in derived and base class, abstract classes, virtual fu	unction and dynamic
polymorphism, virt	ual destructor.	
Module 4		7 Hours
Exception Handling	g: Principle of Exception handling, exception handling mecha	nism, multiple catch,
nested try, rethrowi	ng the exception. Streams in C++: Stream classes, formatted a	and unformatted data,
manipulators, user	defined manipulators, file streams, file pointer manipulation	, file open and close.
Templates: Templa	te functions and Template classes.	
Module 5		10 Hours
• •	gramming using Java: Introduction to Java, bytecode, virtual	
•• •	ontrol structures, classes and objects, using Javadoc, pack	• • •
	ces, exception handling, multithreaded programming, Java	streams, developing
user interfaces in Ja	.va.	
	1) BJarne Stroustrup, "The C++ Programming Language", Ad	•
	2) Stanley B Lippman, "The C++ Primer", Addison Wesley, 2	
(3) Ira Pohl, "Object oriented programming using C++", 2 nd e	d, Pearson Education
	India, 2003. 4) Patrick Naughton and Herbert Schildt, "Java 2: The Comp	lete Reference"
	Fourth ed, McGraw Hill Professional 2001.	
(5) Paul. Deitel, Harvey Deitel, "Java: How to program", 8 ^t	^h Edition, PHI private
	limited, 2010.	· 1

Subject Code	Mathematics-IV	Credits: 3 (3-0-0)
MA 250		Total hours: 45
Course Objectives	This is a one semester course that covers elements of linear of vector spaces, norm, and basic topology and views the useful to model most real world observations. It probabilistic models for Information processing and system	e signal space model aims at developing
Module 1		15 Hours
Signal Modeling:	Review of vector spaces, linear data models, Eigen-decom	position & matrices,
Fourier series and	transforms, Some other transforms and applications to data re	presentation.
Module2		10 Hours
and applications,	bility via measure theory and Borel-Field, Kolmogorov axia random variable, properties of CDF/PDF, inequalities on & probability generating functions.	•
Module 3		10 Hours
	ne random variable, discrete and continuous random variables ic, uniform, exponential, Gaussian, statistical tests on surve	
Module 4		10 Hours
sequences, random detection and es	m processes, measurements with random processes, types of	recognition, random of random processes, nd discrete random
Reference	(1) Athanasios Papoulis, U. S. Unnikrishnan Pillai, "Probabil	
books	 and Stochastic processes", 4th ed, Tata McGraw-Hill Edit (2) Vijay K. Rohatgi, A. K. Md. Ehsanes Saleh "An introd and statistics", 2nd edition, Wiley series in probability and (3) Gilbert Strang, "Introduction to linear algebra", 3rd Cambridge Press, 2005. (4) Sheldon M. Ross, "Stochastic Processes", 2nd edition Limited, 2008. (5) Thomas M. Cover, Joy A. Thomas, "Elements of info edition, Wiley-Interscience, 2006. 	uction to probability statistics, 1976. edition, Wellesley- n, Wiley India Pvt.

Subject Code CS 253	Object Oriented Programming LaboratoryCredits: 2 (0-0-3) Total hours: 42
Course Objective	To understand the basic object oriented programming concepts (objects, classes and subclasses, methods) using C++ and Java.
List of experimen	ts
 (2) Matrix multiplication (3) Operator of (4) Matrix marticity (4) Matrix marticity (5) Overloadine (6) Practice on (7) Implementation (7) Implementation (8) Implementation (9) Implementation (10) Inheritance (11) File handline (12) Practice of (13) File handline (14) Multithread 	grams in C++ iplication in C++ erloading exercises ipulation using dynamic memory allocation g dynamic memory allocation operators templates tion of linked list using templates tion of sorting algorithms using templates tion of stack and queue using exception handling based exercise g using streams lava programming g using Java streams ed programming using Java graphical user interfaces using Java
	 BJarne Stroustrup, "The C++ Programming Language", Addison Wesley, 2004. Stanley B Lippman, "The C++ Primer", Addison Wesley, 2005. Ira Pohl, "Object oriented programming using C++", 2nd ed., Pearson Education India, 2003 John R.Hubbard, "Schaum's Outline of Programming with C++", McGraw Hill Professional, 2003 K.R.Venugopal, RajKumar Buyya, T.Ravishankar, "Mastering C++", Tata McGraw-Hill Publishing Company Limited, 2006 E. Balagurusamy, "Object Oriented Programming with C++", Tata McGraw- Hill, 4th ed., 2008 Patrick Naughton and Herbert Schildt, "Java 2: The Complete Reference", 4th ed., McGraw Hill Professional 2001 Paul.Deitel, Harvey Deitel, "Java: How to program", 8th ed., Prentice Hall of India private limited, 2010

Subject Code	Digital Systems Laboratory	Credits: 2	(0-0-3)
CS 254		Total hours	s: 42
Course Objectives	The course provides practical knowledge in designing the o	ligital system	IS
List of Experiments	5		
(1) Simplificatio	n, realization of boolean expressions using logic gates/univer	sal gates	
(2) Realization of	f half/full adder & half/full subtractors using logic gates		
(3) Realization of	f parallel adder/subtractors using 7483 chip, BCD to Excess	-3code conve	ersion &
vice versa			
(4) Realization of	f binary to gray code conversion & vice versa		
(5) MUX/DEMU	JX – use of 74153,74139 for arithmetic circuits & code conve	erter	
(6) Realization of	f one/two bit comparator and study of 7485 magnitude comp	arator	
(7) Use of a) Dec	coder chip to drive LED display & b) Priority encoder		
(8) Truth table v	erification of flip-flops: i) JK Master Slave ii) T type iii) D ty	rpe	
(9) Realization	of 3 bit counters as a sequential circuit & MOD	-N counter	design
(7476,7490,7	4192,74193)		
, , ,	esting of sequence generator		
) J. Bhasker, "A VHDL primer", 3rd edition, Addison Wesley		
books (2) Douglas Perry, "VHDL: Programming by example", 4	^{un} ed. McGr	aw Hill
(2	International, 2002.) Peter Ashenden, "The Designer Guide to VHDL", Morgan 1	Kaufmann 1	008
(5) reter Ashenden, The Designer Guide to VHDL, Morgan	Naumann, 1	770

Subject Code:	Value Education	Credits: 1 (1-0-0)
VE200		Total hours: 14
Course Prerequisite	General Awareness of the Society/ Environment we live in	
Course Objectives	It aims at Holistic Development	
Course Outcome	At the end, the students should be a complete human being in a	every respect
Module 1	Ethics in Engineering	4 hours
Concepts of Values	and Ethics, History and Purposes, Utilitarianism, Duties, Ri	ghts, Responsibility,
Virtue, Honesty, Mora	l Autonomy, Obligations of Engineering Profession and moral l	Propriety
Module 2	Engineer's Moral responsibility	3 hours
Engineer's Moral resp	onsibility for Safety and Human Rights, Risk Assessment and C	Communication,
Product Liability, Eng	ineers-Employers Liaison, Whistle-Blowing and Its Moral Justi	fication
Module 3	Computer Ethics	3 hours
Social Impact of Com	puter, Gender-Issues and Privacy, Cyber Crime, Ethical use of S	oftware
Module 4	Intellectual property	4 hours
Definition, Types, Ri	ghts and Functions, Patents, Trademark, Grant of Patent in	India, Surrender and
Revocation of Patents	, Compulsory Licensing, Acquisition of Inventions by the Gov	ernment, Contents of
draft application of Pa	tents, WTO	
Texts:	 Vinod V. Sople, Managing Intellectual Property: The PHI,2006 Govindarajan, Natarajan & Senthil Kumar, Engineerin Robin Attfield, A Theory of Value and Obligation, I 1987 Lange and herlett, "Cuber Ethican Manality and Langing 	g Ethics, PHI London: Croomhelm,
	4. Jones and barlett, " <i>Cyber Ethics: Morality and Law in</i>	Cyber Space
Reference	Case Studies from Newspapers	

Subject Code		Credits: 4 (3-1-0)
CS 300	Operating Systems (OS)	Total hours: 56
Course	This course covers the objectives and functions of open	rating systems which
Objectives	include process management, memory management, disk	scheduling, security
	and File Systems. At the end of the course student sho	ould be able to write
	application keeping concurrency and synchronization	semaphores/monitors,
	shared memory, mutual exclusion Process scheduling servi	ces of an OS.
Module 1		10 Hours
	OS, batch processing, multi-programming, interrupts, CPU surrent processes, threads, multi-threading, inter process commun	0
Module 2		10 Hours
Mutual exclusion	n, Software solution, hardware solutions, atomic test and set, I	L, swap instructions,
monitors, deadlo	cks, avoidance, prevention and detection algorithms.	
Module 3		14 Hours
Memory manage	ement, fixed and variable paging, segmentation, virtual mem	nory, virtual memory
concept, demand	paging, page replacement algorithms, trashing, and strategies to	control trashing.
Module 4		12 Hours
File Systems, di	sk scheduling algorithms, LOOK, C-LOOK, SCAN, C-SCAN	N, I/O Hardware, I/O
buffering, RAID	, performance evaluation.	
Module 5		10 Hours
Operating system	n security & protection, breaches, solutions, mechanisms, Ir	side attacks, outside
attacks, case stud	lies - the UNIX kernel and Microsoft Windows NT.	
Reference	1) Peter B. Galvin, "Operating System Concepts", 8 th Ed., TM	
books	2) Andrew.S.Tanenbaum, "Modern Operating Systems", 3 rd	ed., PHI Learning,
		1. XX 1 eth 1
	3) Silberschartz& Galvin, Operating System Concepts, Add 1997.	uson Wesley, 5 th ed.,
	4) MelinMilenkovic, "Operating Systems: Concepts and De New York, 2000.	esign", McGraw Hill,

Subject Code	Database Systems (DS)	Credits: 4 (3-1-0)
CS 301		Total hours: 56
Course Objectives	This course covers the relational database systems RDBS system for business, scientific and engineering application topics are reinforced using tools such as Oracle server includes entity-relation model, normalization, relational algebra, and data access queries as well as an introduction to	ons at present. The in labs. The course model, relational
Module 1	1	12 Hours
system concept and language and interfa using the Entity R constraints, keys, sp	erview of database management system, database system vs f architecture, data model schema and instances, data indeper aces,(DDL,DML,DCL), overall database structure, database u celationship model: ER model concepts, notation for ER pecialization, generalization, aggregation, reduction of an ER relationship of higher degree.	dence and database sers. Data modeling diagram, mapping
Module 2		14 Hours
calculus, tuple and c SQL data type and l and indexes, queries	l integrity, key constraints, domain constraints, relational domain calculus.Introduction on SQL: Characteristics of SQL iterals, types of SQL commands, SQL operators and their proc and sub queries, aggregate functions, insert, update and dele minus, cursors, triggers, procedures in SQL/PL SQL.	, advantage of SQL, cedure, tables, views
Module 3		18 Hours
key, super key, norr form, loss less join MVD, and JDs,inc ofserializability, ser	& Normalization: Functional dependencies, primary key, for nal forms, first, second, third normal forms, BCNF, 4th Norr decompositions, canonical cover, redundant cover, synthesis lusion dependence, transaction processing concept, transac- ializability of schedules, conflict & view serializable sche- saction failures, log based recovery, deadlock handling.	nal form,5th normal the set of relation , tion system, testing
Module 4	12 Hours	
2PL, time stamping multi version schen storage devices, tert hashing, types of sir	ol Techniques: Concurrency control, locking techniques for of protocols for concurrency control, validation based protocol, a nes and recovery with concurrent transaction. Storage: Intra- iary storage, buffering of blocks, structure of files, file organi- ngle level ordered indexes, multilevel indexes, dynamics mult- es, database security.	multiple granularity, oduction, secondary zation, indexing and
books (Korth, Silberschatz, "Database System Concepts", 4th ed., 7 Elmsari and Navathe, "Fundamentals of Database Systems Wesley, 2004 Raghu Ramakrishnan , Johannes Gehrke, "Database Mana 3rd Edition, McGraw- Hill, 2003. J D Ullman, "Principles of database systems", Computer S 	", 4 th ed., A. gement Systems",

Subject Code	Microprocessors and Microcontrollers	Credits: 3(3-0-0)
CS302	(MPMC)	Total hours:45
Course Objectives	To introduce the student with knowledge about architectu programming with 8086 microprocessors and 8051 microco brief introduction to ARM 7 and ARM 9 micro controllers. subject, the student should be able to design microprocess system.	ontrollers. It gives a After studying this
Module 1		12 Hours
	ory of microprocessors, basics of computer architecture, computer or architecture, computer or architecture.	er languages, CISC
Module2		10 Hours
memory segment program develop	cture of the 8086 microprocessors, address space, data orga cation and addressing, stack, I/O space, Assembly language oment, 8086 microprocessor architecture, min/max mode, onfiguration, hardware organization of address space, contr	programming and coprocessor and
Module 3		10 Hours
keyboard/display controller, direct	terfacing devices, 8255A programmable parallel interface, 8 interface, 8254 programmable interval timer, 8259A prog memory access (DMA), 8237 DMA controller, serial I/O and d I/Os, serial I/O lines, 8251A programmable communication inte	rammable interrupt ata communication,
Module 4		13 Hours
interrupt, timers j	controller, CPU operation, memory space, software overview, poarallel port inputs and outputs, serial port, low power special rRM processors, features of ARM 7 and 9 processors.	-
Reference books	 Hall D.V., "Microprocessors and Interfacing", McGraw Hi Triebal W A & Singh A., "The 8088 and 8086 microproces Hill, 2007. Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin I 8051 microcontroller and embedded systems", 2nd edition, I 2009. Ramesh Gaonkar, "Microprocessor architecture programmi with 8085", 5th edition, Penram International Publishing, 2 	sors", McGraw D Mckinlay,"The Pearson education, ang and applications

Subject Code CS 303	Theory of Computation (TOC)	Credits: 4 (3-1-0) Total hours: 56
Course Objectives	This course introduces models of computation: Regular Recursive and recursively enumerable sets models and co models.	
Module 1	•	10 Hours
proof, additional for (DFA), non-determi	tion, classification, properties and equivalences, automata: In rms of proof, inductive proofs, finite automata (FA), determin nistic finite automata (NFA), Finite Automata with Epsilon tra	nistic finite automata
Module 2		10Hours
converting DFA to its applications to minimization of aut	and languages: Introduction to regular expression, building a regular expression, converting regular expression to DFA, prove languages not to be regular, closure properties of omata.	pumping lemma and f regular languages,
Module 3		15 Hours
and nondeterministi	uages, pushdown automata (PDA): Definition, Graphical no c, instantaneous descriptions of PDAs, language acceptance by valence of the CFG and PDAs, pumping lemma for CFLs, of plems for CFLs.	by final states and by
Module 4		15 Hours
by Turing machine hierarchy, recursive problems, universal	ntroduction to Turing machines, instantaneous descriptions, es, Turing machine transition diagrams, Church-Turing h ly enumerable sets, existence of non-recursively enumerable n ity of Turing machine, separation of recursive and recursively undecidable problems of Turing machines.	ypothesis, Chomsky otion of undecidable
Module 5		6 Hours
reduction, complete variants of satisfial independent sets, Ha Reference (books (1) (1)	 n of tractability/feasibility, the classes NP and co-NP, polynometers under this reduction, NP-completeness of propositional polity, NP-complete problems from other domains: graphs (a amiltonian cycle), number problem (partition), set cover. 1) J.E. Hopcroft and J.D. Ullman. "Introduction to Automata of Computations", Addison-Wesley, 1979. 2) C. Papadimitriou and C. L. Lewis. "Elements of Theory of Prentice-Hall, 1981. 3) John. C. Martin, "Introduction to languages and the theory of 3rd edition, TMH, 2003. 4) Peter Linz, "An introduction to formal language and aut Narosa publishing house, 2002. 5) John E. Hopcroft, Rajeev Motwani and Jeffery D. Ullman 	l satisfiability, other clique, vertex cover, Theory, Languages Computation", of computation", omata", 3rd edition,

Subject Code	Operating Systems Laboratory	Credits: 2(0-0-3)
CS 304		Total hours: 42
Course Objectives	To understand the implementation of an operating system.	
List of experiments	5	
	exercises to practice/simulate: scheduling, memory manager	e
· / 1	ion of various CPU scheduling algorithms (FCFS, SJF, Prior	•
(3) Implementat	ion of various page replacement algorithms (FIFO, Optimal,	LRU).
(4) Concurrent	programming; use of threads and processes, system calls (for	k and v-fork).
(5) Implementat	ion of Producer-Consumer problem, Bankers algorithm	
(6) To simulate	concept of semaphores.	
(7) To simulate	concept of inter process communication.	
(8) Implementat	ion of various memory allocation algorithms, (First fit, Be	est fit and Worst fit),
Disk Schedu	ling algorithms (FCFS, SCAN, SSTF, C-SCAN)	
(9) Kernel reco	nfiguration, devicone drivers and systems administration of	of different operating
systems.		
(10) Writing utili	ties and OS performance tuning.	
Reference (1) Peter B. Galvin, "Operating System Concepts", 8 th ed., TM	ИН, 2012.
books (2) Andrew.S.Tanenbaum, "Modern Operating Systems", 3 rd 2009	ed., PHI Learning,
(Silberschartz& Galvin, "Operating System Concepts", Ac 1997. 	ldison Wesley, 5 th ed.,
(4	 MelinMilenkovic, "Operating Systems: Concepts and De New York, 2000. 	esign", McGraw Hill,

Subject Code	Database Systems Laboratory	Credits: 2 (0-0-3)
CS 305		Total hours:42
Course Objectives	To obtain working knowledge of a database managed developing applications using the databases.	ement system and
List of experiments		
(1) Defining sche	emas for applications.	
(2) Creating table insertion into	es, Renaming tables, Data constraints (Primary key, Foreign a table.	key, Not Null), Data
(3) Grouping dat	a, aggregate functions, Oracle functions (mathematical, chara	cter functions).
	Set operations, Joins.	,
(5) Creation of o databases.	databases, writing SQL and PL/SQL queries to retrieve information from the	
(6) Triggers & C	ursors.	
•	n Design and Implementation of Database systems or packa automation, hotel management, hospital management;	ages for applications
	of Forms, Reports Normalization, Query Processing Algor	rithms in the above
	(9) Distributed data base Management, creating webpage interfaces for database applications using servlets.	
Reference	1) Ramez Elmasri, Shamkant B Navathe, "Fundamentals o	of database systems",
books	5 th ed., 2003.	
	2) Avi Silberschatz, Henry korth and S. Sudarshan, Concepts", 5 th Edition, TMH, 2005.	"Database Systems

Subject Code	Microprocessor and Microcontroller	Credits: 2 (0-0-3)
CS 306	Laboratory	Total hours: 42
Course Objectives	To practice writing programs using microprocessor.	
List of experimen	ts	
(1) 8085 and 8	086 kit familiarization and basic experiments	
(2) Arithmetic	operation of 16 bit binary numbers	
(3) Programmi	ng exercise : sorting ,searching and string	
(4) Interfacing	with A/D and D/A converters	
(5) Interfacing	with stepper motors	
(6) keyboard ir	terfacing to 8086	
(7) 8255 interfa	ace to 8086	
(8) Assembly l	anguage programming of 8051	
(9) Timer prog	ramming of 8051, using interrupts	
(10) LCD inter	facing to 8051 –project	
Reference	(1) ROM-BIOS service summary- Programmer's Guide to the	e IBM PC.
books		

Subject Code ES300	Environmental Studies	Credits: 3 (3-0-0) Total hours: 45
Course	Understanding environment, its constituents, importance f	for living, ecosystem,
	human developmental activities vs environment, climate	
Objective	international environment related developments, need for	public awareness, its
	protection and conservation activities.	Γ
Module 1		Hours: 2
-	nary nature of environmental studies: Definition, scope as	nd importance, Need
for public aw	areness.	
Module 2		Hours: 8
Renewable a	and non-renewable Natural resources : Natural resou	rces and associated
extraction, m and over-utili benefits and extracting an changes caus pesticide pro- needs, renew studies; Land erosion and Equitable use Module 3 Ecosystems: consumers an chains, food structure and	rest resources : Use and over-exploitation, deforestation, ining, dams and their effects on forest and tribal people; V ization of surface and ground water, floods, drought, confli- problems; Mineral resources : Use and exploitation, envi- d using mineral resources, case studies; Food resources : V sed by agriculture and overgrazing, effects of modern a blems, water logging, salinity, case studies; Energy resource able and non renewable energy sources, use of alternate of resources : Land as a resource, land degradation, man indesertification; Role of an individual in conservation of e of resources for sustainable lifestyles. Concept of an ecosystem, Structure and function of an eco- nd decomposers, Energy flow in the ecosystem, Ecologie webs and ecological pyramids, Introduction, types, ch function of the Following ecosystem, Forest ecosystem, O stem, Aquatic ecosystems (ponds, streams, lakes, rivers, occ	Vater resources : Use cts over water, dams- ironmental effects of Vorld food problems, griculture, fertilizer- ces : Growing energy energy sources, Case duced landslides, soil of natural resources; Hours : 10 cosystem, Producers, cal succession, Food haracteristic features, Grassland ecosystem,
	stem, Aquatic ecosystems (ponds, siteanis, lakes, livers, oc	1
Module 4	and its concernation. Later besting D. C. W.	Hours: 12
Biodiversity and its conservation: Introduction – Definition : genetic, species and ecosystem diversity, Bio geographical classification of India, Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity, Eco-cultural heritage of India-various festivals related to Environment, Tradition of community conserved areas-Sacred forests, sacred tanks, sacred mountains, sacred rivers.		
Module 5		Hours: 12
National and International Environment related developments Environmental ethics : Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear, accidents and holocaust, Environment related Acts, Issues involved in enforcement of environmental legislation, Public awareness, Wasteland reclamation, Consumerism and waste products, UN Frame Convention Climate Change, Kyoto protocol, concept of carbon credits, latest CoP meet Agenda; Filed Work(equal to 5 lecture hours): Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/sacred groves/sacred forests, Visit to a local polluted site-Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes, etc.		
	52	

	1. Textbook for Environmental Studies For Undergraduate Courses of all		
	Branches of Higher Education (online book -UGC Website), Erach		
	6		
	Bharucha, University Grants Commission, India.		
	2. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science and		
	Environment, Edi:1st,1997		
	ISBN-13 9788186906200; ISBN-10 8186906207		
	3. R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH		
	Pub., 2005.		
Reference	4. Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill,		
books	2006.		
DUUKS	5. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities		
	Press, 2005.		
	6. Masters, Gilbert M., Introduction to Environmental Engineering and		
	Sciences, Prentice		
	Hall India, 1991		

Subject Code	Compiler Design (CD)	Credits: 4 (3-1-	
CS 350		0)	
		Total hours: 56	
Course	Describe the steps and algorithms used by language translation	tors, Recognize the	
Objectives	underlying formal models such as finite state automata, push- their connection to language definition through regular grammars, Discuss the effectiveness of optimization.		
Module 1		10 Hours	
Introduction to co	ompiler design, Model of a Compilers, Translators, Interp	reters, Assemblers,	
Languages, Compu finite automata.	iter Architecture vs Compiler Design, Lexical analyzer, Regu	lar expressions and	
Module2		8 Hours	
Introduction to con	text free grammars, BNF notation, Syntax Analysis.	1	
Module 3		14 Hours	
Parsing Techniques	Parsing Techniques: Top-down parsing and Bottom-up parsing, general parsing strategies, brute force		
approach, recursive	e descent parser and algorithms, simple LL(1) grammar, botton	n-up parsing-handle	
of a right sententia	l form, shift reduce parsers, operator precedence parsers, LR, S	SLR, Canonical LR,	
LALR grammar an	d parsers, error recover strategies for different parsing technique	es.	
Module 4		14 Hours	
Symbol table, synta	ax-directed translation schemes, intermediate code generation, tr	anslation schemes	
for programming la	inguage constructs, runtime storage allocation.		
Module 5		10 Hours	
Code generation an	nd instruction selection: Issues, basic blocks and flow graphs,	register allocation,	
DAG representatio	n of programs, code generation from DAG, peep hole optimizat	tion, code generator	
generators, specifications of machine. Code optimization, source of optimizations, optimization of			
basic blocks, loops, global dataflow analysis, solution to iterative dataflow equations.			
Reference	1) Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman, "Con	npilers; Principles,	
books	Techniques & Tools", Addison- Wesley Publication, 2001.	-	
,	2) William A. Barrett et.al, "Compiler Construction, Theory an	d Practice",	
	Galgotia 2000	0	
	3) Holub A.I., "Compiler Design in C", Prentice Hall India.200	0.	

Subject Code	Design and Analysis of	Credits: 3 (3-0-0)
CS 351	Algorithms (DAA)	Total hours: 45
Course Objectives	To study paradigms and approaches used to analyze and design appreciate the impact of algorithm design in practice.	gn algorithms and to
Module 1		10 Hours
probabilistic analy searching algorith	ation, RAM model, big Oh, big Omega, asymptotic analysis, nysis, linearity of expectations, worst and average case analysis, hashing algorithms, lower bound proofs for the above pe, accounting and potential methods, analysis of Knuth-Morpalanced trees.	ysis of sorting and problems, amortized
Module2		11 Hours
programming, con Warshall algorithm	Divide & Conquer, Strassens algorithm, $O(n)_{-}$ median finding nbinatorial search, matrix chain multiplication, optimal binary n, CYK algorithm, Greedy, set of intervals, Huffman coding, k r MST, back tracking, branch & bound, traveling salesman prob	search trees, Floyd Knapsack, Kruskal&
Module 3		8 Hours
Computing Algoridisjoint sets.	thms, Simple Numerical algorithms, B trees, Fibonacci Heaps	, Data Structure for
Module 4		8 Hours
	lgorithms based on DFS, BFS, topological sort, pattern mate est path, flow, cuts. Efficient algorithms for matrix ir odular arithmetic.	
Module 5		8 Hours
	s, P, NP, Co-NP, NP Hard & NP complete problems. Search / d pleteness for clique, vertex cover, TSP, set covering ⊂	sum, approximation
	 (1) Aho, Hopcroft and Ullman "The design and analysis of Con Addison Weseley. (2) Horowitz and Sahni, "Fundamentals of Computer Alg Publications, 2000. (3) Baase S., "Computer Algorithms: Introduction to Des Addison Wesley. 2000 (4) Donald E. Knuth, "Art of Computer Programming, Volu Algorithms", 3rd Edition, Addison Wesley, 2000 (5) Corman, Leiserson and Rivest "Introduction to Algorit India, 3rd Edition, 2010 (6) AnanyLevtin, "Introduction to Design and Analysis of Al 2003. 	gorithms", Galgotia ign and Analysis", me 1: Fundamental hm", Prentice Hall

Subject Code	Software Engineering (SE)	Credits: 3 (3-0-0)
CS 352		Total hours: 45
Course Objectives	Following this course, students will be able to: 1 and explain its importance, 2) Discuss the conc software processes, 3) Explain the importance of the notion of professional responsibility. This co of software engineering, life cycle models and sy principles of software coding, design and tes languages & reusable code. Participatory design interface & mock up to confirm specification Professional issues & to explain why they are of & experience working in a team.	eepts of software products and process visibility, 4) Introduce ourse covers the basic concepts ystem engineering, concepts & sting. Improvement in design & debugging. Specification of ons. To introduce ethical &
Module 1	6 H	lours
	oftware engineering and its objectives, S/W myths, ligm, verification, validation.	generic view of process, S/W
Module 2		Hours
	els, system engineering, requirements engineering,	
data design, user control system.	, design process and concepts, modular design, design interface designs, real time software design, data acqu	uisition system, monitoring and
Module 3		Hours
structural testing	ftware testing, types of S/W test, black box testing, test coverage criteria based on data flow mechan n testing, validation testing, system testing and debugg	isms, regression testing, unit
Module 4	14 I	Hours
point models, C	entation techniques measures and measurements, sof COCOMO model, error tracking, software configu- cs, software maintenance, project planning, risk mana	ration management, program
Reference books	 R.S. Pressman, "Software Engineering", McGrav (2) PankajJalote, "An Integrated Approach to softwa 2002. Ian Sommerville, "Software Engineering", 5th ec House, 1997. Bell Morry and Pugh. "Software Engineering Ap (5) K. C. Shet, "Software Engineering & Quality New Delhi. Waman S. Jawadekar, "Software Engineering, McGraw Hill. 	are Engineering", Narosa Pub., d., Addison-Wesley Publication proach", Prentice Hall. 2001 Assurance", BPB Publications,

Subject Code	Computer Networks (CN)	Credits: 3 (3-0-0)
CS 353		Total hours: 45
Course Objectives	This course focuses on understanding the design of assimilating hubs into a personal network.	computer networks,
Module 1		6 Hours
Introduction to Computer Networks, Overview of OSI reference model. Topology design, Problems and protocols, Practical local area network design and implementation. IEEE LAN Standards, Logical Link Control protocols, HDLC, ALOHA, SLOTTED ALOHA, FDDI, Client Server model and related softwares. Computer Networks and Internet, Network edge, network core, Network Access, Delay and Loss.		
Module 2		17 Hours
	vices, UDP, TCP, New transport layer protocols, congestion o sions of TCP, network layer services, routing, IP, routing in ir	
Module 3		9 Hours
•	, error detection and correction, multiple access protocols, A vireless links, mobility, PPP, ATM, MPLS, VLAN.	ARP, Ethernet, hubs,
Module 4		13 Hours
Multimedia netwo	orking, streaming stored audio and video, real-time	protocols, security,
Cryptography, autl	nentication, integrity, key distribution, network manageme	nt, Firewalls, Brief
functioning of uppe	r layers, E-mail and other application.	
books	 J. F. Kurose and K. W. Ross, "Computer Networking: A T Featuring Internet", 3/e, Pearson Education, 2005. Peterson L.L. & Davie B.S., "Computer Networks, A syst Harcourt Asia, 2003. 	ems approach", 3/E,
((3) Andrew. S. Tanenbaum, "Computer Networks", Prentice Hall of India, 5th Edn, 2002. (4) Fred Halsall, "Data Communications, Computer networking on OSI", Addison Wesley Publishing Co., 2nd Edition, 2002. (5) William Stallings, "Data & Computer Communications", 2nd Edition, Maxwell, MacMillan International Edn. 2003. (6) Behrouz A. Forouzan, "Data Communications & Networks", third edition, Tata McGraw Hill. 	

Subject Code	Compiler Design Laboratory	Credits: 2(0-0-3)
CS 354		Total hours: 42
Course Objectives	To obtain the practice of writing compilers.	
List of experiments		
(1) Introduction	o Flex/Lex& Bison/Yacc tools, Lexing and tokenizing Program	ms
(2) Implementing	g an alternative grammars for infix expressions	
(3) Parsing and p	arse trees	
(4) Type checkin	g	
(5) Intermediate	code generation	
(6) Simple optim	ization (constant folding, etc.)	
(7) Relations		
(8) Control flow		
(9) Functions		
	ninicompiler (possibly subsets of Standard Compilers like I executing Simple problems to demonstrate the Compiler capa	
Reference 1)	Holub A.I., "Compiler Design in C", Prentice Hall India.200	0.
books 2)	W. Appel, "Modern Compiler Implementation in C", Cambridge University	
	Press, 1998.	
3)	V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, "Compilers- Pri-	nciples,
	Techniques & Tools", 2/e, Pearson Education, 2007.	

Subject Code	Networks Laboratory	Credits: 2 (0-0-3)	
CS 355		Total hours: 42	
Course Objectives	To provide students with a theoretical and practical base is issues.	To provide students with a theoretical and practical base in computer networks issues.	
List of experiments			
(1) Implementati	on of basic Client Server program using TCP and UDP Sock	et	
(2) Exercises cor	nprising simulation of various protocols and performance stu	ldy	
(3) TCP/IP Level	Programming Problems		
client program (5) Routing Algo (6) Experiments	g fully concurrent application with a TCP server acting as a d ns allowing concurrent connection and message transfer (Eg. rithms and internetworking with open source firewall/proxy packages like iptables,ufw, s with Emulator like Netkit, Emulabetc	Chat sytem).	
· · 1	with Simulator like NS2, NCTU NS etc		
(-)	,		
Reference 1)	W. Richard Stevens, Bill Fenner and Andrew M. Rudo	off, "UNIX Network	
books	Programming", PHI.		
2)	Kris Jamsa, Ken Cope, "Internet Programming", Galgotia	_	
3)	Elliotte Rusty Harold, "Java Network Programming", 3 2004.	rd Edition, O'Reilly,	

Subject Code	Mini Project/Industrial Training	Credits: 1(0-0-2)
CS 356		
Course Objectives	Students are expected to undergo hands on training on a the guidance of a faculty/ an expert from industry. The probe relevant to Computer Science and Engineering application	olem domain should

Subject Code CS 400	Foundation of Cryptography (FC)	Credits: 4 (3-1-0) Total hours: 56
Course Objectives	The purpose of the course is to familiarize the student topics that have been at the centre of interest in appl theory, particularly in cryptography. It also includes students with cryptography, cryptographic protocols an curve systems.	ications of number s familiarizing the
Module 1		13 Hours
Mathematical prelimit	naries: Number theory and algebra, finite fields.	
Module 2		9 Hours
Symmetric key encry	otion: Stream ciphers and block ciphers.	
Module 3		12 Hours
	phy, digital signatures, attacks, hash functions, authentica ublic key infrastructure.	ation schemes, key
Module 4		10 Hours
Identification scheme	es, interactive proofs, commitment protocols, zero know	ledge proofs, non-
interactive proofs.		
Module 5		12 Hours
Secret sharing schem	es, digital cash, electronic voting, elliptic curve, elliptic cu	irve cryptosystems,
identity based encrypt	ion.	
Reference books	 (1)Neal Koblitz, "Number theory and cryptography", Spring (2)Hans Delfs, Helmut Knebl, "Introduction to Cryptogra Applications", Springer. (3)Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanst Applied Cryptography", CRC Press, 1996. (4)Stinson Douglas R, "Cryptography Theory and Practice" (5)Rudolf Lidl, Herald Niederreiter, "Introduction to Fint Applications", Cambridge University Press. (6)Ivan Niven, Herbert S. Zukerman, Hugh L.Montgomery to the Theory of Numbers", John Wiley, 1991. (7)Husten, "Topics in Algebra", John Wiley, 1975. (8)Lide and Niderriten, "Finite Fields", Cambridge Universi (9)Birchoff and Maclan, "Modern Algebra". (10)Relevant Research Papers 	phy: Principles and tone, "Handbook of , CRC press, 2005. ite Fields and their y, "An Introduction

Subject Code	Introduction to Machine Learning	Credits: 3 (3-0-0)
CS 401	(IML)	Total hours: 45
Course	To develop framework for representation, classification	and processing of
Objectives	information using various mathematical approaches with real in statistics, and modern algorithms [Genetic, Neural network]	
Module 1		8 Hours
Basic test on Line	ear algebra and review of algorithms, Introduction to pattern cla	assification, learning
theory, Lloyd-max	algorithm and quantization with Kraft inequality, entropy as m	inimum word length
Module 2		15 Hours
Bayesian decision	theory, classifiers, discriminant functions, decision surfaces. I	Error probabilities in
statistical decision	, non-parametric techniques in pattern classification, order statis	stics, windowing,
Module 3		15 Hours
KNN, linear discr	iminants, non-metric methods, grammar based methods, diction	ary and the Lempel-
Ziv estimation, m	ixtures, clusters data description and clustering, component and	alysis – PCA, ICA,
architectures and j	performance analysis of pattern classification	
Module 4		7 Hours
Database system	s, search & complexity, distributed, parallel and rand	lomized processing
environments, sel	ected topics and research papers from PAMI, PY, KBS, IF	S, for seminar and
assignments.		
Reference	(1) Luciano Da Costa, Roberto Cesar Jr "Shape analysis and	classification:
books	theory and practice ", CRC Press, 2001	
	(2) T Hastie, R Tibshirani, J Friedman – "The elements of statis	stical learning: Data
	mining, Inference and Prediction", Springer-verlag, 2009	
	(3) K. Fukunaga – "Introduction to statistical pattern recognitio	· 1
	(4) Yu Xinjie, Mitsuo Gen – "Introduction to Evolutionary Alg	1 0
	(5) Richard O. Duda, Peter E. Hart and David G. Stork "Pattern Classification", Wiley, 2007	
	 (6) Christopher M. Bishop "Pattern Recognition and Machine Learning", Springer, 2006 	

Subject Code	Management	Credits: 3 (3-0-0)
HS 400		Total hours: 45
Course Outcome	Develops the ability to understand and analyze the broad asp and its financial dynamism	pect of management
Module 1	Principles of Accounting	5 hours
Accounting Cycle, Assu	imptions, Classifications of Accounts- Journal, Cash Book, L	edger, Final
Accounts-Manufacturin	g Account, Trading Account, P & L Account, Balance Sheet.	
Module 2	Financial Statement Analysis	5 hours
Balance sheet, Profit and Funds flow and cash flo	d Loss Account, Economic vs Accounting Profit, Changes in w statement.	Financial Position,
Module 3	Ratio Analysis	6 hours
Nature of Ratio Analysi	s, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profitabilit	ty Ratio, DuPont
Analysis, Comparative s	statement and Trend Analysis, Inter-firm Analysis.	
Module 4	Working Capital	6 hours
Concept of working Cap	bital, Operating and Cash conversion Cycle, Permanent and V	ariable working
Capital, Balance workin	g capital position and Issues.	
Module 5	Time Value of Money	5 hours
Time preference for mo	ney, Future value, Annuity, Perpetuity, Sinking fund factor, P	Present value,
Annuity, Perpetuity, cap	bital recovery factor, Multiple period Compounding.	
Module 6	Capital Budgeting	8 hours
Nature and type of Inve	stment decision, Net Present value, (NPV), Internal Rate of R	eturn (IRR), Payback
period, Profitability Inde	ex, Nature and Behavior of Cost, Breakeven point, multiple p	products analysis,
decision points.		
Module 7	Financial System	6 hours
Introduction to Indian F	inancial System, Financial Institutions and Financial Markets	•
Module 8	Industrial Engineering & Project Management	4 hours
Work Study, Time Stud	y, Industrial Psychology, Project Management (PERT, CPM)	
Text Books	I.M Pandey, <i>Financial Management</i> , 10 th edition, Vikish Pu Brealey Y Myers, <i>Principles of Corporate Finance</i> , McGray Rajiv and Anil: <i>Financial Management</i> , 2 nd Edition, Oxford L.M Bhole: <i>Financial Institutions and Markets</i> , Tata McGray	w-Hill University Press

Subject Code CS 402	Seminar	Credits: 2 (0-0-2)
Course Objectives	Students will have to choose a topic in Computer Science current trends or industry practices, prepare a write up, a with a suitable demonstration.	

Subject Code	Security Laboratory	Credits: 2 (0-0-3)	
CS 403		Total hours: 42	
Course Objectives	To study the number-theoretic and cryptographic	-	
	practical hands on experience with the number the	-	
	cryptographic algorithms. To learn the usage of the nu	•	
	packages in supplement with the C programming langua	ige.	
List of experiments		•	
	m for finding the Greatest Common Divisor of two large	integers.	
	an algorithm for finding the GCD of two large integers.		
	algorithm to find the GCD of two large integers. Sultiplicative inverses in Z_n . Z_n is defined as <i>the integer</i>	rs modulo n 7 – 10	
	a $\in \mathbb{Z}_n$. Find the multiplicative inverse of a.	$S modulo n. \mathbb{Z}_n = \{0,$	
-	o find the modular inverse of the matrix if it exists.		
	nd multiply algorithm for modular exponentiation in Z_n .		
1 1	rder of a group element.		
-	or of a cyclic group.		
9. Chinese remainder	r method		
10. Pollard's rho algor	rithm for factoring integers.		
	rithm for factoring integers.		
12. Fermat's factorizat			
	ares. Finding a congruence of squares modulo n to factor	: n.	
14. Fermat primality t			
16. Miller-Rabin prob	probabilistic primality test		
-	mality test for Mersenne numbers		
18. AKS primality tes	•		
19. DES Symmetric k			
-	gorithm, Elgamal Cryptosystem, Subset sum, Secret Shar	ring scheme.	
Reference books (1)	Hand Pools of Applied Cryptography by Alfred L Mana	Toc. Daul C. yan	
) Hand Book of Applied Cryptography by Alfred J. Mene: Oorschot and Scott A. Vanstone	zes, Paul C. Van	
) (It is freely available: One of the source links:		
	http://www.cacr.math.uwaterloo.ca/hac/)		
(3)) PARI C Library: http://pari.math.u-bordeaux.fr/		
	(4) The C Programming Language by Brian W. Kernighan, Dennis M. Ritchie		
) Any Library packages for multi-precision arithmetic.		

Elective Subjects

Subject Code	Object Oriented Analysis and Design	Credits: 3 (3-0-0)
CS 500	(OOAD)	Total hours: 45
Course	To apply an iterative process such as the Unified Pro	5
Objectives	requirements and document them using Use Cases. P and record the results using UML notation. Discu software development affects testing and quality.	•
Module 1		8 Hours
An overview of development life c	object oriented systems development, object basics, sycle.	object oriented systems
Module 2		13 Hours
unified approach,	dology, Booch methodology, Jacobson methodology unified modeling language, use case, class diagran collaboration diagram, state diagram, activity diagram.	· • · · ·
Module 3		12 Hours
	ses, object analysis, classification, identifying object rel xioms, designing classes, access layer, object storage, and	•
Module 4		12 Hours
Designing interfa satisfaction, mini	nce objects, software quality assurance, system usa	ability, measuring, user
Reference books	 Ali Bah rami, "Object Oriented Systems Development", Tata McGraw-Hill, 1999. Martin Fowler, "UML Distilled", 2nd ed., PHI/Pearson Education, 2002. Stephen R. Schach, "Introduction to Object Oriented Analysis and Design", Tata McGraw-Hill, 2003. James Rumbaugh, Ivar Jacobson, Grady Booch "The Unified Modeling Language Reference Manual", Addison Wesley, 1999. Hans-Erik Eriksson, Magnus Penker, Brain Lyons, David Fado, "UML Toolkit", OMG Press Wiley Publishing Inc., 2004. 	

Subject Code CS 501	Advanced Data Structures (ADS)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	Advanced Data Structures is about using mathematical of graphs to represent computational problems. It aims at sophisticated algorithms and methods of analysis.	
Module 1		9 Hours
asymptotic notat	gorithms, algorithms as a technology, analyzing algorithms, de ons, standard notations, common functions, recurrences, substitu and order statistics: Merge sort, quick sort, heap sort, sorting in es.	tion method, master
Module 2		9 Hours
tables, hash table splay trees. Adva	Elementary data structures, linked lists, stacks, queues, hash ta s, hash functions, open addressing, search trees, binary search tre inced Data structures: B – Trees, binomial heaps, fibonacci heap fix Trees-Tries-Text compression, text similarity testing-range t and k-d trees.	ees, red-black Trees, s, data structures for
Module 3		9 Hours
Single-source sh Dijkstra's algor Maximum flow:	inected components, minimum spanning trees, the algorithms of fortest paths: Bellman-ford algorithm, single source shortes ithm, all-pair shortest paths, matrix multiplication, Floyd-V Flow networks, the Ford-Fulkerson method, maximum bipartite r	t paths in DAG's, Warshall algorithm. natching.
Module 4		9 Hours
of greedy strateg	and analysis techniques: Greedy algorithms, an activity, selectio y, Huffman codes. Dynamic programming: Matrix chain multip ming, optimal binary search trees.	1 '
Module 5		9 Hours
String Matching algorithm. NP-C	The naïve string matching algorithm, Rabin-Karp algorithm, ompleteness: Polynomial time, Verification, NP-Completeness a pofs, NP-Complete problems.	Knuth-Morris-Pratt nd reducibility, NP-
Reference books	 Thomas Cormen, Charles E Leiserson and Ronald D Riv Algorithms", PHI, 2001. Mark Allen Weiss, Algorithms, "Data Structures and Pro C++", Addison Wesley, 2002. M.T.Goodrich and R.Tomassia,"Algorithm design: Found internet examples", John Wiley and sons. EllisHorowitz, Satraj Sahni and S.Rajasekaran, "Fundam algorithms", Galgotia publications pvt. Ltd. R.C.T.Lee, S.S.Tseng, R.C.Chang and T.Tsai, "Introduc analysis of algorithms: A strategic approach", McGraw Hill 	oblem Solving with dations,analysis and nentals of computer tion to design and

Subject Code CS 502	Advanced Computer Architecture (ACA)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To understand concepts of parallel processing and implementing parallel execution within a single processor (I superscalar) and multiprocessor systems. To gain knowledg art research topics on advanced computing systems	pipeline, VLIW, and
Module 1		9 Hours
multiprocessors an properties: Condit parallelism, progra	r Models: The state of computing, classification of p nd multicomputer, multi vector and SIMD computers. Pro- cions of parallelism, data and resource dependences, hard am partitioning and scheduling, grain size and latency, program s inter connects, hierarchical bus systems, crossbar switch and abining network.	bgram and network ware and software n flow mechanisms,
Module 2		9 Hours
	sors: Advanced processor technology, instruction-set architectures, scalar processors, superscalar processors, VLIW architectures,	
Module 3		9 Hours
branch prediction	struction pipelining, dynamic instruction scheduling, branch h , arithmetic pipeline design, computer arithmetic principle tional arithmetic pipelining	
Module 4		9 Hours
mechanisms, mes latency-hiding tec dataflow and hybri	Multiprocessor system interconnect, cache coherence a sage-passing mechanism, scalable, multi-threaded and data hniques, principles of multithreading, scalable and multithe d architectures.	aflow architectures: readed architecture,
Module 5		9 Hours
	anguages and compilers: Latency-Hiding techniques environment ng modes, shared variable program structures, message pa	ssing programming
Reference books	 (1) Dezso Sima, Terence Fountain, Peter Kacsuk, "A architectures: A design space approach", Addison Wesley. (2) K.Hwang and F.A. Briggs, "Computer architecture and p McGraw Hill Publications (3) K. Hwang, "Advanced computer architecture-paral programmability", McGraw Hill. (4) J. Hennesy and D. Patterson, "Computer architecture approach", Morgan Kaufmann, 200.3 	barallel processing", llelism, scalability,

Subject Code	Advanced Microprocessors (AMP)	Credits:3 (3-0-0)	
CS503		Total hours:45	
Course Objective		d microprocessors.	
Module 1		9 Hours	
80386 architecture	80186 Architecture, enhancements of 80186,80286 architecture, real and virtual addressing modes, 80386 architecture, special registers, memory management, memory paging mechanism, 80486 architecture, enhancements, cache memory, comparison of microprocessors (8086, 80186, 80286, 80386, 80486).		
Module 2		10 Hours	
Pentium instructi microprocessor a	cessor architecture, special Pentium registers, Pentium memor ons, Pentium pro microprocessor architecture, special fe rchitecture, Pentium II microprocessor architecture, Pentiu ecture, comparison of Pentium processors.	atures, Pentium II	
Module 3		10 Hours	
dispatch stalls, ins	ruction fetching, branch prediction, fetching, speculation, ins struction execution, issue stalls, execution parallelism, inst architecture, Pipelining, out of order core pipeline, Memory s	truction completion,	
Module 4		8 Hours	
	A32, MIPS R8000, MIPS R10000, Motorola 88110, Ultra , SPARC version, DSP processors.	SPARC processor-	
Module 5		8 Hours	
	& Interconnection, new generation mother boards 286 to Pent - PCI- PCIX, peripheral interfaces and controller, memory and	I/O port addresses.	
Reference books	 B.B.Brey, "The Intel Microprocessor 8086/8088 /80 80386, 80486 Pentium, Pentium Pro, PII, PIII & Programming & Interfacing", Pearson Education, 2004. John Paul Shen, Mikko H.Lipasti, "Modern Proce Mcgraw Hill,2006 Douglas V.Hall, "Microprocessors and Interfacing", IIEdition 2006 Mohamed Rafiquzzaman, "Microprocessors an BasedSystem Design", II Edition, CRC Press, 2007 	IV Archietecture, ssor Design", Tata Tata McGraw Hill,	

Subject Code	Principles of Programming Languages	Credits: 3 (3-0-0)	
CS 504	(PPL)	Total hours:45	
Course	The basic thrust of this course will be on learning the dist	inctive techniques in	
Objectives	the different paradigms and what semantic and compiling is	-	
		various languages considered. The course introduces Imperative Languages,	
	functional programming, declarative programming and s	emantics of object-	
	oriented programming.	1	
Module 1		12 Hours	
1	pject-oriented programming, role of types, static and dynamic t	• • •	
rules, grouping da	ata and operations, information hiding and abstract data types,	objects, inheritance,	
polymorphism, te	mplates.		
Module 2		12 Hours	
Functional progra	mming, expressions and lists, evaluation, types, type systems, va	alues and operations,	
function declarati	ons, lexical scope, lists and programming with lists, polymorph	hic functions, higher	
order and curried	functions, abstract data types.		
Module 3		12 Hours	
• • •	ng, review of predicate logic, clausal-form logic, logic as a pro ithm, abstract interpreter for logic programs, semantics		
programming in p		010,	
Module 4			
Lambda calculus	and semantic environment and rules.		
Reference	(1) Kenneth C. Louden, "Programming Languages: Principles and Practice", 2 nd		
books	ed., Thomson 2003.		
	(2) Carlo Ghezzi, Mehdi Jazayeri, "Programming Language	Concepts", 3 rd ed.,	
		John Wiley & Sons, 1997.	
	(3) Ravi Sethi, "Programming Languages: Concepts and C Pearson Education Asia.	constructs", 2 th ed.,	

Subject Code	Data Warehousing and Data Mining	Credits: 3 (3-0-0)
CS505	(DWDM)	Total hours:45
Course Objectives	Following this course, students will be able to 1) Lead database technology, 2) Understand data mining principle Discover interesting patterns from large amounts of d extract patterns to solve problems, make predictions of ou systematically supervised and unsupervised models at respect to their accuracy, 5) Design and implement application using sample, realistic data sets and modern to	es and techniques, 3) lata to analyze and itcomes. 4) Evaluate nd algorithms with t of a data-mining
Module 1		9 Hours
multiprocessor arcl data model, data multidimensional v support data extract technology, from c cube computation, induction.	ta warehousing, building a data warehouse, mapping the d nitecture, OLAP technology for data mining, data warehouse warehouse architecture, data warehouse implementation, versus multi relational OLAP, categories of tools, DBMS so ction, cleanup and transformation tools for metadata, develo lata warehousing to data mining, data generalization, efficient further development of data cube and OLAP Technology	e, multidimensional OLAP guidelines, chemas for decision pment of data cube nt methods for data y, attribute-oriented
Module 2		12 Hours
	a mining tasks, objectives (classification, clustering, associati , deviation detection).	ion rules, sequential
Module 3		8 Hours
Data and preproces	sing (data cleaning, feature selection, dimensionality reduction).
Module 4		8 Hours
	cision-tree based approach, rule-based approach, instanc : Naive and Bayesian networks, classification model evaluation	
Module 5		8 Hours
Clustering (partitio cluster validation	nal methods, hierarchical methods, graph-based methods, dem methods), anomaly/outlier detection (introduction to variou nsity-based and other methods for outlier detection).	sity-based methods,
books	 Jiawei Han and Micheline Kamber, "Data mining techniques", 2nd ed., Morgan Kaufmann publishers. Raph Kimball," Data warehouse toolkit", John Wiley & 3) Michael. J. Berry, Gordon Linoff, "Data mining tech sales, customer support", John Wiley & Sons. 	Sons Publications

Subject Code CS 506	Advanced Database Systems (ADBS)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To develop an appreciation of emerging database trends as structured data, the internet, and object-oriented databa process of DB Query processing and evaluation.	
Module 1		11 Hours
distributed databa	ase concepts, overview of client-server architecture and ses, concurrency control heterogeneity issues, persistent prog nd its implementation, clustering, indexing, client server	ramming languages,
Module 2		11 Hours
balancing, query j	hitectures, data partitioning, intra-operator parallelism, pipelin processing- index based, query optimization: cost estimation, query processing and optimization, XML, DTD, XPath, XM	query optimization:
Recovery, multile	tion models: Save points, sagas, nested transactions, mult vel recovery, shared disk systems, distributed systems 2PC, 3 storage, security and privacy- multidimensional k- anon	3PC, replication and
Module 4		12 Hours
ERDs), logical da	data: Conceptual data models for spatial databases (e.g. ta models for spatial databases: raster model (map algebra), v need for spatial operators and relations, SQL3 and ADT. spa	vector model, spatial tial operators, OGIS
Reference books	 AviSilberschatz, Henry Korth, and S. Sudarshan, "Databa 5th ed., McGraw Hill, 2005. S. Shekhar and S. Chawla, "Spatial databases: A tour, Pren Ralf HartmutGuting, Markus Schneider, "Moving objects Kaufman, 2005. R. Elmasri and S. Navathe, "Fundamentals of database s Cummings,5th ed., 2007. Raghu Ramakrishnan, "Database management systems", M Ceri S and Pelagatti G, "Distributed databases principles a Mc-Graw Hill, 1999. 	tice Hall", 2003. databases", Morgan systems", Benjamin- IcGraw-Hill, 2000.

Subject Code		Credits: 3 (3-0-0)
CS 507	E-Commerce (EC)	Total hours: 45
Course	To provide principles of e-commerce from a business perspective.	
Objectives		
Module 1		12 Hours
	d tools for e-commerce, current trends in e-commerce application	ons development, the
business of intern	net commerce, enterprise level e-commerce.	
Module 2		12 Hours
Security and e	ncryption, electronic payment systems, search engines, intel	lligent agents in e-
commerce, on-lin	ne auctions, data mining for e-commerce.	
Module 3		12 Hours
Web metrics, rec	commended systems, knowledge management, mobile e-commer	ce, legal, ethical and
social issues.		
Module 4		9 Hours
Seminars and mi	ni projects.	
Reference books	 Henry Chan et al., "E-Commerce-Fundamental and applications", John Wiley & Sons 2002 G. Winfield Treese and Lawrence C.S., "Designing Systems for Internet Commerce", Pearson Education, LPE, 2002 Fensel, Dieter, Brodie M.L., "Ontologies: A Silver Bullet for Knowledge Management and ECommerce", Allied Publishers, 2004 Zimmermann, Olaf Tomlinson, Mark R.: Peuser, Stefan, "Perspectives on Web Services", Allied Publishers, 2004 	

Subject Code CS 508	Advanced Operating Systems (AOS)	Credits: 3(3-0-0) Total hours: 45
Course Objectives	To provide comprehensive and up-to-date coverage of the in distributed operating system, multi-processor operating system.	
Module 1		9 Hours
communication net system, lamp ports	listributed systems , system architecture types, issues works, primitives, theoretical foundations, inherent limitation logical clocks, vector clocks, casual ordering of messages, gl tion, termination detection, distributed mutual exclusion.	ons of a distributed
Module 2		9 Hours
issues in deadlock of centralized, distribu	ek detection, introduction, deadlock handling strategies in d detection and resolution, control organizations for distributed ted and hierarchical deadlock detection algorithms, agreeme	deadlock detection, nt protocols.
Module 3	nemory, architecture, algorithms for implementing DSM, men	12Hours
suitable load sharin issues. Failure reco backward and forward synchronous and as	inm, stability, load distributing algorithm, performance comp ing algorithm, requirements for load distributing, task migra very and Fault tolerance: Introduction, basic concepts, classic ard error recovery, recovery in concurrent systems, consistent ynchronous check pointing and recovery, check pointing for in replicated distributed databases.	tion and associated ification of failures, set of check points,
Module 4		8 Hours
	arity, preliminaries, the access matrix model and its implementation wanced models of protection. Cryptography basics, multipatributed systems.	-
Module 5		7 Hours
-	, database OS, database systems, a concurrency contro y, distributed database systems, concurrency control algorithms	-
Reference ((MukeshSinghal Niranjan, Shivorothri G., "Advanced Consystems" Andrew S. Tanenbaum, "Distributed Operating systems" Doreen L. Galli, "Distributed operating systems - conc Prentice-Hall 2000. A Silberschatz, "Applied Operating systems Concepts", Wil Lubemir F. Bic& Alan C. Shaw, "Operating systems F Education, 2003. 	epts and practice", ey 2000

Subject Code CS 509	Cyber Laws & Intellectual Property Right (CLIPR)	Credits:3 (3-0-0) Total hours: 45	
Course	To introduce the cyber world, intellectual property law and c	yber law in general	
Objectives	to explain about the various facets of cyber-crimes, to enhance the understanding of problems arising out of online transactions and provoke them to find solutions, to clarify the Intellectual Property issues in the cyber space and the growth and development of the law in this regard and to educate about the		
	regulation of cyber space at national and international level.		
Module 1	Module 1 12 Hours		
	Cyber laws and IT act; the rights the various parties have with respect to creating, modifying, using, and distribution, storing and copying digital data		
Module 2			
-	onsibilities and potential liabilities, intellectual property issues co of digital data, the similar act of other countries.	nnected with use	
Module 3		12 Hours	
Computer crime, o	computer fraud, hacking.		
Module 4		9 Hours	
Unauthorized modification of information, privacy, computer pornography harassment.			
Reference books	 (1) D. Brainbridge, "Introduction to computer law" Education,2004. (2) P. Duggal, "Cyber law: the Indian perspective", 2005. 		

Subject Code	Information Theory (IT)	Credits: 3 (3-0-0)
CS 510		Total hours: 45
Course Objectives	This course aims at developing contents from Information t mathematical structure towards design, representation and associated with the problems in information systems.	
Module 1		15 Hours
	robability theory & statistics, analysis and discrete mather probability, digitization and Shannon's model for information	
Module 2		10 Hours
characterization, c less for DMS), ex	and the law of large numbers, bounds on typicality, propert onditional, relative, joint entropy, mutual information, source istence of minimum information, entropy as divergence, ent ate of Markov sources, comments on complexity	coding theorem (loss
Module 3		10 Hours
	ality, greedy algorithm via min-max constraint, Shannon-Fano tion function and data compression of speech or image (case st	• •
Module 4		10 Hours
rates for unreliab betting, stock mar learning theory, d	eliability analysis, Burg's theorem and entropy maximization, le communication, Shannon-McMillan-Brieman theorem, inf ket (the log-optimal portfolio), special topics : algorithms in d istributed processing/source coding, information theory in mac	formation theory and atabase development, hine learning
Reference books	 T. Cover, J Thomas, "Elements of information theory", Wi R. G. Gallager, "Information theory and reliable community Press A Rohatgi, MdEhsanes Saleh, "Introduction to probability, Relevant Literature pointed in the Class from IEEE Trans Theory 	nication", Cambridge statistics", Wiley

Subject Code	Optimization Techniques in Computing	Credits: 3 (3-0-0)	
CS511	(OT)	Total hours:45	
Course Objectives	The main goal of this course is to provide the students	with a background,	
	foundation, and insight into the several dimension	ns of Optimization	
	Techniques.		
Module 1		15 Hours	
Basic OR techniqu	es, requirements, networks, design, role and methods, uncons	strained optimization	
methods- Newton	ike methods, conjugate direction methods.		
Module 2		15 Hours	
Constrained optim	ization: Linear programming, theory of constrained optim	nization, Non-linear	
programming. Dat	abases, compilers, optimization and performance in web	computing, internet	
application.			
Module 3		15 Hours	
Performance meas	Performance measurement tools, case studies, Implementation of an optimization technique for		
Computer Science applications			
Reference	rence (1) K Kanth, "Introduction to computer system performance evaluation", McGraw		
books	Hill, 1992		
	 David K Smith, "Network optimization in practice" publications, 1982 	", ellise, Horrwood	
	(3) R. Fletcher, "Practical methods of optimization", 2nd Editio	on, Wiley.2000.	

Subject Code CS 512	Soft Computing (SC)	Credits: 3 (3-0-0) Total hours: 45
Course	The course explores the soft computing approaches to cons	ider uncertainty that
Objectives	is inherent in pattern analysis tasks.	0.77
Module 1		8 Hours
-	nerve structure and synapse, artificial neuron and its model,	
	hitecture: single layer and multilayer feed forward networks,	
-	chniques; perception and convergence rule, Auto-associative a	and hetro-associative
memory.		
Module 2		8 Hours
-	otron model, solution, single layer artificial neural network, n	• • •
	gation learning methods, effect of learning rule co-efficient	t, back propagation
-	fecting back propagation training, applications.	
Module 3		10 Hours
-	uzzy logic, fuzzy sets and crisp sets, fuzzy set theory and open	rations, properties of
fuzzy sets, fuzzy and	d crisp relations, fuzzy to crisp conversion.	
Module 4		9 Hours
Membership function	ons, interference in fuzzy logic, fuzzy if-then rules, fuzzy im	plications and fuzzy
algorithms, fuzzyfic	ation and defuzzificataion, fuzzy controller, industrial application	tions
Module 5		10 Hours
Genetic algorithm(GA):Basic concepts, working principle, procedures of GA,	flow chart of GA,
genetic representa	tions(encoding), initialization and selection, genetic o	perators, mutation,
generational cycle, a	applications.	
books (4	 Satish Kumar, "Neural networks: A classroom approach", I J. S. R. Lang, C. T. Sun and E. Mizutaju "Neuro-Fuzzy a Pearson Education CT. Liu and C.S. George Lee "Neural fuzzy System: A ne to intelligent system", PH 1996 V. Kecman "Learning and soft computing" MIT press 2001 A Ghosh, S. Dehuri and S. Ghosh(eds), "Multi-obj algorithms for knowledge discovery from databases", Sprin S. Bandyopadhyay and S.K. Pal, "Classification and lea algorithms: applications in bioinformatics and web intell Verlag, 2007 S. Rajsekaran& G.A. VijayalakshmiPai, "Neural networ genetic algorithm:synthesis and applications" Prentice Hall 	nd soft computing", puro fuzzy synergism fective evolutionary ger 2008 urning using genetic igence", , Springer- ks, fuzzy logic and

Subject Code	Applied Algorithms (AA)	Credits: 3 (3-0-0)
CS513		Total hours: 45
Course Objective	The course provides an overview of some of the essential which are commonly used in the scientific enterprise.	numerical techniques
Module 1		15 Hours
problem analysis a	thms: Algorithm design techniques; stable marriage proble and representative problems. greedy algorithms, interval schedu ofits, 1/2 approximation for knapsack. Data compression: Hu	lling, scheduling with
Module 2		11 Hours
	lgorithms: Rabin-Karp algorithm, Knuth Morris pratt algorithm	
• •	l algorithms; combinatorial algorithms.	
Module 3		10 Hours
Network flows: B	ellman ford algorithm. divide-and-conquer, closest points problem	em. external memory
algorithms, online	algorithms.	
Module 4		9 Hours
	s, internet algorithms and security- cryptography algorithms. of approximation algorithms.	basics of randomized
Reference books	 Alfred V Aho, John E Hopcroft, Jeffery D Ullman, "Data structure and algorithms", Addison Wesley , 1993 J. Kleinberg, E. Tardos, "Algorithm design". Pearson Education, Addison Wesley, 2006." Michael Jay Quinn, "Designing efficient algorithms for parallel computers", McGraw Hill 1997. Rajeev Motwani, PrabhakarRaghavan, "Randomized algorithms", Cambridge University Press, 1995. R. E. Tarjan, "Data structures and network algorithms", SIAM, 1983. Vijay V. Vazirani, "Approximation algorithms", Springer, 2001. 	

Subject Code CS514	Network Management(NM)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To appreciate the need for interoperable network man general concepts and architecture behind standards based Understand advanced information processing technique object technologies, software agents and internet technolo management	network management. s such as distributed
Module 1		11 Hours
Data communications information network	and network management overview: Goals, architecture and p and technology.	erspectives, review of
Module 2		11 Hours
	management- basic foundations: Standards, models and and information models, communication and functional m	0 0
Module 3	,	11 Hours
•	nt tools, systems and engineering and applications, managen ligent agents, network security management, internet	•
communication May,		
Module 4		12 Hours
Broadband network management, wired and optical networks management, QoS in IP network, basic methods & theory for survivable network design & operation, network planning, network management standards.		
Reference books	 (1) M. Subramanian, "Network management: principles and practice", Adison-Wesley, 2000. (2) James F. Kurose and Keith W. Rose, "Computer networking", Pearson Education, LPE, 2003 (3) J. Burke, "Network management concepts and practice, A Hands-on approach", Pearson Education, 2000. (4) Larry L. Peterson and Bruce S. Davie, "Computer networks, a system approach", 3rd edition, Elsevier. 	

Subject Code	Software Architecture (SA)	Credits: 3 (3-0-0)
CS515		Total hours:45
Course Objective	es Complex software systems require abstraction and analys level of abstraction. In this course we study, typical softwar	
Module 1		15 Hours
Typical software these structures.	system structures (architectural styles), techniques for designir	ng and implementing
Module 2		10 Hours
	terizing and reasoning about architectures, and tools architecturate the terms of	al modelling. Role of
Module 3		10 Hours
Enterprise Archite	ctures, Zachman's Framework; Architectural Styles, Design Pat	terns;
Module 4		10 Hours
Architecture Desc	ription Languages; Product-line architectures; Component based	l development.
Reference books	 (1) Frank Buschmann, RegineMeunier, Hans Rohnert, MiachelStal, Douglas Schmidt, "Pattern oriented sof Volumes 1 &2, Wiley (2) Len Bass, Paul Clements, Rick Katzman, Ken Bass, "Sof practice".2nd ed. Addison-Wesley Professional 2003 (3) George T. Heineman, William T. Councill, "Comport engineering", Addison-Wesley, 2001 (4) Kurt Wallnau, Scott Hissam and Robert Seacord, "Bus commercial components", Addison-Wesley 2002 	tware architecture", tware architecture in ent based software

Subject Code CS 516	Cyber Laws & Security Standards(CLSS)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To acquire critical understanding in cyber law, the emerging property issues explore legal & policy developments in regulate cyber space & to develop competencies for dealing using cyber space.	various countries to
Module 1		15 Hours
Perimeter barrier	standards, cyber laws, cyber security issues, FGIB cyber security	/ proposals.
Module 2		15 Hours
NRIC cyber secur	ity recovery best practices, creation of new practices.	
Module 3		15 Hours
NRIC physical se	curity practices.	•
Reference books	 (1) www. Bell-labs.com/user/krauscher/nric/#intraduction%20TO%20NRIC (2) Hacking exposed scambrey mcclure, kartz tata-mcgrawhill 	

Subject Code	Wireless Networks & Systems (WNS)	Credits: 3 (3-0-0)	
CS 517		Total hours: 45	
	To provide students with the knowledge and skills necessary		
Course	deploy and manage enterprise-wide wireless local area netw	vorks and to test the	
Objectives	security of wireless networks for weaknesses.		
Module 1		11 Hours	
Introduction to a	network resilience problems and solutions, wireless beyond	d 3G, performance	
modeling of (wire	less) networks and formal methods.		
Module 2	Module 2 11 Hours		
Network design algorithms & network design using network processors, wireless ad-hoc networks,			
security issues in	control, management, routing and other areas of networks		
Module 3	Module 3 11 Hours		
Distributed control	l in (wireless) network and middleware, distributed mobile comp	puting.	
Module 4		12 Hours	
Embedded system	Embedded systems in mobile/wireless/network systems, hardware & software design/development		
issues, standardization in wireless/mobile network systems.			
Reference	(1) Theodore S. Rappaport, "wireless communications	– principles &	
books	practices",2 nd ed, Pearson Education, 2002		
	(2) Boucher N., "Cellular radio handbook", Quantum Publishing	, 1991	
	(3) Feng& Leonidas, "Wireless sensor networks", Elsevier India	, 2005	

Subject Code	Web Engineering(WE)	Credits: 3(3-0-0)	
CS 518	······································	Total hours: 45	
Course	To apply the concepts principles and methods of Web a	ngingering to Web	
Course	To apply the concepts, principles, and methods of Web e	ingineering to web	
Objectives	applications development		
Module 1		10 Hours	
Web Engineering	g Fundamentals: Requirements specification and analysis, w	web-based systems	
development meth	nodologies and techniques, migration of legacy systems to web er	vironments.	
Module 2	Module 2 10 Hours		
Web-application	development: Web-based real-time applications development,	testing, verification	
and validation, qu	ality assessment, control and assurance, configuration and projec	t management.	
Module 3		10 Hours	
Web metrics: gen	erating metrics for estimation of development efforts, performance	ce specification and	
evaluation, update	e and maintenance.		
Module 4		15 Hours	
User-centric development: Development models, teams, staffing, integration with legacy systems,			
human and cultu	ral aspects, user-centric development, user modeling and use	er involvement and	
feedback, end-use	r application development.		
Reference	(1) Journal of Web Engineering, Rinton Press, IEEE & ACM	I Publications	
books	(2) Cato and John, "User centered web design", Pearson Educa	ation, 2001	

Subject Code	Software Project Management (SPM)	Credits: 3 (3-0-0)
CS 519		Total hours: 45
Course	This course introduces project management as it relates	to the software life
Objectives	cycle. Different software life cycle models and the p activities in each phase of the life cycle are studied. Projec are introduced, including effort estimation & the use of so analysis and resource allocation and project scheduling. The	t planning activities ftware metrics. Risk ne course concludes
	with a project monitoring & control, project contracts & team	
Module 1		11 Hours
Introduction, pro management.	ject definition, contract management, activities covered b	y software project
Module 2		11 Hours
Overview of Proje	ect planning, stepwise project planning, life cycle phases, artif	facts of the process,
=	vare architectures, workflows of the process, check points of the	=
Module 3		11 Hours
Software manager	nent disciplines, iterative process planning, project organization	s & responsibilities,
process automatio	n, project control & process instrumentation, tailoring the proce	SS.
Module 4		12Hours
Modern project pr	ofiles, next generation software economics, modern process tra	nsitions, the state of
practice in softwar	re project management, the COCOMO cost estimation model, cl	hange of metrics
Reference books	 K. Conway, "Software project management: From concerning IDG Books, 2001. I. Jacobson, G.Booch, J.Rumbaugh, "The unified soft Process, Addison Wesley, 1999. Stephan H.Kin, "Metric and models in software quaddison Wesley 1995. Walker Royce, "Software Project Management", Addison (5) Pankaj Jalote, "Software Project Management in Practice" Inc. Delhi, 2002 	ware development" ality engineering", Wesley,1998.

Subject Code	Advanced Compilers (AC)	Credits: 3 (3-0-0)
CS520		Total hours:45
Course	Complex software systems require abstraction and analysis	
Objectives	level of abstraction. In this course we study, typical software	e system structures.
Module 1		10Hours
Overview of com	piler design, optimizing compilers, graph structures for cont	rol flow analysis of
programs, data flo program depender	w analysis of programs, static single assignment form, data dep nee graph.	bendence of program,
Module 2		10 Hours
Scalar optimization	on, loop optimizations, register allocation, instruction schedu	ling, local methods,
graph colouring, o	code scheduling software pipelining, inter procedural dataflow	analysis, optimizing
for memory hierar	chies.	
Module 3		9Hours
High performance	e systems, scalar, vector, multiprocessor, SIMD, message p	assing architectures.
sequential and par	allel loops, data dependence use-def chains.	
Module 4		16Hours
Dependence sys	tem, GCD test, Banerjee's Inequality, exact algori	thm, vectorization,
concurrentization,	array region analysis, loop restructuring transformations	
Reference books	 Robert "Building an Optimizing Compiler Morgan", Digitation (2) M. Wolfe, "High Performance Compilers for Parallel Convesley, 1996. Steven S. Muchnick, "Advanced Compiler Design and Morgan Kaufmann Publishers, 1997. R. Allen and K. Kennedy, "Optimizing Compilers for Morgan Kaufmann Publishers, 2003. A. Appel, Press, "Modern Compiler Implementation in C", (6) A. Aho, M. Lam, R. Sethi and J. Ullman "Compilers: Primand Tools", 2007. Steven S. Muchnick, "Advanced Compiler Design and Morgan Kaufmann, Elsevier Science, 2003 Michael Wolfe, "High Performance Compilers for Parallel Compiler	omputing", Addison- nd Implementation", odern Architectures", , 1998. inciples, Techniques, nd Implementation",

Subject Code CS 521	Computer Vision (CV)	Credits: 3 (3-0-0) Total hours: 45
Course	The objective of this course is to understand the basic iss	ues in computer vision
Objectives	and major approaches that address them. Even though	n Computer Vision is
-	being used for many practical applications today, it is stil	l not a solved problem.
	Hence, definitive solutions are available only rarely.	
Module 1	1	11 Hours
Introduction and o	verview, pinhole cameras, radiometry terminology. Sources,	shadows and shading:
Local shading mo	dels- point, line and area sources; photometric stereo. Co	olor: Physics of color;
human color perce	eption, Representing color; A model for image color; surf	face color from image
color.		
Module 2		12 Hours
transforms; Sampl Edge detection: N	lution, edge effects in discrete convolution; Spatial fr ing and aliasing; filters as templates; Normalized correlation Noise; estimating derivatives; detecting edges. Texture: ented pyramid; Applications; Shape from texture. The geom	as and finding patterns. Representing texture;
Module 3		11 Hours
Stereopsis: Recons	truction; human stereo; Binocular fusion; using color camera	1.
Module 4		11 Hours
Segmentation by c	lustering: Human vision, applications, segmentation by grap	oh theoretic clustering.
Segmentation by fi	tting a model, Hough transform; fitting lines, fitting curves;	
	(1) David A Forsynth and Jean Ponce, "Computer vision- A modern approach", Pearson education series, 2003.	
	(2) Milan Sonka, Vaclav Hlavac and Roger Boyle, "Digital	image processing and
books	computer vision", Cengagelearning, 2008.(3) Schalkoff R. J., "Digital image processing and compute 2004.	er vision", John Wiley,
	(4) Sonka M., Hlavac V., Boyle R., "Image processing design". PWS Publishers	analysis and machine
	(5) Ballard D., Brown C., "Computer vision", Prentice Hall	

Subject Code	Artificial Intelligence (AI)	Credits: 3 (3-0-0)
CS522		Total hours:45
Course Objective	s The course objective is to introduce problems in sear	ch, logic, and game
	playing, more complex problems in first-order predic knowledge bases, planning, and reasoning systems.	ate logic, inference,
Module 1		15 Hours
techniques; proble	rtificial intelligence, architecture of AI & KBCS systems, d m solving, knowledge based reasoning, logic, inference, know certain information; state space search, heuristic search.	U U
Module 2		10 Hours
Planning and ma	king decisions, learning, distributed AI, communication,	web based agents.
introduction & des	ign of expert systems, various applications;	
Module 3		10 Hours
Negotiating agent	s, artificial intelligence applications and programming. introd	uction to fuzzy logic
systems, natural la	nguage processing;	
Module 4		10 Hours
Heuristic search te	chniques, knowledge based systems. problem solving by search	h; uninformed search,
informed ("heurist	ic") search, constrained satisfaction problems, adversarial search	ch,
Reference	(1) Nilson, "Artificial intelligence : A new synthesis",	Morgan Kaufmann
books	Publishers, 2001.	
	(2) Charniak and Mcdermott, "Introduction to artificial int	elligence", Addison-
	Wesley, 1985.	
	(3) S. Russel and P. Norvig, "Artificial intelligence - A moder Hall, 1995.	n approach [*] , Prentice
	(4) Deepak Khemani, "A first course in artificial intelligence".	Tata McGraw
	Hill,2013.	
	(5) Ginsburg, "Essentials of artificial intelligence", Morgan Ka	aufmann, 1993.
	(6) George F. Luger, "Artificial intelligence", Pearson Educati	
	(7) Edwin wise, "Hands on AI with Java", McGraw Hill, 2004	

subject Code	Multimedia & Virtual Reality (MVR)	Credits: 3 (3-0-0)	
CS523		Total hours:45	
Course	To provide basic knowledge of multimedia and over	view of the tools &	
Objectives	taxonomy of multimedia authoring, including data repr	esentation for images,	
	video & audio. To understand data compression & multim	edia communication &	
	retrieval		
Module 1		11Hours	
Introduction to n	nultimedia technology and its applications, multimedia h	ardware and software	
essentials. multime	edia graphics fundamentals. multimedia audio - sound card fu	ndamentals	
Module 2		12Hours	
MIDI fundament	MIDI fundamentals: digital video production techniques, image processing - digital image		
fundamentals, dig	ital image development and editing, computer animation	techniques, animation	
software. multime	dia file formats – growth pace of multimedia in IT industry.		
Module 3	Module 3 11Hours		
Concepts of virtua	Concepts of virtual reality and its effectiveness in real time applications, virtual reality tools,		
introduction to sci	entific visualization and virtual reality, hardware requirements	s, sound, animation	
techniques, VR on	techniques, VR on flight simulation.		
Module 4	Module 4 11Hours		
VR on CAD / CAM processing : Virtual banks, compression and decompression techniques, CASE			
study of multimedia workstations			
Reference	(1) The Winn L. Rosch "Multimedia Bibble", SAMS Publishi	U	
books	(2) D. P. Kothari & Anshu, "Hypermedia: From multimedia to	• V. R." , PHI, 2004.	

Subject Code	Software Quality Assurance (SQA)	Credits: 3 (3-0-0)
CS524		Total hours:45
Course Objectives	The course will introduce the basics of software quality	assurance. Further,
	the issues, processes, and techniques in software qu	ality assurance are
	discussed. The course will train the students to appl techniques in different activities of software development a	
Module 1		15 Hours
Introduction to softw	vare quality, software defects, reasons of poor quality, qual	ity laggards, project
management approa	ches, cost and economics of SQA, quality measuremen	ts, evaluation, role,
	ent, life cycle, models, maintenance issues, specification.	
Module 2		10 Hours
Software requirement	ts and SQA, requirements defects, writing quality requirement	nts, quality attributes
of requirements docu	ment, software design model and software design defects	
Module 3		10 Hours
Quality design conc	epts, programming and SQA, SQA reviews, software in	nspections, software
testing: WBT techni	ques, BBT techniques, testing strategies, debugging, test	planning, automated
software testing, test	cases, responsibilities of testers	
Module 4		10 Hours
SQA and SCM, SCM	I plan and SQA plan, process assurance, process management	nt and improvement,
-	ty metrics, a process model of software quality assurance.t	•
verification and valid assurance.	lation.cost estimation, tools, debugging, simulators, ISO 900	00 standards, quality
Reference (1) books	Capers Jones, "Software quality: Analysis and guide International Thomson Computer Press. 1997.	lines for success",
	(2) Capers Jones, "Software assessments, benchmarks, and best practices", Addison-Wesley Professional, 2000.	
(3)	(3) Pankaj Jalote, "An integrated approach to software engineering", Narosa Publication, 1995.	
(4)	(4) John J Marciniack, (Ed), "Encyclopedia of software engineering", John Wiley and Sons, 1994.	
(5)	Isabel Evans, "Achieving software quality through to Publishers, 2004.	eam work", Allied
	Mordechai Ben, Menachem, Garry S. Marliss, "Softwar practical, consistent software", Thomson Learning.	
(7)	James F. Peters, Witold Pedrycz, "Software engineeri approach" WSE, Wiley.	ng, an engineering

Subject Code	Protocol Engineering(PE)	Credits: 3 (3-0-0)
CS 525		Total hours: 45
Course	Characterize protocol engineering. Compare and contra	ast various Internet
Objectives	protocols such as TCP/IP, DNS, DHCP, LDAP, and IPsec.	
Module 1		11 Hours
Review of Comm	unication Network: Overview of computer network protocol, OS	SI reference model,
Basic design con	cept: Protocol as a system, life cycle model, architectural des	ign phase,top down
approach ,bottom	up approach ,separation of concern.	
Module 2		11 Hours
Requirement spec	ification: service specification service data unit service eleme	ents, communication
mode, Protocol an	chitecture:Basic protocol concept, protocol layer, protocol enti	ty, protocol element
protocol data unit.		
Module 3		11 Hours
Protocol structure	ng, design and specification protocol structuring, the us	sers of pdu service
structuring, gener	ric protocol function, five elements of protocol specification	n, rules of design,
specification lange	uage, message sequence chart, petri net finite state machine	
Module 4		12 Hours
Protocol Data Fo	rmat: Abstract Syntax format design principles, ASN.1, ASI	N.1 record structure
ASN.1 encoding r	ule, XML Syntax, DTD and XML schemas example, Case of	protocol data format
customer informat	tion: XML-based customer information, ASN.1 binary-encoded	based XML schema
and ASN.1 cooper	ration.	
Reference	(1) Web sites, IEEE, ISO and ITU-T sites.	
books	(2) P. Venkatram & S. S. Manavi, "Protocol Engineering", PHI,	, 2004.

Subject Code CS 526	Software Testing (ST)	Credits: 3(3-0-0) Total hours: 45
Course Objectives	To discuss the distinctions between validation tests and describe strategies for generating system test cases. To gain skills on how to use modern software testing tools to supp projects.	the techniques and
Module 1		9 Hours
definitions, softwar origins of defects, d	heering activity, role of process in software quality, testing e testing principles, the tester's role in asoftware develop efect classes, the defectrepository and test design, defect exa reloping a defect repository.	oment organization,
Module 2		9 Hours
approach to test case other black box test testdesign, test adequirole in white box base	ng design strategies, the smarter tester, test case designstrateg e design, random testing, equivalence class partitioning, boun stdesign approaches, black box testing and cots, using whit uacy criteria, coverage and control flow graphs, covering code sed test design – additional white box test evaluating test adequacy criteria.	dary value analysis, te box approach to
Module 3		9 Hours
The need for levels	of testing, unit test, unit test planning, designing the unitte	ests, the class as a
	st harness, running the unit tests andrecording results, integration testplanning, system test, the different types, regressivests.	
Module 4		9 Hours
attachments, locatin policy development needed by atest spec	ng and debugging goals and policies, test planning, testplan co g test items, reporting testresults, the role of three groups i , processand the engineering disciplines, introducing the to ialist, building a testing group.	n test planning and est specialist, skills
Module 5		9 Hours
and control issues, c	surements and milestones for controlling and monitoring, staturiteria for test completion, scm, types of reviews, developing w plans, reporting review results.	• •
books (2 (3 (4) Glenford J. Myers, "The art of software testing", John Wiley) Boris Beizer, Black "Testing: Techniques for functional test systems", John Wiley & Sons, 1995.) William Perry, "Software testing: Effective methods for sof Wiley, 1995.) Cem Kaner, Jack Falk, Hung Quoc Nguyen, "Testing comp Ed, Intl. Thomson Computer Press, 1993.) Ilene Burnstein, "Practical software testing", Spri Edition,2003. 	ting of software and tware testing", John

Subject Code CS 527	Mobile Communications (MC)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To understand the issues involved in mobile communication analysis.	on system design &
Module 1		8 Hours
	llular mobile systems: A basic cellular system, performance cra ronment, operation of cellular systems, planning and cellular tems.	-
Module 2		8 Hours
channels, co-chan	lar radio system design:General description of the problem, connel interference reduction factor, desired c/i from a natenna system, cell splitting, consideration of the components of	ormal case in an
Module 3		10 Hours
channelmeasureme receiver, non Co-c	luction to Co-channel interference, real time Co-channel ent, design of antenna system, antenna parameters and the hannel interference - different types.	ir effects, diversity
Module 4		9 Hours
propagation over propagation, point	signal and traffic:General introduction, obtaining the mobile poi water or flat open area, foliage loss, propagation in near in dis - to - point predication model - characteristics, cell site, antenr bile - to - mobile propagation.	stance, long distance
Module 5		10 Hours
Mobile communions satellite services	cations by satellite service systems in operation, INMARSAT,	MSAT, LEO mobile
Reference books	 (1)Lee W.C.Y., "Mobile cellular telecommunications", McGrav (2) Mazda F., "Telecommunications engineering" Reference 1993. (3) Gibson J.D., "Mobile communication hand book", CRC pre (4)Macario R.C.V., "Cellular radio", Macmillan, 1993. (5) Bud Bates, "Wireless networked Communication", McGrav (6)Dr. KamiloFeher, "Wireless digital communication", PHI. 	book, Butterworth, ess, U.S.A., 1996.

Subject Code CS528	Information Security(IS)	Credits: 3 (3-0-0) Total hours:45
Course Objectives	To provide extensive, detailed and critical underst principles and theories of computer network secur application and operating system security, web sec mobile application security.	rity. also the course focuses on
Module 1		9Hours
Security proper	ties, threat models, examples; control hijacking attacks	and defences.
Module 2		9 Hours
Tools for robust access control	t code, exploitation techniques and fuzzing, dealing wi	ith legacy code, least privilege,
Module 3		9 Hours
Operating system	m security, cryptography overview, basic web security	model
Module 4		9 Hours
Web application	security; session management and user authentication,	HTTPS: goals and pitfalls
Module 5		9 Hours
1	n security models: Android, iOS, mobile threats and n	nalware, the trusted computing
architecture	(1) Matt Diaham "Commutan accountry anta & aciana	-" Decrear Education 2002
Reference books	 Matt Bishop, "Computer security, arts & science", Pearson Education, 2003. Pceprzyk et.al. "Fundamentals of computer security", Allied Publishers, 2004. Derek Atkins and 9 others, "Internet security" Techmedia 2nd edition, 1997. Michael Howard and David LeBlane, "Writing Secure Code, Microsoft, WP Publishers. Dave Aitel, "How hackers look for bugs" 	
	(6) Charlie Miller, "Real world fuzzing"	

Subject Code	Network Security(NS)	Credits: 3 (3-0-0)
CS529		Total hours:45
Course Objectives	To provide extensive, detailed and critical understand issues, principles and theories of network security.	ing of the concepts,
Module 1		15 Hours
Introduction to net	work security and associated techniques, Firewall design	principles: Packet
filtering, Gateways	: Circuit-level gateways; application-level gateways,	
Module 2		10 Hours
Firewall Configura	tions, Intrusion Control: Detection; Anomaly-Based IDS	Intrusion Recovery;
Vulnerability Scan	ners; Login, Audit, and Sniffers,	
Module 3		10 Hours
Communication Se	curity Network Access Layer;- Internet Layer - Transport	Layer;
Module 4		10 Hours
Application Layer	- Message Security Risk Analysis, Policies, Procedures an	d Enforcement. Special
Topics : DOS Mitig	gation ,VPNs Special Topics: Viruses, SPAM. Network pr	rotocols and
vulnerabilities, Net	work defenses, Denial of service attacks, Malware,	
Reference (Reference (1) C. Kaufman, R. Perlman, M. Speciner, "Network security: Private	
books (communication in a public world", Prentice Hall, 2002. 2) William Stallings, "Network security essentials", 2/e, P	

Subject Code CS 530	Parallel Algorithms (PA)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To introduce techniques for the design of efficient parallel implementation.	algorithms and their
Module 1		10 Hours
Parallel processing parallel algorithms	g, parallel models, performance of parallel algorithms, com	plexity measure for
Module 2		11Hours
-	esigning parallel algorithms, pointer jumping technique, d y, pipelining, accelerated cascading, symmetry breaking.	livide and conquer,
Module 3		12Hours
Lists and trees, list	t ranking, Euler-tour technique, Tree contraction, computation	on of tree functions,
	orting algorithms. parallel combinatorial algorithms: permutation ations, derangements. parallel searching algorithms: maximum	
K-th largest/smalle	st element.	
Module 4		12Hours
connectivity probl	prithms, parallel graph search &, tree traversal algorithms, pa ems, parallel algorithms for path problems., Ear decompositions, General dense matrices.	e
 Reference (1) Jaja, J. "An introduction to parallel algorithms", Addison- Wesley, Reading, MA, 1992. (2) Gibbons A., W.Rytter, "Efficient parallel algorithms", Cambridge university Press; Cambridge, 1988 (3) H. Sparkias and A. Gibbon, "Lecture notes on parallel computation", Cambridge University Press, 1993. (4) K. Hwang and F. A. Briggs, "Computer architecture and parallel processing", McGraw Hill Inc., 1985. (5) S. Akl., "Design and analysis of parallel algorithms", Prentice Hall Inc, 1992. 		

Subject Code	Distributed Algorithms(DA)	Credits: 3 (3-0-0)
CS531		Total hours:45
Course Objective	s To introduce the main algorithmic techniques in the framodels of computing; to define the most significant compute the computational limits of parallelism and concurrency.	
Module 1		9 Hours
Distributed Algori	thms: models and complexity measures. Modeling: Synchro	nous network model,
asynchronous sys partially synchrone	tem model, asynchronous shared memory model, asynchroous system model.	nous network model.
Module 2		9 Hours
	synchronous ring: Basic algorithm, non-comparison based algorithm. Lower bounds on the algorithms. Leader election in	
Module 3		9 Hours
Distributed conser failures. approxim	sus with process failures: Algorithms for stopping failures, algorithms are agreement.	gorithms for byzantine
Module 4		9 Hours
-	ment using read/write shared memory. Basic asynchronous a ring algorithms, leader election in arbitrary network.	s network algorithms:
Module 5		9 Hours
time to asynchron	e synchronizer implementations. algorithm tolerating process f nous networks. applications. termination detection for diffu orithms, mutual exclusion, general resource allocation algori	ising algorithms. The
Reference	1. Nancy & Lynch, Distributed Algorithms, Harcour Asi	
books		

Subject Code CS 532	Web Services & Cloud Computing (WSCC)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To standardize a framework applications to communicate o get a general idea about the models of web services. To under area of "cloud computing" and how it relates to traditional n To understand how well-known algorithms such as Page index construction can be expressed in the Map-Reduce competence in Ajax as a vehicle for delivering hig applications.	erstand the emerging nodels of computing. e Rank and inverted framework. To gain
Module 1		11 Hours
Basic concepts, e	nabling infrastructure, core functionality and standards.	
Module 2		12 Hours
Service semantics	s, web service composition, service development and recent resea	arch trends.
Module 3		11 Hours
Introduction to cl	oud computing, cloud computing delivery models.	
Module 4		11 Hours
Open Source and	I Industry case Studies of cloud, Map Reduce, Apache VCL,	Amazon, IBM and
Eucalyptus, Hado	op, Security issues in cloud	
Reference books	 Rajkumar Buyya, Christian Vecchiola, and Thamarai Sel Computing, International Edition: Morgan Kaufmann, 2013 AlonsoG.,Casati F., Kuno H., Machiraju V., "Web Se Architectures and Applications Series: Data- Cen Applications"PHI 2004. SanjivaWeerawarana, Francisco Curbera, Frank Leymann Platform Architecture: SOAP, WSDL, WS-Policy, WS-Ad- WS-Reliable Messaging and more", Prentice Hall Publication (4) Thomas Erl, "Service oriented Architecture: Concept Design", Prentice Hall Publication, 2005. R. Allen Wyke et-al, "XML Programming", WR Publishers Richard Monson-Haefel, "Web Services", Pearson (LPE), (7) "Cloud Application Architectures" by George Reese, Of 2009. "Cloud Security and Privacy", Tim Mather, SubraKuma 2009. The Hadoop – Definitive Guide, Tom White, O'Reilly, 200 	3. ervices – Concepts, tric Systems and et al, "Web Services dressing, WS-BPEL, on, 2005. s, Technology and , , 2005. 'Reilly Publications, araswamy, O'Reilly,

Subject Code	Computer Security Audit and Assurance	Credits: 3 (3-0-0)				
CS533	533 (CSAA) Total hours:45					
Course Objectives	To introduce students to the concepts of Information Assurance and how to secure such information using appropriate systems and technologies, presenting introductory aspects on computer audit including auditing information systems auditing computerized systems, auditing applications etc. Also, to introduce students to the key management and Public Key Infrastructure.					
Module 1		10 Hours				
Systems in Global Co Wireless Computing Information Security Information Systems	neworks;practices and procedures, business practice disc ontext · Threats to Information Systems · Security Consider · Information Security Management in Organizations · · Information Security Risk Analysis · Overview of P s · Perimeter Security for Physical Protection · Biom -based Security: Issues and Challenges · Network Security in	ations in Mobile and Building Blocks of hysical Security for hetrics Controls for				
Module 2		15 Hours				
Security Security Perspective Security Systems Security	ig the Networks · Firewalls for Network Protection · Virtual y of Wireless Networks · Business Applications y of Electronic Mail Systems · Security of Databases · So Models, Frameworks, Standards and Methodologies urity Engineering Capability Maturity Model - The SSE-CM	Security: An EAI ecurity of Operating · ISO 17799/ISO				
Module 3		10 Hours				
Information Security Business Challenges Security Function ·	rity: Other Models and Methodologies · Laws and Le · Security Metrics · Privacy - Fundamental Concepts and F · Privacy - Technological Impacts · Web Services and Pr Business Continuity and Disaster Recovery Planning. F on security practices, personal and physical security s.	Principles · Privacy - rivacy · Staffing the Policy authority and				
Module 4		10 Hours				
and Intellectual Properside Schemes, key generative security policy specific Reference books (ty · Privacy Best Practices in Organizations · Asset Manager erty Concerns for InfoSec Professionals. PKI's and ation, key storage, backup, recovery and distribution. XI ication, certificate management life cycle. 1)W K Brotby, Information security management metrics, CF 2)Nina Godbole, Information systems security: security m frameworks and best practices, John Wiley and sons Ltd. 20 	key management ML frameworks for RC press 2009. anagement, metrics,				

Subject Code	Big Data Analysis (BDA)	Credits: 3(3-0-0)
CS534		Total hours: 45
Course	This course covers the object oriented programming co	oncepts using C++.
Objectives		
Module 1		15 Hours
Overview of bi scientist.	ig data, stages of analytical evolution, state of the pract	ice in analytics, the dat
Big data analyt methods using	tics in industry verticals, data analytics lifecycle, operationa R, advanced analytics - analytics for unstructured data - mag stem, in-database analytics.	•
Big data analyt methods using Hadoop ecosys	R, advanced analytics - analytics for unstructured data - map	lizing basic data analytic p reduce and Hadoop, the
Big data analyt methods using Hadoop ecosys Module 3	R, advanced analytics - analytics for unstructured data - mag stem, in-database analytics.	lizing basic data analytic p reduce and Hadoop, the 10 Hours
Big data analyt methods using Hadoop ecosys Module 3 Data Visualizat	R, advanced analytics - analytics for unstructured data - map	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory
Big data analyt methods using Hadoop ecosys Module 3 Data Visualizat data manageme	R, advanced analytics - analytics for unstructured data - map stem, in-database analytics. tion Techniques, Stream Computing Challenges, Systems are	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory
Big data analyt methods using Hadoop ecosys Module 3 Data Visualizat data manageme Module 4	R, advanced analytics - analytics for unstructured data - map stem, in-database analytics. tion Techniques, Stream Computing Challenges, Systems are	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory ing.
methods using Hadoop ecosys Module 3 Data Visualizat data manageme Module 4	R, advanced analytics - analytics for unstructured data - map stem, in-database analytics. tion Techniques, Stream Computing Challenges, Systems are ent techniques, energy-efficient data processing, benchmarki	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory ing. 10 Hours 1., Wiley, 2012

Subject Code	Business Intelligence (BI)	Credits: 3(3-0-0)
CS 535		Total hours: 45
Course Objectives	Explore the concepts of business intelligence/business analy readings, creation of Wikis and Blogs relevant to the course. apply critical thinking, problem-solving and decision-makin	. To develop and
Module 1		15 Hours
Overview of man data warehouse, a	agerial, strategic and technical issues associated with business in nalytics and DSS.	telligence and
Module 2		15Hours
Design, implement and visualization.	ntation and utilization, data as the basis for decision making, bus	iness reporting
Module 3		15 Hours
	rchitecture, OLAP, data cubes, Reporting tools, Balance Scoreca	ard, dash board
Reference books	 (1) Efraim Turban, Ramesh Sharda, Jay Aronson, David King, " and business intelligence systems", 9th ed., Pearson Educatio (2) Descided Leadsing "Descinence Leads", Same Management and Same Manageme	n, 2009.
	(2) David Loshin, "Business Intelligence - The Savy Manage Onboard with Emerging IT", Morgan Kaufmann Publishers,	e

secure software engineering process and d software security.	tal hours: 45
d software security.	details the
15	
	Hours
Inerabilities, risk management, security	
10	Hours
re programming, validation of the data.	
10	Hours
d static analysis.	
10	Hours
grams.	
rnum, Robert J Ellison, Gary McGraw, 1	Addison
	rity Engineering: A Guide to Building D /iley, 2008.

Subject Code	Computer Graphics (CG)	Credits: 3 (3-0-0)
CS 537		Total hours: 45
Course Objectives	To have an introduction to computer comprehend contemporary issues and add	
Module 1		6 Hours
interpreter, display file	ics hardware devices, display devices, pr e structure, and graphics file formats. text mo pes, colors, co-ordinate systems, application	ode graphics function, graphic mode
Module 2		11 Hours
midpoint circle algor inside –outside test, p	rithms: DDA circle drawing algorithm, Bre thm, polygons, types of polygons, polygon olygon filling: Flood fill, scan-line algorithm	representation, entering polygons,
Module 3		13 Hours
point. 3D Transform transformation, norm	aling, Reflection, shearing, Rotation, Transation: scaling, rotation, translation, rotati alization, transformation. Line clipping: abdivision algorithm Polygon clipping: Suthe	on about arbitrary axis. Viewing Cohen-Sutherland, Line clipping
Module 4		15 Hours
Fractals: Hilbert's Cu scan display Need for Hazards of Graphics works, Open GL and a	c generation using DDA algorithm. Inter rve, Koch curve, Fractal lines, Fractal Surfa r graphics standards, Graphics standards, standards. Graphical user interface Open GL mimation, Graphical processors: GPUs.	aces. Raster scan display, Random Advantages of Graphics standards, .: What is Open GL, How OpenGL
	Ronald Hearn & MPauline Baker, "Compute James D. Foley, Andrews van Dam, Ste	
	"Computer graphics principles and practice" William Newman and Robert Sproull, "I Graphics", Tata McGraw-Hill, 1973.	', 2 nd ed., Addison Wesley, 1996.

Subject Code	Graph Theory (GT)	Credits: 3 (3-0-0)	
CS 538		Total hours: 45	
Course Objectives	This is an introductory course about properties and applic aims at the usage of graph theoretic methods for modeling p in discrete mathematics.	U I	
Module 1		12 Hours	
representations of smaller graphs, con cut-vertices and cu	rial representation of a graph, isomorphic graphs, su graphs, degree of a vertex, special graphs, complements, unected graphs and shortest paths, walks, trails, paths, cycles, ut-edges, blocks, connectivity, weighted graphs and shorter hortest path algorithm, Floyd-Warshall shortest path algorithm	larger graphs from , connected graphs, st paths, weighted	
Module2		12 Hours	
	and characterizations, number of trees, Cayley's formula, orithm, Prim's algorithm, bipartite graphs, Eulerian graphs, F roblem.		
Module 3		12 Hours	
matchings, matchin	necessary conditions and sufficient conditions, independent ags in bipartite graphs, Hall's theorem, Konig's theorem, po- lorings, basic definitions, cliques and chromatic numbe	erfect matching's in	
Module 4		9 Hours	
Edge colorings, Gupta-Vizing theorem, class-1 and class-2 graphs, edge-coloring of bipartite, graphs, planar graphs, basic concepts, Euler's formula and its consequences, characterizations of planar graphs, 5-color-theorem, directed graphs, directed walks, paths and cycles, Eulerian and Hamilton digraphs.			
books ((Adrian Bondy, U. S. R. Murty, "Graph Theory", Springer, Reinhard Diestel, "Graph Theory", 3rd edition, Springer, 20 Douglas B. West, "Introduction to Graph Theory", Prentice Jonathon L. Gross, "Combinatorial methods with com Chapman & Hall /CRC press, 2008 	000. e Hall, 1996	

Subject Code	Distributed Computing Systems (DCS)	Credits: 3 (3-0-0)
CS 539		Total hours: 45
Course Objectives	This course covers abstractions and implementation techniq distributed systems. It focuses on server design, network pro storage systems, security, and fault tolerance.	6
Module 1		9 Hours
	buted Systems and applications, Distributed vs parallel s Message Passing mechanisms IPC and RPC.	systems, models of
Module2		11 Hours
exclusion using tim token & quorums, c philosophers problem	on, physical & logical clocks, vector clocks, verifying clock e stamp, election algorithms, Distributed mutual exclusion centralized & distributed algorithms, proof of correctness & o m, Implementation & performance evaluation of DME Algorit	using time stamps, complexity, drinking hms.
Module 3	gorithms, global states, global predicates, termination de	13 Hours
distributed computation simulated environ	tion, disjunctive predicates, performance evaluation of leader nments.	election algorithms
Module 4		12 Hours
	stems and Services, Shared data, Synchronization Transaction databases, Name service, Timing & Coordination, Replication	•
books (2 (3 (4 (5) (6) (7)	 Vijay K Garg "Elements of Distributed Computing", Wiley Pradeep Sinha, "Distributed Operating Systems- Cond PHI,2000 A.S. Tanenbaum and M.V. Steen, "Distributed System Paradigms", PHI.2003 George Couloris, Jean Dollimore & Time Kindberg, "E Concepts & Design", 2nd Edition, Addison Wesley 2003. V. Rajaraman, C. Siva Ram Murthy, "Parallel, Compu Programming", PHI. Khemkalyani and Singal, "Distributed Computing" Nancy Lynch, "Distributed Algorithm" Singal and Shivaratri, "Ditributed OS" 	cepts and Design", Is – Principles and Distributed Systems:

Subject Code: HU 501& HU 502	Professional Communication-II and Language Lab	Credits: 4 (2-0-3) Total hours: 56
Course Drono quisite		
Course Prerequisite	Knowledge of English	
Course Objectives	This course aims at Personality Development	1 1 11 1 111
Course Outcome	At the end, the students should possess a Saleable Image with	employability skills
Module 1	Principles of Soft Skills and Practice	12 hours
Definition of Soft Sk	ills and Personality, Attitude, Dress Code, Body Language, I	ndividual and Group
Behaviour, Personality	y Test, C.V Writing and the difference between CV & Resume	
Module 2	Group Discussion, Extempore, JAM and Survey	16 hours
Topics: Is Cloning Et	hical, Shopping Mall vs Retailer, Should Animals be used for	Drug-Test, Effects of
Advertisement on You	uth, Google vs Social Networking Sites, Newspaper is the thing	g of Past, Diversity in
Indian Culture, Gende	r Discrimination, Who is Smarter: Human Beings or Computer	and so on
Module 3	Interview	14 hours
Types of Interview, In	terview Ethics, Questions and Mock-Interview Sessions	
Module 4	Business Presentation and Seminars	14 hours
Business Presentation	and Students' Seminar	I
Texts:	1.W.B. Martin, Ethics in Engineering Tata McGraw Hill, India	a
	2. Patnaik, Priyadarshi, Group Discussion and Interview Skil	ls, New Delhi: CUP,
	(Video CD)	
	3Downes, Colm, Cambridge English for Job Hunting, 2009	, New Delhi,CUP (2
	Audio CDs)	
	TV News (Headlines Today, ND TV and BBC), Chat-Show	vs on TV, Magazines
Reference	like India Today, Outlook, The Week and English Dailies.	, U
	Expressive Skill, English Films & English Comics	C

Academic Hand Book

for

Bachelor of Technology Programme

in

Electronics and Communication Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Programme Structure Summary

Institute-wide Categories of the Courses

The Bachelor of Technology (B.Tech.) program at National Institute of Technology Goa (NIT Goa) will have 170 credits as the lower limit for the award of degree. These courses are grouped in a number of categories as shown below:

S.N.	Category	Credits	Remarks	
1.	Basic Sciences (BS)	27	Mathematics	- 14 Credits
			Physics	- 8 Credits
			Chemistry	- 5 Credits
2.	Basic Engineering Sciences (ES)	14	Engineering Mechanics	- 3 Credits
			Mechanical Engineering	- 2 Credits
			Basic Electrical Science	- 5 Credits
			Computer Programming	- 4 Credits
3.	Humanities and Languages (HL)	9	Professional Communication	n - 3 Credits
			Economics	- 3 Credits
			Management	- 3 Credits
4.	Technical Arts (TA)	5	Engineering Drawing	- 3 Credits
			Workshop	- 2 Credits
5.	Professional Theory and	110		
	Practice (PT)			
6.	Others (*Not counted for final	5*	Environmental Studies	- 3 Credits
	CGPA)		Physical Education	- 1 Credits
			Value Education	- 1 Credits
Total Cre	dits	170	0 165 credits are counted for CGPA	

Semester-wise Distribution of the Courses

Semester I (Structure Common to All Branches)				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits
MA100	1	Mathematics-I*	4(4-0-0)	4
PH100	2	Physics*	3(3-0-0)	3
ME100	3	Engineering Mechanics*	3(3-0-0)	3
CS100	4	Computer Programming and Problem Solving	4(2-0-3)	4
HU100	5	Professional Communication*	3(2-0-2)	3
ME101	6	Engineering Drawing*	3(1-0-3)	3
PH101	7	Physics Laboratory*	2(0-0-3)	2
Total Credit	S			22

Semester II (Structure Common to All Branches)				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits
MA150	1	Mathematics-II*	4(4-0-0)	4
PH150	2	Material Science*	3(3-0-0)	3
CY150	3	Chemistry*	3(3-0-0)	3
ME150	4	Elements of Mechanical Engineering *	2(2-0-0)	2
EE150	5	Basic Electrical Science	3(3-0-0)	3
ME151	6	Workshop Practices*	2(0-0-3)	2
CY151	7	Chemistry- Laboratory*	2(0-0-3)	2
EE151	8	Basic Electrical Science Laboratory	2(0-0-3)	2
PE150	9	Physical Education	1(1-0-0)	1
Total Cred	its	•	÷	22

*The course contents can be found under syllabus details of First year B. Tech programme.

Semester III				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits
EC201	1	Analog Electronics	3(3-0-0)	3
EC202	2	Signals and Systems	4(3-1-0)	4
EC203	3	Network Theory and Synthesis	4(3-1-0)	4
EC204	4	Electromagnetic Theory	4(3-1-0)	4
MA200	5	Mathematics –III	3(3-0-0)	3
EC205	6	Analog Electronics Laboratory	2(0-0-3)	2
EC206	7	Signals and Systems Laboratory	2(0-0-3)	2
Total Credits			22	

Semester IV				
			Total	
Course	SI.		Credits	Credits
Code	No.	Course Name	(L-T-P)	
EC251	1	Digital Electronics	3(3-0-0)	3
EC252	2	Communication Engineering	4(3-1-0)	4
EC253	3	Devices	4(3-1-0)	4
HU250	4	Economics	3(3-0-0)	3
		Mathematics-IV (Probability, Statistics and Random		
MA250	5	Processes)	3(3-0-0)	3
EC254	6	Digital Electronics Laboratory	2(0-0-3)	2
EC255	7	Communication Engineering Laboratory	2(0-0-3)	2
VE200	8	Value Education	1(0-0-2)	1
Total Credits				22

Semester V	Semester V				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
ES300	1	Environmental Studies	3(3-0-0)	3	
EC301	2	Data Structures and Algorithm	4(3-1-0)	4	
EC302	3	Control System	4(3-1-0)	4	
EC303	4	Digital Signal Processing	4(3-1-0)	4	
EC304	5	Microprocessor and Microcontroller	3(3-0-0)	3	
EC305	6	Digital Signal Processing Laboratory	2(0-0-3)	2	
EC306	7	Microprocessor and Microcontroller Laboratory	2(0-0-3)	2	
Total Credi	ts			22	

Semester VI	Semester VI			
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits
EC351	1	Wireless Communication	4(3-1-0)	4
EC352	2	Linear Integrated Circuits	3(3-0-0)	3
EC353	3	Digital Communication	4(3-1-0)	4
EC354	4	Communication Network	3(3-0-0)	3
EC4XX	5	Elective I	3(3-0-0)	3
EC355	6	Linear Integrated Circuits Laboratory	2(0-0-3)	2
EC356	7	Digital Communication Laboratory	2(0-0-3)	2
EC399	8	Mini Project/Industrial Training	1(0-0-2)	1
Total Credit	S			22

Semester V	Semester VII			
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits
EC401	1	VLSI Circuit Design	3(3-0-0)	3
HS400	2	Management	3(3-0-0)	3
EC402	3	Information Theory and Coding	3(3-0-0)	3
EC4XX	4	Elective II	3(3-0-0)	3
EC403	5	VLSI Design Laboratory	2(0-0-3)	2
EC448	6	Seminar	2(0-0-3)	2
EC449	7	Major Project	4(0-0-6)	4
Total Credits			20	

Semester VI	Semester VIII				
Course Code	SI. No.	Total Credits (L-T-P)	Credits		
EC4XX	1	Elective III 3(3-0-0)	3		
EC4XX	2	Elective IV 3(3-0-0)	3		
EC4XX	3	Elective V 3(3-0-0)	3		
EC4XX	4	Elective VI 3(3-0-0)	3		
EC499	5	Major Project 6(0-0-9)	6		
Total Credit	S		18		

Note: A student has to choose 12 credits as Program Electives and 6 credits as Open Electives. Open Electives are courses which students can take from any department.

List of Electives

Program E	Program Electives				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
EC404	1	Electronic Instrumentation	3(3-0-0)	3	
EC405	2	Digital System Design	3(3-0-0)	3	
EC406	3	Computer Architecture and Organization	3(3-0-0)	3	
EC407	4	Advanced Digital Signal Processing	3(3-0-0)	3	
EC408	5	Statistical Signal Processing	3(3-0-0)	3	
EC409	6	DSP Algorithm and Architecture	3(3-0-0)	3	
EC410	7	Speech and Audio Processing	3(3-0-0)	3	
EC411	8	Image and Video Processing	3(3-0-0)	3	
EC412	9	Biomedical Signal Processing	3(3-0-0)	3	
EC413	10	Error Control Coding	3(3-0-0)	3	
EC414	11	Spread Spectrum Communication	3(3-0-0)	3	
EC415	12	Optical Communication	3(3-0-0)	3	
EC416	13	AdHoc and Sensor Networks	3(3-0-0)	3	
EC417	14	Antennas and Propagation	3(3-0-0)	3	
EC418	15	Satellite Communication	3(3-0-0)	3	
EC419	16	Microwave Engineering	3(3-0-0)	3	
EC420	17	Radar and Navigation Systems	3(3-0-0)	3	
EC421	18	Digital Image Processing	3(3-0-0)	3	
EC422	19	Active Filters and Data Converters	3(3-0-0)	3	
EC423	20	Embedded Systems	3(3-0-0)	3	
EC424	21	Low-Power VLSI Circuit Design.	3(3-0-0)	3	
EC425	22	Logic Synthesis and Optimization	3(3-0-0)	3	
HU401	23	Professional Communication - II and Language Lab	4(2-0-3)	4	

First Year Course Contents

Subject Code		Credits: 3 (3-0-0)
EE151/EC151	Basic Electrical Science	Total hours: 45
Course	To expose students to basic electric devices and components	characteristics and
Objectives	techniques of analyzing them.	
Module 1	DC circuit Analysis	12 hours
Node analysis of	elements, Voltage sources, Current sources, Ohm's Law, Kirchot DC circuits, Source transformation, Star-Delta Transformation, ysis of RC, RL, RLC with DC excitation.	
Module 2	Magnetic circuit Analysis and AC circuit Analysis	12 hours
Average and RM	Induction, Self and mutual inductances, Magnetic circuits. Fu S values, Form and Peak factor, Concept of Phasors, Complex oncepts of three phase circuits.	
Module 3	Semiconductor Devices and Circuits	14 hours
diodes Half-wave Approximate ana	e, Characteristics, Diode approximations, DC load line, AC equived diode rectifier and Full-wave diode rectifier, Shunt capacitor fillysis of capacitor filters, Power supply performance, Voltager, Characteristics, DC Load line and Bias Point, Biasing circuit des	lter, Ripple factor - regulators; Bipolar
Module 4	Elements of Digital Electronics	7 hours
e e	al Signals, Introduction to Digital Electronics, Digital Logic Ga , SRAM, DRAM, ROM, PROM, EPROM, EEPROM.	ates. Introduction to
Text Books	 Del Toro, Electrical Engineering Fundamentals, Pearson Education, 2002. R.J. Smith, Circuits, Devices and Systems: A First Course in Electrical Engineering, Wiley-5th edition William H. Hayt Jr., Jack E. Kemmerly, Steven M. Durbin, Engineering Circuit Analysis, TMH, 2002. 	
Reference Books	2. A.S. Sedra & K.C Smith, <i>Microelectronic Circuits</i> , 1999.	Oxford Univ. Press

Subject Code EE152/EC 152	Basic Electrical Science Laboratory	Credits: 2 (0-0-3) Total hours: 45
Course Objectives	To have hands on experience on principle of basic electron components and their analysis.	ronic passive and active
	List of Experiments	
 13. Desi 14. Clip 15. Rect 16. Netv 17. Phas 18. BJT 19. Tran 20. Digital 	List of Experiments 12. Verification of KVL and KCL circuit laws. 13. Designing and AC, Transient analysis of series and parallel RC, LC and RLC circuits . 14. Clipping , Clamping circuits & voltage multipliers with diodes. 15. Rectifiers with C, LC & CLC filters - half wave, full wave & Bridge. 16. Network Theorem - Superposition, Thevenin, Norton and Maximum Power Transfer 17. Phasor Analysis of series and parallel RC,LC and RLC circuits. 18. BJT and JFET Characteristics. 19. Transistor as an Amplifier. 20. Digital Combinational Logic gates. 21. Memory Elements.	

Second Year Course Contents

Subject Code	Analog Electronics	Credits: 3(3-0-0)	
EC201		Total hours:45	
Course Objectives	To develop the skill of analysis and design of blocks like Current Mirrors, Amplifiers, Diff MOSFET. To understand the concept of Negative and P	Ferential Amplifiers using BJT and	
Module 1		Hours 13	
Load line and Bias stal transformer coupled mult MOSFET Amplifier: Ana	Amplifiers: Introduction, Input and output impedance, Operating point analysis and design, Biasing scheme coad line and Bias stability, Analyses and design of CC, CE and CB configurations; RC coupled a ransformer coupled multistage Amplifiers; Thermal runaway in BJT Amplifiers. MOSFET Amplifier: Analysis and Design of Common Source, Common Drain and Common Gate Amplifion onfigurations – Thermal runaway in MOS Amplifiers.		
Module2		Hours 12	
	ull stage, Heat dissipation, Class A, B, AB, C, fficiency and Relative performance.	D, E& S Power Amplifiers - Harmonic	
Module 3		Hours 08	
BJT/MOSFET Model, M	Amplifiers: Hybrid π equivalent circuit iller effect. es of Noise, Noise representation, Noise in diffe		
Module 4	•	Hours 12	
Topologies - Voltage shugain – Stability of feedbprinciples of Oscillators,Reference books1. A2. B	Introduction to Negative feedback – Basic int, Voltage series, Current series and Current ack circuit, Nyquist stability criterion, Phase Analysis of RC Phase Shift, Wein bridge, Colp S Sedra& K C Smith, "Microelectronic Circuit ehzadRazavi, "Fundamentals of Microelectroni cobert Boylestad & Louis Nashelsky," Electror 1995.	ashunt Feedback Configurations; Loop and Gain margins; Oscillators : Basic itts, Hartley and Crystal Oscillators. ts", Oxford University Press.1998. cs", John Wiley & Sons .2008.	

Subject Code	Signals And Sys	tems Credits: 4 (3-1-0)	
EC202		Total hours: 56	
Course Objecti	continuous and discrete time signed developing and describing general describing the signals and system	f the course is to introduce the undergraduate students to concepts of discrete time signal and systems. In this regards emphasis is on describing general principle. We will develop mathematical tolls for ignals and systems. After attending this course they are expected to ign any signal processing system with ease.	
Module 1		6 hours	
	introduction to the course, Basic conception discrete time systems, basic systems prop	ots of signals and systems, signal transformations, perties.	
Module2		8 hours	
of LTI systems, Module 3	system described by differential and diff	nuous – time LTI systems, convolution, properties Ference equations. 10 hours ion of continuous time periodic signals and their	
properties, repressions, filterin		nals and their properties, Fourier series and LTI	
Module 4	<u>o</u>	14 hours	
transforms, con-		nd discrete time Fourier transform, properties of lity, time-frequency characterization, sampling.	
Module 5		14 hours	
-	of LTI system using Laplace and $z - t \bar{t}$	n, region of convergence, properties, analysis and ransform, realization of LTI system using Laplace	
	 Oppenheim, Willisky and Hamid Nawab, "Signals and Systems", Prentice Hall, 2nd ed. S. Haykin and B. V. Veen, et al, "Signals and Systems", Willey India Edition, 2nd ed. 		

Subject Code	Network Theory and Synthesi	S Credits: 4(3-1-0)
EC203		Total hours: 56
Course Objectives	 To expose the students to the basic con analysis in Time and Frequency domain To Introduce the techniques of Network 	•
Module 1		Hours 16
Conventions for conventions, Lo	Evaluation of Fourier Coefficients, Waveforms Symmetry describing the Networks: Network equations, Num pop variable analysis and Node variable analysis, Dual ular solutions, Time Constants, Initial conditions in	ber of network Equations, Source lity. First-order differential equations:
Module2]	Hours 14
	Ramp, Impulse Functions, Waveform Synthesis, Imped estrictions on Pole and Zero Locations for driving point	
	ers: Short-Circuit Admittance and Open-Circuit Impe , Relationship between Parameter sets. Sinusoidal St r Diagrams.	
Module 4		Hours 14
Real Functions. Sy functions, Synthesis function, Synthesis Admittance function	Elements of Realizability theory, Causality and Stabil nthesis of One-port Network with two kinds of Elements of L-C Driving point Immittance functions, Properties of R-C Driving point Impedance function, Properties n, Synthesis of R-L Impedance and R-C Admittance func- nd Cauer forms of RC and RL networks.	nts- Properties of L-C Immittance s of R-C Driving point Impedance of R-L Impedance and R-C
Reference books	 Van Valkenberg, "Network Analysis", Prenti Franklin F. Kuo, "Network Analysis and Syn Roy Choudhary, "Network and Systems", Wi 	thesis", Wiley International Edition

Subject Code	Electromagnetic Theory	Credits: 4(3-1-0)
EC204		Total hours: 56
Course Objectives	To impart the knowledge of electric, magnet them as well as time varying field. To develo & transmission lines.	
Module 1		18 hours
Potential gradient, E current density in a	lagnetic field: Electrical scalar potential, Differ nergy stored in electric field, Boundary condition conductor, Equation of continuity; Energy stored c boundary conditions, Vector Magnetic potential,	ons Capacitance, Steady current and in magnetic fields, Magnetic dipole-
Module 2		14 hours
space condition, Uni and Laplace equation Module 3		14 hours
characteristics, Linea propagation in condu	een parallel planes, Transverse electric and t r Elliptical and Circular Polarization, Wave equa ctors and dielectric, Depth of penetration, Reflect ric, Poynting Vector and flow of power.	ations for conducting medium, Wave
Module 4		10 hours
	nd Waveguides: Transmission line equations, trans c impedance; Theory of waveguide transmission,	-
ReferencebooksE	 W.H. Hayt, "Engineering Electromagnetics" dition David J. Griffithe, "Introduction to Electrod 	

Subject Code	Mathematics-III	Credits: 3
MA 200		Total hours 42
Course	Mathematics-I & II	
Prerequisites		
Objectives	This Mathematics course provides requisite and relevant bac	ckground necessary to
	understand the other important engineering mathematics courses	s offered for Engineers
	and Scientists. Important topics of applied mathematics, nam	nely complex analysis,
	power series solutions and partial differential equations.	
Course Outcome	At the end of this course the students are expected to learn,	
	Understand the statement of Cauchy's Theorem and compute	the Taylor and Laurent
	expansions of simple functions, determining the nature of	the singularities and
	calculating residues, series solution of the differential equations	and solution of partial
	differential equations.	
Module 1	Complex Analysis	18 hours
Complex Numbers	, geometric representation, powers and roots of complex numbers,	Functions of a complex
variable, Analytic	functions, Cauchy-Riemann equations; elementary functions, Co	onformal mapping (for
linear transformation	on); Contours and contour integration, Cauchy's theorem, Cauchy i	ntegral formula; Power
Series and prop	perties, Taylor series, Laurrent series, Zeros, singularit	ies, poles, essential
singularities, Resid	ue theorem, Evaluation of real integrals and improper integrals.	
Module 2	Power Series Solutions	9 hours
Differential Equation	ons Power Series Method - application to Legendre equation, 1	Legendre Polynomials,
Frobenious Metho	d, Bessel equation, Properties of Bessel functions, Sturm-Liouv	ville BVPs, Orthogonal
functions.		
Module 3	Partial Differential Equations	15 hours
Introduction to Pl	DE, basic concepts, second order PDE and classification, D'A	lemberts formula and
Duhamel's princip	le for one dimensional wave equation, Laplace's and Poisson'	s equations, Laplace,
Wave, and Heat eq	uations using separation of variables. Vibration of a circular mem	brane. Heat equation in
the half space.		
Texts/References	1. E. Kreyszig, Advanced engineering mathematics Wiley (1999).	(8th Edition), John
	2. W. E. Boyce and R. DiPrima, Elementary Different	ential Equations (8th
	Edition), John Wiley (2005).	
	3. R. V. Churchill and J. W. Brown, Complex varia	bles and applications
	(7th Edition), McGraw-Hill (2003).	

Subject Code	Analog Electronics Laboratory	Credits: 2(0-0-3)	
EC205		Total hours: 45	
Course Objectives	To provide experience on design, testing, and and	alysis of basic Analog Electronic	
	Circuits.		
List of Experiments			
Experiment No. 1			
Logic gates using Diod	ec.		
Experiment No. 2			
Diode as a clipper,			
Experiment No. 3			
Clipping and Clamping	Circuit		
Experiment No. 4	choun		
Full wave rectifier			
Experiment No. 5			
Regulated and Unregul	ated Power supply		
Experiment No. 6			
RC Circuit Analysis			
Experiment No. 7			
Biasing Circuits:			
Experiment No. 8			
Effect of Negative feed	back		
Experiment No. 9	-		
RC couple amplifier us	RC couple amplifier using BJT		
Experiment No. 10			
Complementary Push-F	Pull amplifier using BJT and OP-Amp		

Subject Code	Signals and Systems	Credits: 2 (0-0-3)
EC206	Laboratory	Total hours: 45
Course Objectives	This Laboratory course is offered in conjunction Systems". The aim of this course is to introduce ideas about signals and systems representation environment.	students to simulate the theoretical
List of Experimen	ts	
-	Introduction to Signals and Matlab Software: Define the son of Signals. Plot these signals with requisite labels.	ignals with certain characteristics
Experiment No. 2	Convolution Operation and response to arbitrary signal.	
Experiment No. 3	Demonstration and verifying the properties of Systems.	
Experiment No. 4	Natural and Forced Response of Second order Systems.	
Experiment No. 5	Fourier Series analysis of periodic signals.	
Experiment No. 6	Fourier Transform analysis of aperiodic signals.	
Experiment No. 7	Time Frequency Analysis of First and Second order syste	ms and Bode plot.
Experiment No. 8	Sampling of continuous time signals and Aliasing	
Experiment No. 9	Design of Frequency Selectivity filter with arbitrary cent	ral frequency.
Experiment No. 1 Frequency Charact	0 Pole – Zero Analysis of Second order system for continueristics.	ous time signals. Time and
Experiment No. 1	1 Analysis of Second order system for discrete time signa	ls.
Experiment No. 1	2 Feed Back System and their Characteristics.	
Reference books	1. Oppenheim, Willisky and Hamid Nawab, "Signals a 2. S. Haykin and B. V. Veen, et al, "Signals and Syste	

Subject Code	Digital Electronics	Credits: 3-0-0 (3)	
EC251		Total hours:45	
Course Objectives	5 1	dent will be able to Design, Analyze and	
Module 1		Hours 12	
Method, Boolean	nd Boolean Algebra, Simplification of functions us Function Implementation, Minimization and ital Circuits, Hazards in Combinational Circuits, H	Combinational Design, Examples of	
Module2		Hours 12	
Clocked Flip-Flop, Counters: Design Registers, Shift Re	quential circuits: Latches and Flip-Flops (RS, JH Flip-Flop conversion, Practical Clocking aspects of Single Mode and Multimode Counters, Ripple gister Counters and Random Sequence Generators.	concerning Flip-Flops. e Counters, Synchronous Counters, Shift	
Module 3		Hours 12	
and Design of Sy Design of the Next Cycles.	is of Sequential Circuits: General model of Sequenchronous Sequential Circuits; Finite Sate Mach State Decoder. Asynchronous Sequential Logic: A spects: Timing and Triggering considerations in thock skew.	nine, State Reduction, Minimization and Analysis and Design, Race conditions and	
Module 4		Hours 9	
Characteristics, Tri	ndamentals of ECL, TTL, CMOS Logic family, 7 state Logic, Wired Logic and Bus Oriented struct verter, Rise and fall time in MOS and CMOS gate	ture, Practical Aspects, MOS gates, MOS	
Reference books	 Wakerly J F, "Digital Design: Principle 2002 Mano M. M., "Digital Logic Design", Pr 	es and Practices", Prentice-Hall, 2nd Ed., rentice Hall 1993.	

Subject Code	Communication Engineering Credits: 4 (3-1-0) Total hours: 56	
EC 252		
Course Objectives	To enable students to analyze and design analog	og communication systems and have
	overview of how modern communication syste	
Module 1	1	2 Hours
Elements of electronic	communication systems, Need for modulation, cha	annel, noise, frequency spectrum,
time and frequency dor	nains, Review of Fourier analysis, Review of Rand	dom Processes : Stationary
	ral Density, Power and Bandwidth Calculations, E	
Module2	1	1 Hours
Amplitude Modulatio	n (AM), DSB-SC, SSB, VSB and ISB transmissio	ons, modulators, mathematical
-	ndex, frequency spectrum, power requirement of th	
Module 3	1	3 Hours
Angle Modulation:Fre	equency Modulation (FM), mathematical Analysis,	, modulation index, frequency
spectrum, power requir	ement of FM, narrowband & wideband FM, noise	triangle in FM, pre-emphasis and
de-emphasis techniques	s, phase modulation, power contents of the carrier	& the sidebands in angle
modulation, noise reduble between AM & FM	ction characteristics of angle modulation, generation	on of FM signals, comparison
Module 4	1	2 Hours
Radio Receivers: Basi	c receiver (TRF), Super heterodyne receiver, perfo	ormance parameters for receiver
	ctivity, fidelity, image frequency rejection etc., Al	*
	e-spotting effect, Performance Analysis of Amplitu	
-	e : Signal to Noise Ratio (SNR) analysis.	C
Module 5		8 Hours
Television Systems: O	perating principles, composite video signal, blank	ing & synchronizing pulses. block
•	nitter & receiver, Color transmission & reception p	
CCIR-B, NTSC, PAL,		1
,		

Reference	1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.
books	2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson
	Education, 2002.
	3. Taub H. and Schilling D.L., "Principles of Communication Systems", Tata McGraw
	Hill, 2001.
	4. R.R Gulati, "Monochrome and Colour Television", New Age International, 2007.
	5. H. Stark, J. W. Woods, Probability and Random Processes with Applications to Signal
	Processing, Prentice-Hall, 2003.
	6. Peyton Z. Peebles Jr., Probability, Random Variables and Random Signal Principles,
	4/e, Tata McGraw-Hill, New Delhi, 2002.

Subject Code	Devices	Credits: 3(3-1-0)
EC253		Total hours: 56
Course Objectives	To understand the fundamental principles of devices. To understand and describe the impact of sol	lid-state device capabilities and
Module 1:	limitation's on electronic circuit performance	e . Hours 14
The Diamond lattice; Cry Energy Bands and Charg Equilibrium and wave pa semiconductor - Bond an Excess Carriers in Semio Diffusion and Drift of Ca Steady State Carrier Inject Module2		er concentration, Thermal d Band models; Extrinsic on. Indirect Semiconductors, tion, The Continuity Equation, Hours 13
Characteristics, Small-sig Junctions, Metal -Semico Other PN Junctions: Pho	ructure, Equilibrium Picture, Band Diagram, DC gnal Equivalent Circuit, Switching Characteristic onductor Junctions, Schottky Barriers, Rectifying todiodes, Solar cells, Photo detectors, Noise and	es; Zener Breakdown; Graded g contacts, Ohmic Contacts.
Characteristics, Small-sig Junctions, Metal -Semico Other PN Junctions: Pho Light-Emitting Diode, I	gnal Equivalent Circuit, Switching Characteristic onductor Junctions, Schottky Barriers, Rectifying	es; Zener Breakdown; Graded g contacts, Ohmic Contacts. Bandwidth of Photo detectors,
Characteristics, Small-sig Junctions, Metal -Semico Other PN Junctions: Pho	gnal Equivalent Circuit, Switching Characteristic onductor Junctions, Schottky Barriers, Rectifying todiodes, Solar cells, Photo detectors, Noise and	es; Zener Breakdown; Graded g contacts, Ohmic Contacts.
Characteristics, Small-sig Junctions, Metal -Semico Other PN Junctions: Pho Light-Emitting Diode, I Module 3 Bipolar Junction Transist	gnal Equivalent Circuit, Switching Characteristic onductor Junctions, Schottky Barriers, Rectifying todiodes, Solar cells, Photo detectors, Noise and	es; Zener Breakdown; Graded g contacts, Ohmic Contacts. Bandwidth of Photo detectors, Hours 13 a, Transistor action and
Characteristics, Small-sig Junctions, Metal -Semico Other PN Junctions: Pho Light-Emitting Diode, I Module 3 Bipolar Junction Transist Amplification; Common	gnal Equivalent Circuit, Switching Characteristic onductor Junctions, Schottky Barriers, Rectifying todiodes, Solar cells, Photo detectors, Noise and Lasers, Semiconductor Lasers.	es; Zener Breakdown; Graded g contacts, Ohmic Contacts. Bandwidth of Photo detectors, Hours 13 a, Transistor action and

Subject	Code	Economics	Credits: 3(3-0-0)
HS 250			Total hours: 45
Course	Outcome	The fundamental objective of this course aims at providing a com the broad area of economics and its scenario. The course aspires the light of economic decision makings, and facilitates tohave grip	to bring the students into
Module	1	Introduction to Economics	2 hours
Construe asset alle		, Optimization and Equilibrium in market demand and supply, Com	parative statistics and
Module	2	Utility, Choice, Budget Constraint and Consumer Preference	6 hours
and imp	act of Taxes,	structing a Utility Function, Budget constraint in case of two good Subsidies, and Rationing. Indifference curve, Marginal Rate of Subndifference curve from utility functions, Marginal Utility vs MRS	v v
Module	3	Demand, Revealed Preference & Slutsky Equation	6 hours
Douglas	Preferences,	Goods, Income Offer Curves and Engel Curves, Perfect Substitute The Idea of Revealed Preference, From Revealed Preference stitution Effect, The Income Effect, Rate of Change and change of I	to reference, Recovering
Module	4	Consumer Surplus, Market Demand & Equilibrium	6 hours
to Marke and Den	et Demand, T nand, Market	e Good, Constructing Utility from DemandFrom, Change inConsun he Inverse Demand Function, The Extensive and the Intensive Mars Supply, Market equilibrium, Inverse Demand and Supply Curves	gin, Elasticity, Elasticity
Module		Technology and Profit Maximization	3 hours
Substitu The Org	tion, Diminis ganization of	Describing Technological Constraints, Properties of Technology, hing Technical Rate of Substitution, Returns to Scale, Profits, Th Firms, Short-Run Profit Maximization, Profit Maximization i turns to Scale	e Organization of Firms,
Module	6	National Income Accounting	2 hours
National	Income and	Related concepts, Nominal or real GDP, Methods of measuring NI.	1
Module	7	Determinants of Equilibrium Output and IS – LM Model	8 hours
	Budget and Fi	nd Equilibrium output, Consumption function and aggregate de ull employment, Asset and Goods Market, Equilibrium and adjustm	-
Module		Money and Fiscal policy and International Linkages	8 hours
Exchang exchang	ge rate, Balan e rates	policy, crowding out, composition of output and policy mix, I nce of Trade and capital mobility, Mundell-Fleming model, Cap	pital Mobility and fixed
Module		Aggregate Demand, Supply and Growth	4 hours
00 0		Id policies, Aggregate Supply, Fiscal and monetary policy under Alt ntity theory and neutrality of Money.	ternative supply
Text Books	Koutsoyian Dornbusch a	R.: Intermediate Microeconomics, W.W. Norton & Co., New work his, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macm and Stanley Fisher: Macroeconomics, McGraw Hill rt J. "Macroeconomics, New York, John Wiley	

Subject Code	Mathematics - I	IV (Probability,	Credits: 3 (3-0-0)
MA 250	Statistics And Ra	Statistics And Random Processes)	
Course	This course provides mathem	atical foundation to describe	phenomenon occurring
Objectives	with chance. Students will be experiment with probabilistic r	•	draw inferences about
Module 1		6 hours	
	Probability: Relative frequency and ents; Combinatorics; Joint and Cond n.		
Module2		15 hours	
Random Varia conditional ex variables; Son Poisson distrib Random vector variables and	andom of Variables; Conditional an ables; Expected Value: Mean, Varian pectation; covariance and correlation ne special distributions: Uniform, Coutions; Multivariate Gaussian distribu- r: mean vector, covariance matrix an Schwarz Inequality; Moment-grounds and approximations	nce and moments of random v n; independent, uncorrelated Gaussian and Rayleigh distribution; nd properties; Vector-space re	ariable; Joint moments, and orthogonal random butions; Binomial, and presentation of random
Module 3	Bounds and approximations	6 hours	
*	Random Variables :Almost sure (a n mean square sense; convergence ns.		•
	ements of estimation theory: linea	r minimum mean-square er	ror and Orthogonality
Module 5	timation; Parameter Estimation.	12 hours	
Stationarity representation process; Spect Examples of	ress and ensemble; Mean, autoco processes; Autocorrelation and of a real WSS process and analy ral factorization theorem; random processes: white noise pro- ss, Markov Process.	cross-correlation function; ysis; Linear time-invariant sy	Ergodicity; Spectral stem with input WSS
Reference1booksP2	. Stark, J W. Woods, "Probability and Random Processes with Applications to Sign ressing", Third Edition, Pearson Education A Papoulis, S. U. Pillai, "Probability, Random Variables and Stochastic Processes		
F	Fourth Edition, Tata Mc. Graw-Hill		

Subject Code	Digital Electronics Laboratory	Credits: 2(0-0-3)	
EC254		Total hours: 45	
Course Objectives	To provide experience on design, testing, and anal	ysis of digital electronic circuits.	
List of Experiments			
Experiment No. 1			
Realization of logic ga	tes using diodes and transistors.		
Experiment No. 2			
	es, Measurement of Sinking and Sourcing currents etc	c. of TTL gates.	
Experiment No. 3			
	tes using universal gates.		
Experiment No. 4			
Code converters using	basic gates.		
Experiment No. 5			
Seven segment display	y.		
Experiment No. 6	ecoder and Encoder using basic gates.		
Experiment No. 7	ecoder and Encoder using basic gates.		
-	lesign using Decoders and Multiplexers.		
Experiment No. 8	issign using Decoders and Maniplexers.		
Half and Full adders a	and Subtractors.		
Experiment No. 9			
-	IC & BCD adder circuit.		
Experiment No. 10			
Flip-Flop Circuit (RS	Latch, JK, T, D and Master Slave) using basic gates.		
Experiment No. 11			
Asynchronous Counte	Asynchronous Counters.		
Experiment No. 12	·		
-	Johnson and Ring Counters.		
Experiment No. 13	Experiment No. 13		
Synchronous counters.			
Experiment No. 14			
A Sequence Generator	/Detector circuit.		

Subject Code	Communication Engineering	Credits: 2 (0-0-3)	
EC 255	Laboratory	Total hours: 45	
Course Objectives	To introduce student to the experiments which demonstrate the theory learnt in the		
	EC 253 Communication Engineering course so that they know how to design and		
	implement important components used in analog c	ommunication systems.	
List of Experiments			
Experiment No. 1			
Fourier Series and Wavefo	orm Synthesis – Analysis		
Experiment No. 2			
DSB AM System SC/FC	, with noise and without noise		
Experiment No. 3			
SSB AM System SC/FC, w	with noise and without noise		
Experiment No. 4			
FM Modulation- demodul	ation using Foster Seeley Discriminator		
Experiment No. 5			
Diode Detector circuit for	AM demodulation		
Experiment No. 6			
Study and measurement of modulation index, Study of Super-heterodyne receiver			
Experiment No. 7			
Sensitivity, Fidelity and Se	Sensitivity, Fidelity and Selectivity of AM Communication System.		
Experiment No. 8			
Basic Pulse modulation scheme : Generation and demodulation of PWM and PPM			
Experiment No. 9			
Phase locked loop characte	Phase locked loop characteristics and FM modulation and demodulation using PLL		
Experiment No. 10	Experiment No. 10		
Noise figure and Noise measurements for Amplifier, detector blocks in AM system			

Subject Code: VE200	Value Education	Credits: 1 (1-0- 0) Total hours: 14
Course Prerequisite	General Awareness of the Society/ Environment we live in	-
Course Objectives	It aims at Holistic Development	
Course Outcome	At the end, the students should be a complete human being in every	respect
Module 1	Ethics in Engineering	4 hours
•	alues and Ethics, History and Purposes, Utilitarianism, Duties, Rig y, Moral Autonomy, Obligations of Engineering Profession and moral	· · ·
Module 2	Engineer's Moral responsibility	3 hours
Engineer's Mo	ral responsibility for Safety and Human Rights, Risk Assessment and	Communication,
Product Liabili	ty, Engineers-Employers Liaison, Whistle-Blowing and Its Moral Jus	tification
Module 3	Computer Ethics	3 hours
Social Impact	of Computer, Gender-Issues and Privacy, Cyber Crime, Ethical use of	Software
Module 4	Intellectual property	4 hours
Definition, Ty	pes, Rights and Functions, Patents, Trademark, Grant of Patent in I	ndia, Surrender and
Revocation of	Patents, Compulsory Licensing, Acquisition of Inventions by the Go	overnment, Contents
of draft applica	tion of Patents, WTO	
Texts:	 Vinod V. Sople, Managing Intellectual Property: The Strategic Imperative PHI,2006 Govindarajan, Natarajan & Senthil Kumar, Engineering Ethics, PHI Robin Attfield, A Theory of Value and Obligation, London: Croomhelm, 1987 Jones and barlett, "Cyber Ethics: Morality and Law in Cyber Space" 	
Reference	Case Studies from Newspapers	

Third Year Course Contents

Subject Code ES300	ENVIRONMENTAL STUDIES	Credits: 3 (3-0-0) Total hours: 44	
Course Objective	Understanding environment, its constituents, importance f human developmental activities vs environment, climate international environment related developments, need for protection and conservation activities.	change, national and	
Module 1		Hours : 2	
Multidisciplin awareness.	ary nature of environmental studies: Definition, scope and impor	tance, Need for public	
Module 2		Hours : 8	
resources : Us and their effect ground water, Use and explo Food resource modern agric resources : Gu energy source	Renewable and non-renewable Natural resources : Natural resources and associated problems; Forest resources : Use and over-exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forest and tribal people; Water resources : Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems; Mineral resources : Use and exploitation, environmental effects of extracting and using mineral resources, case studies; Food resources : World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies; Energy resources : Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, Case studies; Land resources : Land as a resource, land degradation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources;		
Module 3		Hours : 10	
and decompose ecological py Following ecological	Concept of an ecosystem, Structure and function of an ecosystem, ers, Energy flow in the ecosystem, Ecological succession, Food ramids, Introduction, types, characteristic features, structure osystem, Forest ecosystem, Grassland ecosystem, Desert onds, streams, lakes, rivers, oceans, estuaries).	chains, food webs and and function of the	
Module 4		Hours : 12	
diversity, Bio productive use levels, India a loss, poaching Conservation of India-vario	and its conservation: Introduction – Definition : genetic, sp o geographical classification of India, Value of biodiversity e, social, ethical, aesthetic and option values, Biodiversity at glo s a mega-diversity nation, Hot-sports of biodiversity, Threats to g of wildlife, man-wildlife conflicts, Endangered and ender of biodiversity : In-situ and Ex-situ conservation of biodiversity us festivals related to Environment, Tradition of community c tanks, sacred mountains, sacred rivers.	y : consumptive use, bal, National and local o biodiversity : habitat mic species of India, y, Eco-cultural heritage	

Module 5		Hours : 12			
National and	d International Environment related developments				
Environment	al ethics : Issues and possible solutions, Climate change, globa	al warming, acid rain,			
ozone layer	depletion, nuclear, accidents and holocaust, Environment related A	cts, Issues involved in			
enforcement	of environmental legislation, Public awareness, Wasteland recla	mation, Consumerism			
and waste p	roducts, UN Frame Convention Climate Change, Kyoto protoc	ol, concept of carbon			
credits, lates	st CoP meet Agenda; Filed Work(equal to 5 lecture hours): Vi	isit to a local area to			
document e	nvironmental assets river/forest/grassland/hill/mountain/sacred	groves/sacred forests,			
Visit to a lo	cal polluted site-Urban/Rural/Industrial/Agricultural, Study of co	ommon plants, insects,			
birds, Study	of simple ecosystems-pond, river, hill slopes, etc.				
	1. Textbook for Environmental Studies For Undergraduate Cours	es of all Branches of			
	Higher Education (online book -UGC Website), Erach Bharucha,	University Grants			
	Commission, India.				
	2. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science a	nd Environment,			
	Edi:1st,1997				
	ISBN-13 9788186906200; ISBN-10 8186906207				
	3. R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005.				
Reference	4. Benny Joseph, Environmental Science and Engineering, Tata N	McGraw Hill, 2006.			
books	5 English Diagonales Trend Deals for English manager (1996) in Data 1				
	5. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press,				
	2005.				
	6. Masters, Gilbert M., Introduction to Environmental Engineerir	ng and Sciences.			
	Prentice Hall India, 1991				

Subject Code	Data Structures & Algorithm	Credits: 4 (3-1-0)	
EC 301	(DSA)	Total hours: 56	
Course Objectives	Following this course, students will be able to: 1) Assess how the choice of data structures and algorithm design methods impacts the performance of programs. 2) Choose the appropriate data structure and algorithm design method for a specified application. 3) Solve problems using data structures such as linear lists, stacks, queues, hash tables, binary trees, heaps, tournament trees, binary search trees, and graphs and writing programs for these solutions. 4) Solve problems using algorithm design methods such as the greedy method, divide and conquer, dynamic programming, backtracking, branch and bound and writing programs for these solutions.		
Module 1		6 Hours	
Introduction to data Elementary Operatio	structures and objectives, basic concepts Arrays: one dins.	imensional, multi-dimensional,	
Module 2		8 Hours	
-	on, elementary operations and applications such as infix ag, Queues: Simple queue, circular queue, dequeue		
Module 3		10 Hours	
Linked lists: Linear polynomial manipula	, circular and doubly linked lists, elementary operati ation.	ons and applications such as	
Module 4		12 Hours	
•	presentation, tree traversal, complete binary tree, heap, bi VL tree and 2-3 tree and other operations and application		
Module 5		20 Hours	
analysis and design	on, adjacency list, graph traversal, path matrix, spanning techniques, algorithms on sorting: selection sort, bubbl linear and binary search.	-	
	 (5) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, " Addison Wesley. 2003 (6) Horowitz and Sahni , "Data Structures and algorithms (7) Michael T. Goodrich, Roberto Tamassia, "Data Stru- 4thEdition, John Wiley & Sons, Inc. 	s using C/C++", 2003	

Subject Code		Control S	ystems	Credits: 4 (3-1-0)
EC 302				Total hours: 56
Course Object	ctives		•	ons and also to be competent in and analyze their time and
Module 1			I	Hours 12
Physical syste	ems, Mechan	cal and Electrical systems,	Transfer functions,	ems, Mathematical modelling of Block diagrams, Block diagram characteristics of closed loop
Module 2			I	Hours 12
response of s	ystem, Resp	•	controllers, Perforr	addition of poles and zeroes on nance Indices. Control system
Module 3			I	Hours 10
Conceptof sta	•	•	Criterion, Relative	Hours 10 e stability analysis, Concept of poles and zeroes on root locus.
Conceptof sta	•	•	Criterion, Relative margin, Addition of	e stability analysis, Concept of
Conceptof sta Root Locus an Module 4	nd Constructi	on, Gain margin and Phase r s: Frequency response speci	Criterion, Relative margin, Addition of fications, Frequenc	e stability analysis, Concept of poles and zeroes on root locus.
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, Pe	nd Constructi	on, Gain margin and Phase r s: Frequency response speci	Criterion, Relative margin, Addition of fications, Frequenc	e stability analysis, Concept of poles and zeroes on root locus. Hours 12 y and Time domain correlation,
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, Po Functions. Module 5 Compensation Concept of Sta	nd Construction main Analys olar plot, N n Techniques ate, State Va	s: Frequency response speci rquist criterion, Closed loc : Design of Lead, Lag, L	Criterion, Relative margin, Addition of fications, Frequenc op frequency respo ead-Lag Compensa- te representation of	e stability analysis, Concept of poles and zeroes on root locus. Hours 12 y and Time domain correlation, onse from Open loop Transfer Hours 10 ation. State variable Analysis: Continuous-time systems, State
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, Po Functions. Module 5 Compensation Concept of Sta	nd Construction main Analys olar plot, N n Techniques ate, State Va ation of State	s: Frequency response speci quist criterion, Closed loc : Design of Lead, Lag, L iables and State Model, Star equations, Concept of Contr	Criterion, Relative margin, Addition of fications, Frequence op frequency respo Lead-Lag Compensa- te representation of rollability and Obse	e stability analysis, Concept of poles and zeroes on root locus. Hours 12 y and Time domain correlation, onse from Open loop Transfer Hours 10 ation. State variable Analysis: Continuous-time systems, State
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, Pa Functions. Module 5 Compensation Concept of Sta equation, Solu Reference	nd Construction main Analys olar plot, N n Techniques ate, State Va ate, State Va ttion of State 1. J. Nagn Edition.	s: Frequency response speci quist criterion, Closed loc : Design of Lead, Lag, L iables and State Model, Star equations, Concept of Contr	Criterion, Relative margin, Addition of fications, Frequenc op frequency respo ead-Lag Compensa- te representation of rollability and Obse	e stability analysis, Concept of poles and zeroes on root locus. Hours 12 y and Time domain correlation, onse from Open loop Transfer Hours 10 ation. State variable Analysis: Continuous-time systems, State ervability. ", New Age International, 4th

Subject Code	Digital Signal Processing	Credits: 4 (3-1-0)
EC 303		Total hours: 56
Course Objectives	Students will be exposed to specification	ons and design of digital signal
	processing algorithms. They will learn diff	č i i i
	different fast algorithms for filtering and ot	her tasks.
Module 1		8 hours
Review of signals an	nd systems: Motivation and introduction to the cou	urse, Basic concepts of signals and
•	ction of the systems and filtering, \mathbf{Z} – transform a	
	ex convolution theorem, system described by	difference equations, Frequency
-	tems and system functions.	
Module2		15 hours
Structures for Disc	crete Time systems: Representation of system	described by Linear Constant
	nce Equations, digital filter structures, relation be	2
	mum phase systems, Lattice Structures, Linear S	
Phase.		-
Module 3		16 hours
Filter Design Tech	nniques: Design of IIR filters and different tr	ansformations IIR filter design
•	er by windowing, FIR filter by the Kaiser window	
FIR Filters.		, and optimizing approximation of
Module 4		9 hours
The Discrete Fourie	r Transform and Computational Aspects: Orthogon	al transform, discrete Fourier
	elation between Fourier transform and DFT, Circul	
	Γ, Linear Convolution using the DFT, Fast compute	
Module 5		8 hours
DSP Algorithm imp	lementation and Finite Worldlength Effect: Numb	er representation and overflow,
U 1	s and Errors, fixed and floating point numbers, coe	
	alysis, Low sensitivity digital filters, Limit Cycle o	-
Reference books		
	 Discrete time Signal Processing , 2nd Ed. – A. Digital Signal Processing, 3rd Ed S. K. Mitra 	

Subject Code	Microprocessors and	Credits: 3(3-0-0)	
EC304	Microcontrollers	Total hours: 45	
Course Objectives	 To introduce the student with knowledge about architecture, interfacing and programming with 8086 microprocessors and 8051 microcontrollers. Also to give a brief introduction to ARM 7 and ARM 9 micro controllers. After studying this subject, the student should be able to design Microprocessor/Microcontroller based system. 		
Module 1		Hours 12	
	Microprocessors, Basics of computer archite overview, 8085 Architecture, Assembly Langu		
Module2		Hours 12	
Microcomputer System, P ALP, Strings, Procedures,	rogram development steps, Implementing Stand Macros.	dard Program Structure in 8086	
Module 3		Hours 11	
Programmable Timer/Co	put Modes and Interfacing, Interrupts, Hardwa unter, 8255 Programmable Peripheral Interf er, 8279 Programmable Keyboard/ Display Inte	ace, 8259 Priority Interrupt	
Module 4		Hours 10	
Intel 8051 Microcontroller: Architecture, Memory Space, Data Types and Directives, Register Banks and Stack, Assembly Language Programming, Introduction to ARM processors –features of ARM 7 and 9 processors.			
Reference books 1. 2. 3.	Ramesh Gaonkar, "Microprocessor Arc Applications with 8085", Penram Internation	hitecture, Programming and nal Publishing, Fifth edition zidi and Rolin D Mckinlay, "	

Subject Code	Digital Signal Processing	Credits: 2 (0-0-3)
EC 305	Laboratory	Total hours: 45
Course Objectives	This Laboratory course is offered in conjunction	e
	Signal Processing". The aim of this course is to digital signal processing systems in a simulation	0 1
List of Experiment	s	
Experiment No. 1S	imulation of discrete time system	
Experiment No. 2	Discrete Time Fourier Transform	
Experiment No. 3	Fransfer Function and Frequency Response and Stability	y Test.
Experiment No. 4R	ealization of FIR and IIR transfer function	
Experiment No. 5	IR Filter Design	
Experiment No. 6	FIR Filter Design	
Experiment No. 70	Optimal FIR Filter Design	
Experiment No. 8S	imulation of FIR and IIR Filters	
Experiment No. 9	Lattice Filter implementation and Stability Test.	
Experiment No. 10 Oscillation.	Analysis of Finite World Length Effect – Coefficient Q	Quantization, Limit Cycle
Experiment No. 11	Implementation of Signal Processing tasks on DSP Pro	cessor.
Reference books	 Discrete time Signal Processing , 2nd Ed. – A. V. O Digital Signal Processing Laboratory, Tata Mc Graw 	

Subject Code	Microprocessor and	Credits: 2(0-0-3)
EC306	Microcontrollers Laboratory	Total hours: 45
Course Objectives	To give hands on experience on 8085/8086 and 805	1 programming
List of Experiments		
Experiment No. 1		
-	iliarization and basic experiments	
Experiment No. 2		
Programming exercise	: sorting ,searching and string	
Experiment No. 3		
Interfacing with A/D as	nd D/A converters	
Experiment No. 4		
Interfacing with steppe	r motors	
Experiment No. 5		
keyboard interfacing to	8086	
Experiment No. 6		
8255 interface to 8086		
Experiment No. 7		
Assembly language pro	ogramming of 8051	
Experiment No. 8		
Timer programming of	8051, using interrupts	
Experiment No. 9		
LCD interfacing to 805	51	
Experiment No. 10		
Mini-Project		

Subject Code		Wireless Communication	Credits: 3 (3-0-0)
EC 351			Total hours: 45
Course Obje	ctives	To enable students to understand concept cellular systems of mobile communication an	6 6
Module 1			13 Hours
Model, Practic Coverage Are Parameters of Spread and Co	cal Link Buc a. Small Sca Mobile Mul pherence Tir	a Large Scale Path Loss: Free Space Propagation Iget Analysis : Log Normal Shadowing, Deterr Ile Fading and Multipath : Impulse Response M Itipath Channels: Time Dispersion Parameters, ne, Types of Small Scale Fading : Flat Fading, I Level Crossing Rate and Average Fade Durat	nination of Percentage of Iodel of a Multipath Channel, Coherence Bandwidth, Doppler Frequency Selective Fading,
Module2			10 Hours
-		use, Cell Sectorization, Spectrum Efficiency, C king Analysis, Handovers – Techniques, Mode	
Combining, M	laximal Rati	ndependent Paths, Diversity System Model, Se io Combining, Equal Gain Combining, Momen mitter Diversity.	e e
Module 4			12 Hours
Direct Sequer Systems, The	nce Spread Processing ne Hopped	f Spread Spectrum Systems, Pseudo Noise S Spectrum Systems, Analysis of Direct Seque Gain and Anti Jamming Margin, Frequency H Spread Spectrum Systems, Synchronization of	ence Spread Spectrum Hopped Spread Spectrum
Reference books	Sec 2. An Ka 3. Sir Ha 4. An	eodore Rappaport,"Wireless Communications cond Edition, Pearson 2010. nurag Kumar, D Manjunath, Joy Kuri, "Wireles nufmann Publishers, 2008 non Haykin, Michael Moher,"Modern Wireless III, 2005 ndrea Goldsmith, "Wireless Communications", 05.	s Networking", Morgan s Communication", Prentice

Subject Code	Linear Integrated Circuits	Credits: 3(3-0-0)	
EC352		Total hours: 45	
Course Objectives	 To develop the skill of analysis and design of various circuits using operational Amplifiers To develop design skills to design various circuits using different data conversion Systems 		
Module 1	Но	urs 12	
Inverting Configuration Feedback, Feedback in	nd its Linear application: Ideal Op Amp circuit A , Differentiator, Integrator, The Negative resis Op Amp circuit, Loop gain. Circuits with Resis Yoltage-to-Current converters, Current Amplifie ers and Applications.	tance converter, Negative stive Feedback: Current-to-	
Module2	Но	urs 10	
), Emulation of Inductor using Op-Amps-R-C, Saler gher order filters, All-pass filter.	ours 11	
Nonlinear circuits: Voltage Comparators, Comparator Applications, Zero-crossing detector, Precision rectifiers, Schmitt trigger (Inverting &Non Inverting), Astable Multivibrator, Triangular wave generator. Non idealities of Op-Amps and their effects. NE555 Timer circuits: Internal architecture, Schmitt trigger, Astable Multivibrator, Monostable Multivibrator, Saw-Tooth Wave generator.			
Module 4	He	ours 12	
Digital to Analog (D/A) Converters: Types of D/A converters, Accuracy, Resolution and Conversion speed, Offset error, Gain error, Integral and Differential Nonlinearity. Analog to digital (A/D) converters: A/D conversion techniques and their Nonlinearity's. Phase Locked Loop: Block schematic and Analysis of PLL, Lock range and Capture range, Typical applications of PLL, Basic Principles of operation of VCO and timer (555) and their applications.			
Reference books 1. Set	ergio Franco, "Design with Operational Amplifiers a	4 · · · · · ·	

Subject Code	Digital Commun	ication Credits: 4 (3-1-0)
EC 353		Total hours: 56
Course Object	tives To enable students to understan communication systems (BER, S	d and compare the performance of different digital
	communication systems (BER, 5	SINK Etc).
Module 1		5 Hours
Review of Ran	dom Processes. Gaussian Process. Correlatio	n Functions and Power Spectra.
Module2		16 Hours
Noise, Probab		rs to Nosiy Input, Detection of Known Signals in Filter Receiver, Detection of Signal with Unknown um Likelihood Estimation. 17 Hours
	ding Techniques : PCM, Channel Noise and obust Quantization, DPCM, Delta Modulatio	Error probability, Quantization Noise and Signal to n 18 Hours
Modulation. N Keying. Digita Optimum dem	oncoherent Binary Modulation Techniques, l Modulation Tradeoffs. odulation of digital signals over bandlimited	on Techniques – PSK, FSK, Quadrature Amplitude Continuous Phase Modulation and Minimum Shift channels- Maximum likelihood sequence detection and Carrier Recovery for Digital modulation.
Reference books	Wiley, 1965.2. Proakis J.G., ``Digital Communication	"Principles of Communication Engineering", John ons", 4th Edition, McGraw Hill, 2000. tion Systems", Wiley India Private Ltd.

Subject Code	Communication Networks	Credits: 4 (3-1-0)
EC 354		Total hours: 56
Course Objectives	To enable students to understand layers different protocols and their use in network d	
Module 1		9 Hours
and Throughput in Pack	etworking and the Internet, The Network Edge, T et Switched Networks. Protocol Layers and The twork Applications, The Web and HTTP, Electrons.	ir Service Models. Application
Module2		13 Hours
Transport, UDP, Princip	port Layer Services, Multiplexing and Demultiples of Reliable Data Transfer, Connection Orien ΓCP Congestion Control.	0
Module 3		12 Hours
Routing in the Internet, Module 4	Broadcast and Multicast Routing.	13 Hours
Link Laver · Introductio	n and Services, Error Detection and Correction	Techniques Multiple Access
Protocols(ALOHA, Slot	ted ALOHA, CSMA/CA,CSMA/CD), Link Lay	er Addressing, Ethernet, Link
Module 5		9 Hours
Delay Guarantees, Qual	nce Measures and Engineering Issues, Stream Seity of Service (QoS) Objectives in Networks, Stream Seited Fair Queueing, RSVP.	
books Inter 2. Anur Anal 3. Dimi 4. Peter	ose/Ross, "Computer Networking: A Top-D net", Addison-Wesley, 3 rd Edition, 2005. rag Kumar, D Manjunath, Joy Kuri, "Com ytical Approach", Morgan Kauffman Publi itri Bertsekas, Robert Gallager, "Data Networks" rson, Davie, "Computer Networks : A Systems fmann Publishers.	imunication Networking : An ishers (An imprint of elsevier) ? (2 nd edition), Prentice Hall.

Subject Code	Linear Integrated Circuits	Credits: 3 (3-0-0)			
EC355	Laboratory Total hours:				
Course Objectives	To provide experience on design and analysis of	f various electronic			
	circuits using op-amp and other linear IC's				
List of Experiments					
Experiment No. 1					
Analysis of Inverting and n	on-Inverting amplifiers,				
Experiment No. 2					
Integrators and Differentiat	ors - AC analysis, Transient analysis				
Experiment No. 3					
Negative Resistance Realiz	ation				
Experiment No. 4					
Design and Implementation	n of Comparators, Zero crossing Detector				
Experiment No. 5					
Design of Inverting and Non-Inverting Schmitt trigger.					
Experiment No. 6					
Single op-amp second order LFF and HPF - Sallen-Key configuration.					
Experiment No. 7	Experiment No. 7				
Instrumentation amplifier-g	gain, CMRR & input impedance				
Experiment No. 8	Experiment No. 8				
Astable and Monostable Multivibrators using IC 555					
Experiment No. 9					
Design of regulated power	supply				
Experiment No. 10					
Mini-Project					

Subject Code	Digital Communication	Credits: 2 (0-0-3)	
EC 356	Laboratory	Total hours: 45	
Course Objectives	To introduce student to the experiments which demonstrate the theory learnt in the EC301 Digital Communication course so that they know how to design and implement important components used in Analog communication systems.		
List of Experiments			
Experiment No. 1			
Pulse code modulation	and demodulation : PCM, Adaptive PCM, Differen	ntial PCM	
Experiment No. 2			
Companded PCM A Law and mu law			
Experiment No. 3			
Delta modulation and demodulation, slope overload distortion and granular noise			
Experiment No. 4			
Manchester encoder and	d timing recovery		
Experiment No. 5			
Sampling And Reconst	ruction		
Experiment No. 6			
ASK Modulation and D	Demodulation		
Experiment No. 7			
FSK Modulation and d	emodulation: Hardware Implementation		
Experiment No. 8			
BPSK Modem: Simulat	tion and Error probability evaluation		
Experiment No. 9			
BPSK generation and detection: Hardware Implementation			
Experiment No. 10			
QPSK generation and detection.			

Fourth Year Course Contents

Subject Code	VLSI Circuit Design	Credits: 3(3-0-0)	
EC401		Total hours: 45	
Course Prerequisites	Analog Electronics and Digital Electronics		
Course Objectives	 To introduce the basic concepts of CMOS VLSI design, Simulation, Layout preparation. To introduce the various steps in IC fabrication, starting from the raw material to the finished product and to understand the physical principles involved in these processes. 		
Module 1		Hours 08	
A Historical Perspective: Issues in Digital Integrated Circuit Design, Quality Metrics of a Digital Design, Overview of VLSI Design flow. Performance of CMOS Inverter: The Static CMOS Inverter, Evaluating the Robustness of the CMOS Inverter, The Static Behaviour, The Dynamic Behaviour, Power, Energy, and Energy-Delay, Technology Scaling and its Impact on the Inverter Metrics,			
Module2		Hours 14	
Designing Combinational logic gates in CMOS: Static CMOS Design, Ratioed Logic, Pass-Transistor Logic, Dynamic CMOS Design, Designing Logic for Reduced Supply Voltages, Stick diagrams. Designing Sequential Logic Circuits: Static Latches and Registers, Dynamic Latches and Registers, Alternative Register Styles, An approach to optimize Sequential Circuits, Stick diagrams, layout editors (Magic/Micro Wind) and Circuit extraction.			
Module 3		Hours 13	
Cell Based Design: Standard cells and Data path cells, Logic and Arithmetic Circuits – Adders, Ripple carry, Carry look ahead Adder and other high Speed Adders; Array and Tree multipliers, Logarithmic and Barrel Shifters, 6-Transistor SRAM and DRAM cell design. Driving large Capacitive loads: Wire Delay models, Lumped, RC and Distributed RC models, Delay Calculation with Distributed Circuit Elements, Latch up and its prevention, Input and Output circuits, Electro –Static Discharge (ESD) protection, Power Supply Noise, Supply Voltage scaling and its effect on circuit parameters, Scaling and Short Channel effects.			
Module 4		Hours 10	
Wafer Processing: Wafer Preparation, Oxidation, Diffusion, Ion Implantation, Etching-Wet, Plasma and Ion etching; Epitaxial Growth - Molecular Beam Epitaxy; Optical lithography- Optical Exposures; Photoresists –Types of Photoresists, Positive and Negative PR.			
Reference books 1 2 3 4 4	 Second Edition, 2005 Sung –Mo Kang & Yusuf Leblebici, "CMOS Digital Integrated Circuits- Analysis & Designing", MGH, Third Ed., 2003 John P Uyemura, "Introduction to VLSI Circuits and Systems", Wiley India, 2006 		

Subject Code HS 400			-
Course Outcome	Develops the ability to understand and analyse the broad aspec financial dynamism	t of man	agement and its
Module 1	Principles of Accounting	5 h	ours
•••	, Assumptions, Classifications of Accounts- Journal, Cash Book	, Ledger,	Final Accounts-
-	count, Trading Account, P & L Account, Balance Sheet.		
Module 2	Financial Statement Analysis	5 h	ours
	ofit and Loss Account, Economic vs Accounting Profit, Changes ash flow statement.	in Finano	cial Position,
Module 3	Ratio Analysis	6 h	ours
	nalysis, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profital ative statement and Trend Analysis, Inter-firm Analysis.	oility Rat	io, DuPont
Module 4	Working Capital	6 h	ours
Concept of working	ng Capital, Operating and Cash conversion Cycle, Permanent an	d Variabl	e working
Capital, Balance v	vorking capital position and Issues.		
Module 5	Time Value of Money	5 h	ours
•	or money, Future value, Annuity, Perpetuity, Sinking fund factor recovery factor, Multiple period Compounding.	r, Present	value, Annuity,
Module 6	Capital Budgeting	8 h	ours
• •	f Investment decision, Net Present value, (NPV), Internal Rate o ty Index, Nature and Behavior of Cost, Breakeven point, multip		•
Module 7	Financial System	6 h	ours
Introduction to Ind	dian Financial System, Financial Institutions and Financial Mark	ets.	
Module 8	Industrial Engineering & Project Management	4 h	ours
Work Study, Time	e Study, Industrial Psychology, Project Management (PERT, CP	M)	
Text Books	I.M Pandey, <i>Financial Management</i> , 10 th edition, Vikish Publi Brealey Y Myers, <i>Principles of Corporate Finance</i> , McGraw-J Rajiv and Anil: <i>Financial Management</i> , 2 nd Edition, Oxford U L.M Bhole: <i>Financial Institutions and Markets</i> , Tata McGrow-	Hill niversity	Press

Subject Code		Information Theory and	Credits: 4 (3-1-0)	
EC 402	02 Coding		Total hours: 56	
Course Objec	tives	To enable students to analyze fundamental parameters of information theory, explain source and channel coding and to find capacity for simple channels.		
Module 1			9 Hours	
Coding, Chann Definition of M	nel Models a Mutual Infor	cation Systems and Information Theory: Introd and Channel Coding.A Measure of Information rmation and Entropy, Average Mutual Informa ontinuous Ensembles.	n, Discrete Probability Review,	
Module2			8 Hours	
		ative Entropy, Relations between them, Chain Sum Inequality, Data Processing Inequality, Di		
Module 3			15 Hours	
-		refix Codes, Uniquely Decodable Codes, Kraft ariable Length Encoding Procedure, Huffman		
Discrete Mem Fano's Inequa Binary Channe	lity, Channe el, Noisy Ch	nnels and Capacity: Classification of Channels el Coding Theorem and the converse, Example annel with Overlapping Outputs, Noisy typew Symmetric Channels, Jointly Typical Sequence	, Discrete Memoryless Channels, s of Channel Capacity : Noiseless riter, Binary Symmetric Channel,	
Module 5			9 Hours	
	Construction	ction, Error detection and correction, Review o and decoding, Standard Array decoding, Dista		
Reference books	 Thomas Cover and Joy Thomas, "Elements of Information Theory", John Wiley, Second Edition. R. G. Gallager, "Information Theory and Reliable Communication", Addison Wesley, 1987. Shu Lin and Daniel J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice Hall, 2003 Blahut R. E, Theory and Practice of Error Control Codes, Addison Wesley, 1983. 			

Subject Code	VLSI Design Laboratory	Credits: 2(0-0-3)	
EC403		Total hours: 45	
Course Objectives	To provide the practical knowledge of designing	g the VLSI circuit and layout using	
	any of CAD tools like Spice/ MAGIC/ MIRCOW	VIND/Cadence.	
List of Experiments			
Experiment No. 1			
P,N,CMOS - ID-VDS Ch	aracteristics – extraction of VT and body effect fact	tor	
Experiment No. 2			
DC transfer characteristic	s of a CMOS inverter		
Experiment No. 3			
Design, Simulation and la	yout of CMOS NAND, NOR, XOR, XNOR		
Experiment No. 4			
Design, Simulation and layout of AND, OR, NOT			
Experiment No. 5			
Design, Simulation and layout of basic digital blocks such as Adder, Subtractor, Decoder, Mux etc			

Subje	ect Code	Electronic Instrumentation	Credits: 3(3-0-0)
EC40	04		Total hours: 45
Cour	se	To understand the basic principles of instrur	ments and measurements and various
Obje	ctives	practical issues related to measurement.	
Modu	ule 1		Hours 12
Static	c Characteristic	Measurement Systems; Characteristics of Insess and Dynamic Characteristics; Errors in measu Gauges, Thermistors, LVDT.	
Modu	ule2]	Hours 10
		ents: Electronic Voltmeters, Electronic Multic Distortion Analysers, Spectrum Analysers.	timeters, Signal Analysers - Wave
Modu	ule 3		Hours 11
	•	loscope: Cathode Ray Tube, Electrostatic Defle nent of Phase and Frequency, Sampling Oscillos	. 6
Modu	ule 4		Hours 12
		nentation: Bio-potential, ECG, Blood Pressure comayograph (EMG), Spirometer.	Measuring Instruments, Blood Flow
Ref ere nce boo ks	 A.K.Sawhney, "Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Co. Albert D. Helfrick, William D. Cooper, "Modern Electronic instrumentation and Measurement Techniques", PHI Cromwell, Weibell, Pfeiffer, "Biomedical Instrumentation and Measurements", PHI. 		

Subject Code	Digital System Design	Credits: 3(3-0-0)	
EC405		Total hours: 45	
Course Objectives	typical Combinational and Sequential	 To impart the basic idea of Memory & System organisation and 	
Module 1		Hours 10	
	al Circuits: Asynchronous behaviour, Analysis o , Race Condition, State reduction, State Assi tional State Variables.		
Module2		Hours 12	
	g VHDL: Behavioural, Data Flow and Structural es, Delay models, Delta Delays, VHDL codes for Design, Examples.	1 5	
Module 3		Hours 11	
PLDs (Eg: PAL14L4 &	able Devices: Programmable Logic Arrays, Progr &PAL12H6), Sequential PLDs (Eg: PAL16R4), evices (Eg: XC9500), Field Programmable Gate A	Simple PLDs (Eg: 22V10), Complex	
Module 4		Hours 12	
Multiple Stuck Faults, 7	Fault models, Fault Equivalence, Fault Location, Festing for Single Stuck-at Faults, Design for Test Scan Testing, Boundary Scan, Built –In- Self-Test	tability, Testing Combinational Logic	
Reference books	 C.H. Roth, "Digital system design using VHDL", PWS Publishing, 1998. J. Bhasker, "A VHDL Synthesis Primer", B.S. Publications, 2001. 		

Subject Code	Computer Architecture and	1 Credits: 3(3-0-0)			
EC406	Organization	Total hours: 45			
Course Prerequisit	tes Digital Electronics				
Course Objectives	• To understand and Implement the Ba	sic Architecture of Computers.			
Module 1		Hours 09			
Machine Instruction Address, Addressin	Computers: Basic functional units , Bus structure, Soft as and Programs, Numbers, Arithmetic operations and g Modes.	l characters, Memory Locations and			
Module2		Hours 12			
· ·	ixed point Arithmetic, Arithmetic-Logic Units (ALU) Design: Basic Concepts, Hardwired control, Micropi ing.				
Module 3 Hours 12					
Connection to CPU	Memory Organisation: Memory Hierarchy, Main Memory, RAM and ROM, Memory Address Map, Memory Connection to CPU, Hardware Organization, Read-Write Operation, Cache Memory, Associative Mapping, Direct Mapping, Set Associative Mapping, Virtual Memory, Address Space and Memory Space, Address Manning Using Dages				
Module 4		Hours 10			
ARM Instruction sets: Register, Memory Access and Data Transfer, Arithmetic and Logic Instruction, Branch Instructions, Assembly languages, I/O operations, Subroutine, Program Examples.					
Reference books	 John P Hayes, "Computer Architecture and Organization", (Third Edition) MCGraw Hill. Carl Hamacher, Zvonkovranesic, Safat Z., "Computer Organization", McGraw- Hill. 				

Subject Co	ode	Advanced Digital Signal		Credits: 3 (3-0-0)	
EC 407		Processing		Total hours: 45	
Course		The students will be able to appreciate adva			
Objectives		very specific areas and apply this to variety current literature.	of ap	plications and also appreciate the	
Module 1	Module 1 1 hours				
Motivation	and Re	eview of fundamental of DSP			
Module 2			10 h	ours	
characteriza multistage Interpolatio	ation, d design	Signal Processing : Rate convertor and decimator and interpolator, Noble identities of Decimator and Interpolator, polypha plines, Nyquist filters and application, Applica	s, Ra ise d	tional Sampling rate convertor, ecomposition and applications,	
Module 3			12 h	ours	
Bank – Al	liasing, al Wa	wo Channel filter bank, Quadrature Mirror Fil Multiresolution Analysis and Filter Bank welets Design and their properties, Ap	, Dy	adic Wavelet, Orthinormal and	
Module 4			12 h	ours	
autocorrelat	tion of	ower Estimation : Spectrum Analysis of Det the stationary random signals; Estimation of F al Analysis; Multitapper Power Spectrum Esti	Power	Spectrum of Stationary Random	
Module 5			10 h	ours	
Signal Modelling and Parametric Spectral Estimation :The modelling Process: theory and Practice; Estimation of All-pole Models; Estimation of Pole-Zero Models; Application: Spectral Estimation, Speech Modeling; Minimum Variance Spectrum Estimation; Harmonic Models and Frequency Estimation Techniques: Harmonic Models, Pisarenko Harmonic Decomposition, MUSIC algorithm, Minimum –Norm Method, ESPRIT Algorithm Referenc 1. P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall,1993 2. Stephane Mallat, "A Wavelet Tour of Signal Processing : The Sparse Way", Academi Press, 2008 3. D. Manolakis, V Ingale, S Kogon, "Statistical and Adaptive Signal Processing", Artec House, 2005.					

Subject Code	Statistical Signal Processing	Credits: 3 (3-0-0)
EC 408		Total hours: 45
Course Objectives	The students will be able to appreciate processing in a non deterministic setting applications and also appreciate the current lite	and apply this to variety of
Module 1		6 hours
• •	processing, representation of Narrow band sin phase and system invertibility, spectral factorize	•
Module2		12 hours
statistics, Stationarity, Er power spectral density, v	on and analysis of signals: Discrete time stock godicity, Frequency domain description of static white noise; Linear Systems with Stationarity 1 on Representation – Eigen Decomposition, K-L	onary processes: autocorrelation, random inputs and cross power
Module 3		4 hours
Models, Lower Order M	le Models : Model Properties, All-pole modell Iodels; All-Zero Models: Model properties, M el Properties, Autoregressive Moving-Average	A Models, Low order Models;
Module 4	:	9 hours
measure, Linear MMSE I Geometric Interpretation	Deptimum signal estimation, Linear Mean Square I Estimator, Principal Component Analysis of the or and Principle of Orthogonality, Optimum FIR ar to filtering to additive noise, Linear Prediction.	optimum Linear Estimator,
Module 5		6 hours
• • •	ares, Linear Least-Squares Error Estimation, Lean, Least Square computations using SVD.	ast Square filtering, Least
Module 6		6 hours
	plications (Echo cancellation, Linear Predictive of Performance of Adaptive filters; Methods of St	eepest descent; Least-Mean-
Square Adaptive Filters – RLS Algorithm.	- stability and steady state in Stationary Signal Op	perating Environment (SOE),

Fundamentals of A	rray processing and Beam forming.						
Reference books	Reference books (1) D. Manolakis, V Ingale, S Kogon, "Statistical and Adaptive Signal						
	Processing", Artech House, 2005.						
	(2) S. Haykin, Adaptive Filter Theory, Pearson, 2002						

Subject	Code	DSP Algorithm and		Credits: 3 (3-0-0)		
EC 409	99 Architecture			Total hours: 45		
Course Objectiv						
Module	Module 1 6 hours					
algorithm DSP Syst	ns - blo tem De	Digital Signal Processing System: Important D ock diagram, signal flow graph, data flow grap sign; Introduction to DSP development Tool.				
Module2			3 hou	urs		
	l precis	sentation and Arithmetic Operation: Fixed point ion; Floating point emulation; Q notation; Fixed point emulation; Q notation; Q notatio				
Module	3		12 ho	ours		
	feature	Programmable Digital Signal Processors: Cent es; Peripheral interfacing; Instruction set; I amming.	-			
Module 4	Module 4 9 hours					
Instructio	on types	rocessor specific Assembly language programn s; Addressing modes. Assembly language prog cessor; Pipelining.		ing for specific fixed / floating		
Module	_		4 hou	urs		
for gener	ation o	s: Algorithmic Considerations; Convolution; Fl f elementary functions; Pseudo-random numbe	er gene	eration.		
Module	Module 6 12 hours					
Analysis and Optimization of DSP Algorithms and Systems: Loop bound and iteration bound; Retiming transformation; Unfolding transformation from data flow graph- folding transformation; Fast Convolution; Optimization using pipelining and / or parallel processing; Power estimation; Software optimization techniques for low power.						
Refere nce books	nce and and W S Gan, Pearson Prentice Hall, Second Edition, 2006					

Subject (ode Speech And Audi	o Processing Credits: 3 (3-0-0)			
EC 410		Total hours: 45			
Course	After attending this course the	ey will have sound understanding of speech production			
Objective		and representation. They can apply this knowledge to advanced techniques for implementation and research.			
Module	Module 1 12 hours				
difference and freque	, pitch perception, masking, models	an hearing, auditory psychophysics, just noticeable of speech perception. Speech Analysis: Time domain neter estimation, Introduction to Speech Synthesis and			
Module2		9 hours			
Brief over reconstruct Stereo pre	Audio Signal Processing: Brief overview on sampling and quantization, Discrete Fourier transform, Filter Bank: Perfect reconstruction and Quadrature mirror filter, Wavelet transform, Modified discrete cosine transform, Stereo processing, Linear prediction (LP), Auditory filters, Auditory masking, Perceptual auditory				
Module 3		ctral band replication, Temporal noise shaping. 9 hours			
Scalar and	-	g, Waveform and parametric coding, Vocoders, Linear de excited LP codec, Adaptive multi-rate (AMR).			
Module 4		12 hours			
	ding and Standard l audio coders, MPEG-1, MPEG-2, M	PEG-4, Dolby AC, Sony, AMR-WB, Generic coding.			
Module 5		3 hours			
Objective	n of Audio and Speech coders: and Subjective evaluation techniques ration (ITU).	(PESQ, PEAQ; MOS, MUSHRA) and			
Referen		Communication, Human and Machine, IEEE Press,			
ce	1999				
books	Reprint, Pearson Education, 2005.	Fundamentals of Speech Recogniotion, Lawrence Rabiner, B H Juang, Second Indian			
	3. A. Spanias, Ted Painter, V Atti, Audio Signal Processing and Coding, Wiley, 2007				

Subject Co	de	Image And Video Processing	g	Credits: 3 (3-0-0)	
EC 411				Total hours: 45	
Course Objectives		After attending this course they can apply different image and video processing application for representation, filtering, compression in various domains and would be able to undertake advanced techniques for implementation and research. They will also be in position to explore the multimedia standards in detail.			
Module 1		· · ·	2 hou		
Representat	Introduction Representation of digital images and video; Need for compression, Human Visual System, Redundancy – statistical and psycho visual; Basic image compression system; Video coder encoder. Module2 5 hours				
Image Com Lempel-Zie	Lossless Image Compression Image Compression; Elements of Source Coding; Huffman Coding; Arithmetic Coding; Arithmetic and Lempel-Ziev Coding; Estimation of Source Probability.				
Module 3			9 hou	urs	
Transform (Transform.	imensio (DFT);	onal Orthogonal and Unitary Transforms; Discrete Cosine and Sine Transform; Hadamar Igorithm for DCT and Wavelet Transform.			
Module 4 12 hours					
Lossy Image Compression Quantization process and artifacts; Delta Modulation and DPCM; Transform Coding based on KL Transform, Discrete Cosine Transform; Embedded Wavelet Coding – Zerotree Coding, SPIHT algorithm, EBCOT algorithm; Image compression standard – JBIG and JPEG, JPEG 2000 – Architecture, Features, Region of Interest Coding, Error Resiliency.					
Module 5			17 ho	ours	
Digital Video Coding Methods and StandardsVideo Formats and Quality; Video CODEC; Temporal Model – Motion, Block based MotionEstimation and Compensation, sub-pixel Motion Compensation; Image Model – Predictive Coding,Transform Coding, Quantization, Reordering and Zero Encoding; MPEG-4 and H.264 video codingstandards; High Efficiency Video Coding; Design and Performance issues.Referenc1. V. Bhaskaran and K. Konstantinides, "Image and Video Compression Standards:e booksAlgorithms and Architecture," Kluwer, 1997.2. Iain E. Richardson, "H.264 Advanced Video Compression Standard", Second Edition.3. High Efficiency Video Coding – Literature will be provided.					

Subject Co	de Biomedical Signal Processir	ng Credits: 3 (3-0-0)
EC 412		Total hours: 45
Course	Different theoretical measures of biomedica	l signals and an understanding of the
Objectives	information these measures provide regar	
Objectives	behaviors of their sources in response to natu	
	After attending this course students will hav	* *
	and their origin. They will understand the si	
	and validate.	
Module 1		9 hours
	to human body and biomedical signals; Action p	
-	and applications in medical diagnosis. Motivation	for treating Real – world biomedica
0	g stochastic approach.	
Module2		6 hours
Review of D	Digital Signal Processing	
Module 3		9 hours
Classical Sp	ectral Estimation Techniques	
	urier transform and FFT algorithms; The Periodog	gram; The Blackman – Tukey Spectra
	Applications to Doppler Signals, Auditory Evok	
Variability;	Cepstrum Analysis: Power Cepstrum and Complex	Cepstrum; Application to Analysis of
ECG signals	s, Diastolic Heart Sound.	
Module 4		12 hours
A de stiese Eti	U	
Adaptive Fi	tters Adaptive Noise Cancelling; Adaptive Noise Cano	cellation with LMS and RLS Adaption
-	Application to ECG Monitoring, Enhance F	-
-	ic Mesurements; Adaptive Line Enhancer and its	-
-	pro-Tracking Methods and applications for detection	
Sclerosis Pa		8 - F F
Module 5		9 hours
Demonsterie	M. J. 1 M. (L. J.	
	Modeling Methods ive (AR) Methods and Linear Prediction; Yule-V	Valker Method: Adaptive AR method
-	to modelling of ECG signals, Knee Vibration	-
**	od Pressure, EEG modelling during Neurosurgical	
	Lung Sound; The Autoregressive Moving A	-
-	to modelling of Somatosensory Evoked Potential	-
	ng of Cutaneous Electrogastric Signals.	
	. Metin Akay, "Biomedical Signal Processing", Ad	cademic Press 1994
	2. L. Cromwell, F. Weibell, E. A. Pfiffer "Biom	
	Prentice Hall, 1980.	

	9	Er	ror Co	ontrol	Cod	ling		Credits: 3) ((3-0-0)
EC 413								Total hou	rs:	45
Course Obje	ctives	To enable control tech		o under	rstand	and use	appro	opriately di	ffei	ent error
Module 1							13 H	ours		
Coding for Ro Maximum Lil	-			-						-
Introduction t $GF(2^m)$, Basic	-	Groups, Fields of Galois Field	-					on of Galois	Fie	eld
Module2							9 Ho	ours		
	coding, Prol	d Error Correct bability of an es, Golay Code	Undetected					-		
Module 3							10 H			
Cyclic Codes	, Syndrome Binary Prin	Computation	and Error 1	Detectio	on.		codin	g and Deco		g of
Cyclic Codes Cyclic Codes BCH Codes :	, Syndrome Binary Prin	Computation	and Error 1	Detectio	on.		codin	g and Deco e Algorithm		g of

Subject Code	e	Spread Spectrum	Credits: 3 (3-0-0)
EC 414		Communication	Total hours: 45
Course Obje	ctives	To enable students to understand different sp their commercial applications.	pread spectrum techniques and
Module 1		1	4 Hours
	0	Communications Concept : Detection of Binary S and Non-coherent Modulation Schemes,	Signals in Additive White
	irect Sequen	ectrum Systems: Introduction, Pulse Noise Jammi ce Spread Spectrum, Frequency Hop Spread Spec pectrum.	
Module2		11	2 Hours
		timum Tracking of Wideband Signals, Baseband	Delay Look Treaking Loop
	ig Loops for	Frequency Hop Systems.	Delay Lock Tracking Loop,
Module 3		Frequency Hop Systems.	1 Hours
Module 3 Synchronizat	ion: Initial S	Frequency Hop Systems.	1 Hours The Optimum Synchronizer,
Module 3 Synchronizat Serial Search	ion: Initial S Synchroniza rformance o	Frequency Hop Systems. Synchronization of the Receiver Spreading Code, ation Techniques, Generalized Analysis of Average f Spread Spectrum Systems in Jamming Environm	1 Hours The Optimum Synchronizer, ge Synchronization Time.
Module 3 Synchronizat: Serial Search Jamming : Pe	ion: Initial S Synchroniza rformance o	Frequency Hop Systems. Synchronization of the Receiver Spreading Code, ation Techniques, Generalized Analysis of Average f Spread Spectrum Systems in Jamming Environm g.	1 Hours The Optimum Synchronizer, ge Synchronization Time.
Module 3 Synchronizat: Serial Search Jamming : Pe or Barrage No Module 4	ion: Initial S Synchroniza erformance o oise Jammin	Frequency Hop Systems. Synchronization of the Receiver Spreading Code, ation Techniques, Generalized Analysis of Average f Spread Spectrum Systems in Jamming Environm g.	1 Hours The Optimum Synchronizer, ge Synchronization Time. nents, Performance in AWGN Hours

Subject Code		Optical Communication	Credits: 3 (3-0-0)
EC 415			Total hours: 45
Course Object	tives	The objective is to understand concepts related and systems.	ated to optical components, links
Module 1			14 Hours
Motivation for Optical Fibre C	-	Communications, Key Elements of Optical F tion.	ibre Systems, Standards for
Definitions, Op Mode Fibres, C	otical Fibre Graded Inde	Wave guiding and Fabrication) : Fundamental Modes and Configurations, Mode Theory for C x Fibre Structure. Signal Degradation in Optic ay, Pulse Broadening in GI Fibres.	Circular Waveguides, Single
Module2			14 Hours
concepts of reaconfigurations	sponsivity,	etector, pin detector, Avalanche photodiode sensitivity and quantum efficiency, noise in edance and trans Impedance receivers).	n detection, typical receiver
Module 3			9 Hours
		Applications and Types of Optical Amplifiers, d Fibre Amplifiers, Amplifier Noise, Optical S	-
Module 4			8 Hours
e	•	stem-point-to-point links, fibre splicing and noise effects on system performance, opera	
Reference books	Sin 2. Leo Co 3. G.I	rd Keiser, "Optical Fiber Communication", M agapore, 2000 A Selvarajan, S.Kar, Optical Co onid Kazovsky, Sergio Benedetto and Alan mmunication Systems", Artech House, 1996. P.Agrawal, "Nonlinear Fiber Optics", 3rd Ed; A P. Agrawal, "Fiber optic communication system 02.	mmunications, TMH, 2006 Willner, "Optical Fiber Academic Press, 2004.

Subject Code	•	Ad Hoc and Sensor Net	works	Credits: 3 (3-0-0)
EC 416				Total hours: 45
Course Obje	ctives	To enable students to understand and Networks and network architectures, p	-	concepts of Ad hoc and Sensor
Module 1			4]	Hours
		noc networks and wireless sensor netw 11 Standard, HIPERLAN, Bluetooth, H		epts and architectures. Wireless
Module2			8]	Hours
Protocols. Hy	brid Routing	of Routing Protocols. Table-Driven D Protocols. Routing Protocols with Effi Aware Routing Protocols.	-	_
Module 3			11	Hours
Networks. De Protocols. Con	sign Goals o ntention-Bas ased MAC P	c Wireless Networks: Issues in Designi f a MAC Protocol for Ad Hoc Wireless ed Protocols. Contention-Based Protoco rotocols with Scheduling Mechanisms. tocols.	Networks ols with Re	. Classifications of MAC eservation Mechanisms.
Module 4			12	Hours
Layer Protoco Wireless Netw Other Transpo Network Secu Attacks. Key	ol for Ad Hoo vorks. Classi ort Layer Pro urity Require	ity Protocols for Ad Hoc Wireless Networks. Design Goals of a Wireless Networks. Design Goals of a fication of Transport Layer Solutions. Tocols for Ad Hoc Wireless Networks. nents. Issues and Challenges in Securit. Secure Routing in Ad Hoc Wireless N	Transport TCP Over A Security in ty Provisio Networks.	t Layer Protocol for Ad Hoc Ad Hoc Wireless Networks. n Ad Hoc Wireless Networks. ning. Network Security
Module 5			1	0 Hours
Wireless sens for WSN, Node Localiza	WSN MA	• •		
Reference books	and 2. La 3. Li,	Sivarama Murthy and B S Manoj, "Ad Protocols", PH, 2004. biod. H, "Wireless Adhoc and Sensor N X, "Wireless ad -hoc and sensor nbridge University Press,2008.	letworks",	Wiley, 2008.

	le	Antennas and Propagation	Credits: 3 (3-0-0)
EC 417			Total hours: 45
Course Obj	ectives	To impart the basic concepts of radiating structu	res and their arrays.
		To give idea about basic propagation.	-
Module 1		12	Hours
Antenna fun	damentals	and definitions: Types of Antennas, Radiation Mec	chanism Current distribution on
		damental Parameters of Antennas: Radiation Patt	
Radiation In	ntensity, Di	rectivity, Gain, Antenna efficiency, Beam efficie	ency, Bandwidth, Polarization,
	-	ation efficiency, Antenna Vector effective length	-
Antenna Ter			-
Module2		11	Hours
-		Equation, Solution by potentials.	tion Finite length dipole half
Linear Wire wave dipole Circular loop	Antennas: , Ground e	Infinitesimal dipole, Small dipole, Region separa offects. Loop Antennas: Small Circular loop, Circuniform current.	ular Loop of constant current,
Linear Wire wave dipole	Antennas: , Ground e	Infinitesimal dipole, Small dipole, Region separa offects. Loop Antennas: Small Circular loop, Circuniform current.	U
Linear Wire wave dipole Circular loop Module 3 Array anten Broadside ar Aperture An	Antennas: , Ground e p with non- nas: Linear nd End fire tennas, Ho	Infinitesimal dipole, Small dipole, Region separa effects. Loop Antennas: Small Circular loop, Circular uniform current. 12 Arrays, Two element array, N Element array, Ur array, Super directivity, Planar array, Design considern Antennas, Micro strip Antennas, Reflector Anten	ular Loop of constant current, Hours hiform Amplitude and spacing, deration;
Linear Wire wave dipole Circular loop Module 3 Array antenn Broadside ar	Antennas: , Ground e p with non- nas: Linear nd End fire tennas, Ho	Infinitesimal dipole, Small dipole, Region separa offects. Loop Antennas: Small Circular loop, Circuniform current. 12 Arrays, Two element array, N Element array, Ur array, Super directivity, Planar array, Design considern Antennas, Micro strip Antennas, Reflector Anten Electors.	ular Loop of constant current, Hours hiform Amplitude and spacing, deration;

Subject Cod	le	Satellite Communication	Credits:(3-0-0) 3
EC418			Total hours: 45
Course		With this paper, the students should have thoroug	ghly known about the principle of
Objectives		earth station, satellite link, communication satel	lites, satellite orbits and different
		types of channel accessing mechanisms.	
Module 1		11	hours
Satellite orbi	its Sc	blar day and Sidereal day, Orbital parameters, Sat	tellite trajectory Period Velocity
		satellite, Geostationary satellites, Non-geostation	• • •
		ellites, Hohmann transfer, Effect of earth's	
		and Radiation pressure on the satellite's orbit.	shape, other neaverny boules,
	8	F F	
Module 2		10	hours
Communicat	tion sa	atellites, Spacecraft subsystems, Payload, Repeate	r, Antenna, Attitude and Control
		y, Tracking and Command, Power sub system an	
•		systems, Satellite tracking system, Amplifiers, F	
earth stations			
Module 3		16	hours
Communicat	tion li	nk design, Frequency bands used, Antenna para	meters, Transmission Equations,
Noise consid	leratio	ons, Link design, Very Small Aperture Terminals (VSAT) - VSAT design issues.
Module 4		8	hours
Multiple acc	ess te	chniques, Frequency division multiple access, Tin	ne division multiple access, Code
division mul	ltiple	access, Access protocols for data traffic Application	ability of CDMA to commercial
systems, Der	mand	access in the INTELSAT, TDMA system, SPADI	E, the INMARSAT system, Earth
station, Satel	llite te	levision networks.	
	(1) 1		
Reference	(1)	Richharia M., "Satellite Communication Systems",	Macmillan Press Ltd.
books	(2)]	Ha T.T., "Digital Satellite Communication"	
	(3)	". Pratt, "Satellite Communications".	

Subject	Microwave Engineering	Credits:(3-0-0) 3
Code	8 8	Total hours: 45
EC419		
Course	To give the basic ideas about the characteri	istics and applications of Microwaya
Objectives	frequency bands	istics and applications of wherowave
Objectives	To understand the working of various Micro Circuits.	owave passive and active devices and
Module 1		10 Hours
microwave n network suc	c, Features and Applications of Microwaves networks, Properties of scattering matrices, H eth as section of uniform transmission line all), T-junctions directional coupler, Magic tee,	Properties and S-matrices for typical e, 3-port networks (reciprocal and
Module 2		10 Hours
analysis, Re	of microwaves by tubes, Limitations of conv eflex klystron oscillator-analysis, Magnetro ave oscillator (BWO)-basic principles, Millimo	ons, Traveling wave tube (TWT),
Module 3		11 Hours
relations, Pa Diode oscill	ncy limitations of transistors, Microwave to rametric Amplifiers and frequency multipliers ators, Avalanche effect, IMPATT & TRAF Schottky barrier and backward diodes.	s, Tunnel diodes, Gunn effect, Gunn
Module 4	· · · · ·	11 Hours
MICs, Mono Measuremen	mission lines such as Stripline, Microstrip I olithis MICs. Comparison of both MICs; VSV t, Impedance measurement, Frequency me tion - repeaters.	WR Measurement, microwave power
Reference	1. Liao S.Y., "Microwave devices an	d Circuits", Prentice Hall Of India,
books	New Delhi, 3rd Ed. 2006	
	2. Collin. R.E, "Foundation of Microw	vave Engineering", IEEE Press, 2004

Subject	Radar & Navigation Systems		Credits:(3-0-0) 3
Code		,	Total hours: 45
EC420			
Course	To give the basic ideas about the working of a	radar ai	nd navigation systems
Objectives			
Module 1		15 hou	ırs
	f the radar, The Radar Equation, Frequency mo		
CW Radar, M	Aving-target-indication (MTI) Radar, Pulse-Do	oppler H	Radar, Tracking radar.
Module 2		15 hou	ırs
Radar transi	nitters: Magnetron Oscillator, Klystron Amp	lifier, '	Traveling-wave-tube Amplifier
Grid-control	ed Tubes ;		
Radar Recei	vers: Super heterodyne Receiver, Receiver Nois	se. Det	ection of radar signals in noise.
	of information from radar signals. Clutter		0
	es over land and sea.		
Module 3		15 h	ours
Electronic o	ounter measure, Hyperbola system of nav	igation	, Instrument landing system,
Microwave 1	anding systems, Satellite navigation systems.		
Reference	(1) M.I.Skolnik, "Introduction to Radar System		
books	(2) D.K.Barton, "Modern radar systems analys(3) B Edde, "Radar: Principles, Technology, A		

Subject Code	Digital Image Processing	Credits: 3 (3-0-0)
EC 421		Total hours: 45
Course Objectives	After attending this course they can apply dif various domains and would be able to implementation and research.	
Module 1		3 hours
the eye; Light and and Quantization.	Motivation to Digital Image Processing; Huma l electromagnetic spectra; Image Processing A	pplication; Image capturing, Sampling
Module2		5 hours
Intensity transform Enhancement; Sp	ent in the Spatial Domain nation, Histogram Processing: Equalization, M patial Filtering- Filtering, Smoothening Filte g Filtering: Using Gradient and Laplacian.	0
Module 3		6 hours
FFT, K-L Transfe domain filtering a	in Filtering and Processing : Image Transform, Convolution, Correlation, 2D Sampling, I nd filters and artifacts.	Discrete Cosine Transform, Frequency
Module 4		5 hours
filters, Order filte Model of Degrad	n : Degradation due to know noise models; Restricts, Adaptive filters for noise removal, Restora dation: Estimating Degradation Function, Ir	tion using frequency domain filtering; nverse Filtering, Mean Square Error
Module 5		5 hours
Dimensional Disc	d Wavelets : Two – Dimensional Orthogo crete Fourier Transform (DFT); Discrete Co ransform and Wavelet Transform.	-
Module 6		3 hours
-	cessing : Colour Models: RGB Colour Model, ity Slicing, Gray level to colour transformation	
Module 7		8 hours
Models; Source c Plane Coding, Lo	on: Statistical and Psychovisual Redundancy; oding theorem; Lossless Compression: Varial ssless Predictive Coding; Lossy Compression velet Based Coding; Image Compression St	ble-Length coding, LZW Coding, Bit- : Lossy Predictive Coding; Transform

Module 8		5 hours
Morphologic	cal Image Processing	
Problems an	d Motivation; Basic Concepts from Set Theory; Ba	asic Morphological Operation: Dilation
and Erosion	n, Opening and Closing, The Hit-or-Miss Trans	formation; Morphological Algorithm:
Boundary E	xtraction, Region Filling, Extraction of connected	components, Convex Hull, Thinning,
Thickening,	Skeletons, Pruning; Extension to Gray Scale Images	S.
Module 9		5hours
Image Segm	entation	
Introduction	to segmentation problem: discontinuity and simila	arity; Detection of Discontinuity; Edge
Linking and	d Boundary Detection; Thresholding; Region I	Based Segmention; Segmentation by
Morphologic	cal Operations (Watersheds); Colour Segmentation.	
Reference	1. Gonzalez R. C. And Woods R. E., "Digital	I Image Processing", Second Edition,
books	Pearson Education	
	2. Anil K. Jain, "Fundamentals of Digital Image Pr	rocessing"

	Active Filters and Data	Credits: 3 (3-0-0)
EC 422	Converters	Total hours: 45
Course Objectives	• To understand the design and analys	is of various active filters.
	• To develop skills to design various systems.	circuits using different data conversion
Module 1		Hours 15
Sallen-key LPF and and pole locations.	ond order function for low-pass, high-pass, band –pass HPF. Active filters: Filter transfer function, Buttery Inverse Chebyshev and Cauer Filter. Delay Filter.	
Module2		Hours 15
		-
	ent, Impedance converters, Gm-C filters: Elementary filters: First-order building blocks, Second order sec	

Subject Code	Embedded Systems	Credits: 3(3-0-0)		
EC 423	Total hours: 45			
Course Objectives	To give ideas about Embedded Systems and System Development			
	• To Impart knowledge about R	eal Time Operating Systems and		
	Microcontrollers			
Module 1		Hours 12		
	ed systems: Processor Embedded into a system,			
•	software, Examples, Embedded System on C			
6. 6	cess, Classification of Embedded Systems, Sk	ills required for an Embedded System		
Designer.				
Module2		Hours 11		
	cessor Architectures: Memory Organization and			
	nstruction level Parallelism, Performance Matrix			
•	Selection, Devices and Communication Bus	• •		
Parallel Device Ports, W	ïreless Device, Real Time Clock, Networked Er	nbedded System.		
Module 3		Hours 10		
Real Time Operating S	systems: OS Services, Process management,	Timer and Event Functions. Memory		
	ile and I/O Subsystems Management, Interrupt			
	k Scheduling, Interrupt Latency, OS Security Is			
Module 4		Hours 12		
Embedded Software De	velopment Tools: Host and Target Machines, Li	nker/Locators for Embedded Software,		
	Getting Embedded Software to the Target Systems, Debugging Techniques, Testing on your Host machines,			
Instruction set Simulator	Instruction set Simulators, Laboratory Tools.			
Reference books	1. David Simon, "An Embedded Software Primer", Addison Wesley, 2000.			
	2. Raj Kamal, "Embedded Systems: Architect	ure, Programing and Design", TMH.		

Subject Code	Low-Power VLSI Circuit	Credits: 3(3-0-0)		
EC 424	Design	Total hours: 45		
Course Objectives	on battery-powered portable components.	• To understand the critical issue related to continued progress of high-		
Module 1		Hours 10		
Emerging Low power	low power VLSI chips, Sources of power dissi approaches. Device & Technology Impact on ng & gate oxide thickness, Impact of technol	Low Power: Dynamic dissipation in		
Module2		Hours 12		
static state power, gate analysis in DSP syste	Simulation Power analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power, gate level capacitance estimation, architecture level analysis, data correlation analysis in DSP systems, Monte Carlo simulation. Probabilistic power analysis: Random logic signals, probability & frequency, probabilistic power analysis techniques, signal entropy.			
Module 3		Hours 11		
& Latches design, high	Fransistor and gate sizing, network restructuring a capacitance nodes, low power digital cells librate oding, state machine encoding, pre-computation lo	ry. Logic level: Gate reorganization,		
Module 4		Hours 12		
Low power Architecture & Systems: Power & performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, low power arithmetic components. Low power Clock Distribution: Power dissipation in clock distribution, Single driver Vs Distributed buffers, Zero skew Vs tolerable skew, chip & package co- design of clock network.				
Reference books	 Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2002 Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000. Rabaey, Pedram, "Low Power Design Methodologies" Kluwer Academic 			

Subject Code	Logic Synthesis and	Credits: 3(3-0-0)			
EC 425	Optimization	Total hours: 45			
Course Objectives	verification of digital systems.To understand the high-level and	 To understand the high-level and architectural synthesis, decision and word-level diagrams, combinational logic optimization, and sequential 			
Module 1		Hours 12			
	electronic design style, Design of Microelectronic c kground: Graphs, Graphs Optimization problems a				
Module2					
	ng: Hardware Modelling Languages, Abstract M level Combinational level Optimization. Sequential L				
Module 3		Hours 11			
	Synthesis and Optimization: Circuit Specification ation, Data Path Synthesis and Control Path Synthesis	•			
Module 4		Hours 08			
Cell Library Bindin Binding.	g: Problem Formulation and Analysis, Algorithms fo	r Library Binding, Rule Based Library			
Reference books	 Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw Hill, 1994. S. Hassoun and T. Sasao, "Logic Synthesis and Verification", Kluwer Academic publishers, 2002. Srinivas Devadas, Abhijith Ghosh and Kurt Keutzer, "Logic Synthesis", Kluwer Academic, 1998. 				

Subject Code: HU 401 & HU 402	Professional Communication-II and Language Lab	Credits: 4 (2-0-3) Total hours: 56	
Course Prerequisite	Knowledge of English		
Course Objectives	This course aims at Personality Development		
Course Outcome	At the end, the students should possess a Saleable Image with em	ployability skills	
Module 1	Principles of Soft Skills and Practice	12 hours	
	Is and Personality, Attitude, Dress Code, Body Language, Individu Vriting and the difference between CV & Resume	al and Group Behaviour,	
Module 2	Group Discussion, Extempore, JAM and Survey	16 hours	
Module 3	Interview	14 hours	
		14 hours	
• •	erview Ethics, Questions and Mock-Interview Sessions	1	
Module 4	Business Presentation and Seminars	14 hours	
Business Presentation a			
Texts:	 1.W.B. Martin, <i>Ethics in Engineering</i> Tata McGraw Hill, India 2. Patnaik, Priyadarshi, <i>Group Discussion and Interview Skills</i>, CD) 3Downes, Colm, <i>Cambridge English for Job Hunting</i>, 2009, NCDs) 	lew Delhi, CUP (2 Audio	
Reference	TV News (Headlines Today, ND TV and BBC), Chat-Shows on TV, Magazines like India Today, Outlook, The Week and English Dailies. Reader's Digest for Expressive Skill English Films & English Comics		

Academic Hand Book

for

Bachelor of Technology Programme

in

Electrical & Electronics Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester-wise Credit Distribution

Semester	Total Credits
Ι	22
II	22
III	22
IV	21
V	22
VI	23
VII	20
VIII	18
Total Credits	170

I Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

II Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic Electrical Science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry- Laboratory	0-0-3	2
8	EE152	Basic Electrical Science Lab	0-0-3	2
9	PE150	Physical Education	1-0-0	1
		Total Credits		22

III Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA200	Mathematics-III	3-0-0	3
2	EE200	Electromagnetic Theory	3-1-0	4
3	EE201	Analog Electronics	3-0-0	3
4	EE202	Circuit Theory	3-1-0	4
5	EE203	Electrical Measurements & Instrumentation	3-1-0	4
6	EE204	Circuit Theory Lab	0-0-3	2
7	EE205	Electrical Measurements and Instrumentation Lab	0-0-3	2
		Total Credits		22

IV Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA250	Numerical Methods (Maths 4)	3-0-0	3
2	EE250	Digital Electronics	3-0-0	3
3	EE251	Electrical Power Generation	3-0-0	3
4	EE252	Electrical Machines-I	3-1-0	4
5	HS250	Economics	3-0-0	3
6	EE253	Electrical Machines-I Lab	0-0-3	2
7	EE254	Analog and Digital Electronics Lab	0-0-3	2
8	VE200	Value Education	1-0-0	1
		TOTAL CREDITS		21

V Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credit
				S
1	EE300	Electrical Power Transmission and Distribution	3-1-0	4
2	EE301	Electrical Machines-II	3-1-0	4
3	EE302	Control Systems	3-1-0	4
4	EE303	Microprocessors and Microcontrollers	3-0-0	3
5	EE304	Electrical Machines-II Lab	0-0-3	2
6	EE305	Microprocessors and Microcontrollers Lab	0-0-3	2
7	ES300	Environmental Studies	3-0-0	3
		TOTAL CREDITS	L	22

VI Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE350	Switchgear and Protection	3-1-0	4
2	EE351	Power System Analysis	3-1-0	4
3	EE352	Power Electronics	3-1-0	4
4	EE353	Integrated circuits	3-0-0	3
5	EE5**/HU501 and HU 502	Elective – 1	3-0-0	3
6	EE354	Electrical Simulation Lab	0-0-3	2
7	EE355	Control Systems Lab	0-0-3	2
8	EE356	Mini Project/Training		1
		TOTAL CREDITS	1	23

VII Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE400	Electrical Drives	3-0-0	3
2	HS400	Management	3-0-0	3
3	EE5**	Elective – 2	3-0-0	3
4	EE5**	Elective – 3	3-0-0	3
5	EE401	Power Electronics & Drives Lab	0-0-3	2
6	EE402	Seminar	3-0-0	2
7	EE403	Programme Major Project-I	0-0-4	4
		TOTAL CREDITS	1	20

VIII Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE450	Power System Operation and Control	3-0-0	3
2	EE5**	Elective – 4	3-0-0	3
3	EE5**	Elective – 5	3-0-0	3
4	EE5**	Elective – 6	3-0-0	3
5	EE452	Programme Major Project-II	0-0-6	6
		TOTAL CREDITS		18

Subject Code	Mathematics-III	Credits: 3 (3-0-0)		
MA 200		Total hours 42		
Objectives	This Mathematics course provides requisite and	relevant background		
	necessary to understand the other important engineerin	g mathematics courses		
	offered for Engineers and Scientists. Important topics o	f applied mathematics,		
	namely complex analysis, power series solutions, Fourier series and			
	transforms and partial differential equations.			
Module 1	Complex Analysis	18 hours		
Complex Numbers, g	eometric representation, powers and roots of complex nu	umbers, Functions of a		
complex variable, An	alytic functions, Cauchy-Riemann equations; elementary	functions, Conformal		
mapping (for linear	transformation); Contours and contour integration, Cauc	chy's theorem, Cauchy		
integral formula; Pov	ver Series and properties, Taylor series, Laurrent serie	s, Zeros, singularities,		
poles, essential singul	arities, Residue theorem, Evaluation of real integrals and	improper integrals.		
Module 2	Power Series Solutions	9 hours		
Differential Equation	s Power Series Method - application to Legendre	e equation, Legendre		
Polynomials, Frobeni	ous Method, Bessel equation, Properties of Bessel funct	ions, Sturm-Liouville		
BVPs, Orthogonal fur	actions.			
Module 3	Partial Differential Equations	15 hours		
	basic concepts, second order PDE and classification, D'A			
Duhamel's princip		•		
-	Laplace, Wave, and Heat equations using separation of	variables. Vibration of		
a circular membrane.	a circular membrane. Heat equation in the half space.			
Texts/References	4. E. Kreyszig, Advanced engineering mathemati	cs (8th Edition), John		
	Wiley (1999).			
	5. W. E. Boyce and R. DiPrima, Elementary Diffe	erential Equations (8th		
	Edition), John Wiley (2005).			
	6. R. V. Churchill and J. W. Brown, Co	mplex variables and		
	applications			
1	(7th Edition), McGraw-Hill (2003).			

Subject Code EE200	Electromagnetic Theory	Credits: 4 (3-1-0) Total hours: 56		
Course Objective				
Module 1 20 hours				
Introduction to Electric Fields: Coulomb's law and Electric Field Intensity, Electric Flux density, Gauss law, divergence theorem, definition of potential difference, potential gradient, dipole, Electric field intensity due to various forms of uniformly distributed charges, point charge, infinite line, circular ring, infinite plane sheet, dielectrics and capacitance, Poisson's law; Introduction to Steady Magnetic Fields: Charged particles in motion, Biot-Savart law, Ampere's Circuital law, curl, stokes theorem, Magnetic flux and Magnetic flux density due to infinite line, sheet carrying current, Scalar and vector Magnetic potentials, Lorentz force equation.				
Module 2		12 hours		
Time varying fields and Maxwell's Equations: Faraday's law, displacement current, Maxwell's equations in point form, in integral form, in derivative form, EMF equation, Uniform plane waves in dielectrics and conductors, pointing theorem, skin effect.				
Module 3 10 hours				
	Transmission lines: Transmission Line Equations, Solutions to equations in phasor form, loss less and low-loss propagation, wave reflection at discontinuities, transmission lines of finite length, Smith chart.			
Module 4 14 hours				
Guided waves between parallel planes, Transverse electric and transverse magnetic waves and its characteristics, Linear Elliptical and Circular Polarization, Wave equations for conducting medium, Wave propagation in conductors and dielectric, Depth of penetration, Reflection and Refraction of plane waves by conductor and dielectric, Poynting Vector and flow of power.				
Reference books	 William H. Hayt Jr., JA Buck, "Engineering Electromagnetics" MGH, 7th Edition, 2013. Kraus, Fleisch, "Electromagnetics with Applications" MGH, 5th Edition, 2010. Nannapaneni Narayan Rao, "Elements of Engineering Electromagnetics" Pearson, 6th Edition, 2006. Karl E. Lonngren, Savov and RJ Jost, "Fundamentals of Electromagnetics with MATLAB" PHI, 2nd Edition, 2007. 			

schemes; Load i coupled and tran MOSFET Ampl Amplifier config Module2 Cascode stages Cascade type. I	oduction, Input and output impedance, Operatin line and Bias stability, Analyses and design of nsformer coupled multistage Amplifiers; Thermal lifier: Analysis and Design of Common Source, gurations – Thermal runaway in MOS Amplifiers	mplifiers using BJT and MOSFET. tive feedback. ours 12 g point analysis and design, Biasing CC, CE and CB configurations; RC runaway in BJT Amplifiers. Common Drain and Common Gate		
Objectives Module 1 Amplifiers: Intro schemes; Load 1 coupled and tran MOSFET Ampl Amplifier config Module2 Cascode stages Cascade type. I	like Current Mirrors, Amplifiers, Differential A To understand the concept of Negative and Posi doduction, Input and output impedance, Operatin line and Bias stability, Analyses and design of nsformer coupled multistage Amplifiers; Thermal lifier: Analysis and Design of Common Source, gurations – Thermal runaway in MOS Amplifiers	mplifiers using BJT and MOSFET. tive feedback. ours 12 g point analysis and design, Biasing CC, CE and CB configurations; RC runaway in BJT Amplifiers. Common Drain and Common Gate		
Amplifiers: Intro schemes; Load i coupled and tran MOSFET Ampl Amplifier config Module2 Cascode stages Cascade type. I	oduction, Input and output impedance, Operatin line and Bias stability, Analyses and design of nsformer coupled multistage Amplifiers; Thermal lifier: Analysis and Design of Common Source, gurations – Thermal runaway in MOS Amplifiers	g point analysis and design, Biasing CC, CE and CB configurations; RC runaway in BJT Amplifiers. Common Drain and Common Gate		
schemes; Load i coupled and tran MOSFET Ampl Amplifier config Module2 Cascode stages Cascade type. I	line and Bias stability, Analyses and design of asformer coupled multistage Amplifiers; Thermal lifier: Analysis and Design of Common Source, gurations – Thermal runaway in MOS Amplifiers	CC, CE and CB configurations; RC runaway in BJT Amplifiers. Common Drain and Common Gate		
Cascode stages Cascade type. I	В			
Cascade type. I		ours 12		
dissipation, Clase efficiency and R	Cascode stages and Current Mirrors: MOS Current Mirrors, Types of Current Mirrors, Simple, Cascade type. Differential Amplifiers: MOS Differential pair, Small and Large Signal analysis, Common Mode Rejection, Differential pair with Active load. Power amplifiers: Push pull stage, Heat dissipation, Class A, B, AB, C, D, E& S Power Amplifiers - Harmonic distortion – Conversion efficiency and Relative performance.			
Module 3		Hours 08		
	onse of Amplifiers: Hybrid π equivalent circuit Model, Miller effect. Noise in Amplifiers: Ty nt circuits.			
Module 4		Hours 10		
Feedback and Stability: Introduction to Negative feedback – Basic feedback concepts; Ideal Feedback Topologies - Voltage shunt, Voltage series, Current series and Current shunt Feedback Configurations; Loop gain – Stability of feedback circuit, Nyquist stability criterion, Phase and Gain margins; Oscillators : Basic principles of Oscillators, Analysis of RC Phase Shift, Wein bridge, Colpitts, Hartley and Crystal Oscillators.				
Reference 2. books				

Subject Cod EE202	le Circuit Theory	Credits: 4 (3-1-0) Total hours: 56		
Course Objectives	To develop an understanding of the fundamental elements of electric circuits. To develop the ability to apply the basic theorems to analyze a DC and AC electric circuit. Use mathematical methods such as Laplace and Fourier transforms and some linear algebra techniques and differential equations to solve circuits problems. Synthesize a network with stable condition.			
Module 1		Hours: 10		
current, node transformatio	d AC circuits analysis: Kirchhoff's laws (KCL and KVL), DC a voltage method, super node and super mesh analysis for D.C an on, star-delta conversion. Complex Waves: RMS and average va use to non-sinusoidal excitations.	d A.C. circuits. Source		
Module 2		Hours : 12		
Network Theorems and topology: Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem, Millman's theorem, Tellegen's theorem, Reciprocity theorem and compensation theorem. Concepts of Graph theory- Cut set and Tie set using Network topology, Network equilibrium equations, Duality.				
Module 3		Hours : 12		
Selectivity, E Coupled Circ circuits. Dot Transients in	n AC Circuits:Series and parallel resonance, frequency respon Bandwidth, Characteristics, properties of resonance circuits, curren cuits:Self and mutual inductance, Coefficient of coupling, Tuneo convention, Analysis of coupled circuits. In Electric circuits: DC and AC transients in R-L, R-C and equations and Laplace Transforms.	nt locus diagrams. d circuits, Single tuned		
Module 4				
and ABCD Functions: N and general p	tworks: Two-port network concept, Representation in T and π parameters, image impedances, Interconnection of Two-po atural frequency of a network variable and a network, Network for properties, concept of complex frequency, poles, zeros and frequency	rt networks. Network unctions with examples ney response.		
	Module 5 Hours : 12			
criterion of	alisation and synthesis: Concept of poles and zeros-Hurwitz stability of network functions-Synthesis of one port LC netw thesis of RL and RC one port networks-Foster and Cauer methods	orks-Foster and Cauer		
Reference books	3. W. E. Van Valkenberg, "Network analysis," PHI, 1990.			

Subject Code EE203	Electrical Measurements and Instrumentation	Credits: 4 (3-1-0) Total hours:56		
Course Objectives	Students will be able to understand about the operation of an indicating instrument and use them for measurement of electrical quantities. To obtain adequate knowledge of comparison methods of measurement and also various transducers			
Module 1	and data acquisition system.	Hours:14		
General principles of measurements, units, dimensions, standards and calibration of meters, characteristics of instruments: qualities and errors of measurements and its analysis, principle, construction, operation, torque equation, calibration and application of D'Arsonval Galvanometer. Direct Deflecting Instruments: Moving coil, moving iron, dynamo meter, induction, thermal, electrostatic and rectifier type meters, shunts and multipliers, various types of galvanometers. (principle, construction, operation, torque equation and comparison).				
Module2		Hours:12		
Measurement of Current, Voltage and resistance, Wheatstone bridge, Kelvin double bridge, Carey Foster slide wire bridge, bridge current limitations, insulation resistance, earth resistance, earth tester localization of cable fault by Murray and Varley loop tests. measurement of power and energy: dynamometer type wattmeter, error and compensation, ampere hour meter, single and three phase energy meters (induction type), calibration, phantom loading, current transformer and potential transformer: construction, theory operation, phasor diagram, characteristics, error elimination and its application. Tri-vector meter, frequency meters, power factor meters.				
Module 3		Hours: 10		
method of use, u applications of D	er: Crompton potentiometer, Vernier potentiometer, use of potentiometer for measurement of resistance, curr C potentiometers. A.C. Potentiometers: applications of measurement of inductance & capacitance and frequency	ent and voltage and power. AC potentiometers, various		
Module 4	^ ^ ·	Hours: 10		
Magnetic Measurements: Classification, magnetometer measurement, ballistic galvanometer flux meter, magnetic potentiometer, Hall effect devices, B.H. curve and permeability measurement, hysteresis measurement, Hibbert's magnetic standard, core loss measurement.Illumination: Laws of Illumination, standards of luminous intensity, measurement of luminous intensity, distribution of luminous intensity, MSI, Rousseau's construction, integrating sphere, illumination photometers				
Module 5 Hours:10				
generator circuit, Reference	2 EW C11, $(E1, 4)$ 1 M $(E1, 4)$ 2 M $(E1, 4)$ 2 M $(E1, 4)$ 2 M			
DUUKS	Publications,2009 W.D Cooper, "Modern Electronics Instrumentation and Prentice Hall of India, 1 st Edition,2011			

Subject Code EE204	Circuit Theory Lab Credits: 2 (0-0-3) Total hours:45hr		
Course Objective	Laboratory exercises and assignments based on experiments and PSPICE and/or MATLAB simulation to supplement EE200.		
	Experiments lists		
	1. Verification of Reciprocity and Milliman's theorem.		
2. Find Z and Y parameters for a given circuit.			
	3. ABCD parameters for a given circuit.		
	4. Series and parallel resonant circuits.		
	5. Measurement of Self and Mutual Inductance.		
	6. MATLAB Simulation model for DC, AC network transient analysis.		
	7. MATLAB Simulation model to plot poles and zeros of a network.		
	8. PSPICE simulation model to verify Mesh and Nodal analysis to find branch voltages and currents		
	9. PSPICE Simulation model to find response for a network with DC, AC voltage sources.		
	10. Modelling of electrical circuits		
Reference	 William H. Hayt, Jack E. Kemmerly, Steven M. Durbin, "Engineering Circuit Analysis," TMH, 6th Edition, 2002. 		
books	 Muhammad H.Rashid, "Introduction to PSPICE using ORCAD for Circuits and Electronics", PHI, 2008. 		

Subject Code EE205	Electrical Measurements and Instrumentation Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs	
Course Objective	Laboratory exercises and assignments to supplement EE253.		
	Experiments lists1. Calibration of 1-ph Energy meter using phantom loading.2. Measurement of low resistance using Kelvins Double bridge.3. Measurement of low resistance using Wheatstone bridge4. Measurement of self-inductance using Anderson- bridge5. Measurement of capacitance using Schering bridge6. Measurement of inductance using Maxwell- bridge7. Measurement of pressure using Piezoresistive transducer.8. Measurement of strain using Piezoresistive transducer9. Calibration of power factor meter		
Reference books	10. Measurement of power using two wattmeter method (1) A. K Sawhney, "Electrical and Electronic Measurements and		

Subject Code		Credits: 3(3-0-0)	
MAT250	Numerical Methods	Total hours: 42	
Course Objective	To get familiarized with the numerical solution of linear and non-linear systems, Numerical solution of ordinary differential equations and partial differential equations.		
Module 1		Hours: 10	
methods, Jacobi an	linear system: Gauss elimination and Gauss-Jordan methods d Gauss-Seidel iterative methods, sufficient conditions for dominant Eigen value and eigenvector.		
Module 2		Hours: 12	
Newton- Raphson r	f nonlinear equation: Bisection method, Secant method, R nethod- order of convergence, interpolation curve fitting, method nation and integration and numerical solution of ordinary diffe	thod of least squares,	
Module 3		Hours : 11	
method, Taylor's i	Numerical solution of ordinary differential equations: Euler's method, Euler's modified method, Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations, multistep methods, Milne's and Adams' methods.		
Module 4		Hours: 12	
Numerical solution of partial differential equations: Liebmann's method, solution of one dimensional heat flow equation, Bender - Schmidt recurrence relation, Crank-Nicolson method, solution of one dimensional wave equation			
	 M.K. Jain, S. R. K Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering Computation," New Age Publishers, 6 Edition, 2012. 		
Reference Books	 e Books 2. Erwin Kreyszig, "Advanced Engineering Mathematics," 8th Edition Wiley India Pvt. Ltd. (Reprint 2010). 		
	 G.D Smith, "Numerical solution of Partial Diff Oxford University Press. 	ferential Equations,"	
	 Peter V. ONeil, "Advanced Engineering Mather Thomson, Book/Cole. (2003). 	matics," 5 th Edition,	
	 B. S. Grewal, "Higher Engineering Mathematics," Publications, 2013. 	42 nd Edition. Khanna	

Subject Code	Digital Electronics	Credits: 3-0-0 (3)		
EE250		Total hours:42		
Course Objectives	This subject exposes the students to Digital Fundamentals.After studying this subject the student will be able to Design, Analyze and Interpret Combinational and Sequential Digital Circuits.			
Module 1		Hours 10		
QuineMc-Cluskey M	Number Systems and Boolean Algebra, Simplification of functions using Karnaugh map and QuineMc-Cluskey Method, Boolean Function Implementation, Minimization and Combinational Design, Examples of Combinational Digital Circuits, Hazards in Combinational Circuits, Hazard free realization			
Module2		Hours 10		
Introduction to Sequential circuits: Latches and Flip-Flops (RS, JK, D, T and Master Slave), Design of a Clocked Flip-Flop, Flip-Flop conversion, Practical Clocking aspects concerning Flip-Flops. Counters: Design of Single Mode and Multimode Counters, Ripple Counters, Synchronous Counters, Shift Registers, Shift Register Counters and Random Sequence Generators. Module 3 Design and Analysis of Sequential Circuits: General model of Sequential Networks, State Diagram, Analysis and Design of Synchronous Sequential Circuits; Finite Sate Machine, State Reduction, Minimization and Design of the Next State Decoder. Asynchronous Sequential Logic: Analysis and Design, Race conditions and Cycles. Practical Design Aspects: Timing and Triggering considerations in the Design of Synchronous Circuits, Set up time, Hold time, Clock skew.				
Module 4		Hours 10		
Logic Families: Fundamentals of ECL, TTL, CMOS Logic family, Transfer Characteristics, Input and Output Characteristics, TristateLogic, Wired Logic and Bus Oriented structure, Practical Aspects, MOS gates, MOS Inverter, CMOS inverter, Rise and fall time in MOS and CMOS gates, Speed Power Product, Interfacing BJT and CMOS gates. Reference 1. Wakerly J F, "Digital Design: Principles and Practices", Prentice-Hall, 2nd Ed., 2002 2. Mano M. M., "Digital Logic Design", Prentice Hall 1993.				

Subject Code EE251	Electrical Power Generatio	n Credits: 3 (3-0-0) Total hours: 56		
Course Objectives	Course Objectives Electrical Power plays significant role in day to day life of entire mankind. This course concerns the generation of power along with the economic aspects. Principle of operation, Performance of electric power generation plants (Hydel, Thermal and nuclear).			
Module 1	Hours:9			
Generation of electrical energy by conventional methods, Comparison of different sources of power. Nonconventional sources of energy.				
-	on: Classification of hydro plant, Selection urbine and modelling of turbine. Plant layou	-		
Module 2		Hours : 9		
Thermal Power Plant: Line diagram of the plant. Boilers: working and classification. Super-heaters, Re-heaters, economizers, air-heaters, draft system, feed water heaters and evaporators, cooling water supply and cooling towers. Speed governing and governors. Station auxiliaries. Generator cooling and exciters.				
Module 3	Module 3 Hours : 9			
Nuclear Power Generation: Principle of energy production by nuclear fission, schematic of nuclear power plant, nuclear fuels and fertile materials, nuclear reaction construction. Chain reaction, Moderator, coolants, control of fission, Reactor operation, different types of reactors, Problem of nuclear power plants.				
Module 4		Hours : 9		
Economics of Power Generation: Cost of electrical energy, Methods of determining depreciation, straight line, diminishing value and sinking found method. Types of Tariffs influence of load and power factor on tariff, economics of power factor improvement. Commissioning and Testing of Transformers and Alternators: Transformer connections, arrangement of transformer, commissioning and testing of transformers and alternators, supply system to station auxiliaries.				
Module 5		Hours : 9		
Problems with conventional energy, possible options for use as non-conventional sources. Solar Energy: solar thermal & photovoltaic conversion of solar energy, applications of solar energy. Wind energy: Betz limit, wind energy conversion devices: classification, characteristics, and applications. Hybrid systems, safety and environmental aspects.				

Reference books	 Soni, Gupta, Bhatnagar and Chakrabarti, "A text book on Power Systems Engineering," DhanpatRai and Sons, New Delhi, 1997. C.L.Wadhwa,"Generation, Distribution and Utilization of Electrical Energy," Wiley Eastern Ltd, N.D.1992. M.V. Deshpande, "Elements of Electrical Power station Design Pitman," NewDelhi, TMH, 1990. G. D.Rai, "Non-conventional Energy Sources", Khanna Publishers, New Delhi, 2007.
--------------------	---

Subject Code EE 252	Electrical Machines-I	Credits: 4 (3-1-0) Total hours: 56		
Course Objectives	*	Understand the basic concepts about the dc machines and transformers. Learn the various tests for studying the performance of the machines. Learn about the various tests on transformers and its performance.		
Module 1		Hours 15		
methods of l commutation,	or- Construction, principle of operation, windi- imiting effects of armature reaction, commut operating characteristics of shunt, series, com- cteristics, power flow diagram, testing of d.c gene	ation process, methods of improving pound generator O.C.C, internal and		
Module 2		Hours 15		
speed regulatifield control r	D.C Motor- Principle of operation, torque equation, characteristics of shunt, series, compound motors, speed regulation, starters, speed control methods – voltage control, armature resistance control and field control methods, braking – regenerative braking, rheostatic braking and plugging, testing of d.c motors - brake test, Swinburne's test, Hopkinson's test, retardation test, fields test, applications.			
Module 3		Hours 15		
diagrams, equ core losses, e	ners - construction, principle of operation, emf ivalent circuit, losses, testing of transformers – l ficiency, voltage regulation, all-day efficiency, equal voltage ratios, sumpner test, auto transfo	oad test, OC and SC test, separation of parallel operation of transformers with		
Module 4				
Module 4		Hours 11		
3-Ø transform	ers –construction, operation, different connection ott connection, on -load and off-load tap changers	ns of three phase transformers - v-v		
3-Ø transform	—	ns of three phase transformers - v-v s, different types of cooling.		
3-Ø transform	ott connection, on -load and off-load tap changers 1. A.E Fitzgerald, Charles Kingsley, Stepher	ns of three phase transformers - v-v s, different types of cooling. n D Umans"Electrical Machinery" 6 th		
3-Ø transform connection, sc	 A.E Fitzgerald, Charles Kingsley, Stepher Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design 2001 S.J Chapman, "Electric Machinery Fundame 	ns of three phase transformers - v-v s, different types of cooling. In D Umans"Electrical Machinery" 6 th In Of DC Machines" CBS, 3 rd Edition, Intals" McGraw Hill, 4 th Edition, 2010.		
3-Ø transform connection, sc Reference	 ott connection, on -load and off-load tap changers A.E Fitzgerald, Charles Kingsley, Stepher Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design 2001 	ns of three phase transformers - v-v s, different types of cooling. In D Umans"Electrical Machinery" 6 th In Of DC Machines" CBS, 3 rd Edition, Intals" McGraw Hill, 4 th Edition, 2010.		

Subject Code	Economics	Credits: 3(3-0-0)
HS 250		Total hours: 45
Course Outcome	The fundamental objective of this course aims at providing a comprehensive perspective in the broad area of economics and its scenario. The course aspires to bring the students into	
	the light of economic decision makings, and facilitates tohave grip	e
Module 1	Introduction to Economics	2 hours
Constructing a Mode	l, Optimization and Equilibrium in market demand and supply, Con	parative statistics and
asset allocation.		
Module 2	Utility, Choice, Budget Constraint and Consumer Preference	6 hours
Cardinal Utility, Cor	structing a Utility Function, Budget constraint in case of two good	
•	Subsidies, and Rationing. Indifference curve, Marginal Rate of Sul	
•	Indifference curve from utility functions, Marginal Utility vs MRS	
Module 3	Demand, Revealed Preference & Slutsky Equation	6 hours
	Goods, Income Offer Curves and Engel Curves, Perfect Substitute	
	, The Idea of Revealed Preference, From Revealed Preference	· •
6	stitution Effect, The Income Effect, Rate of Change and change of I	e e
Module 4	Consumer Surplus, Market Demand & Equilibrium	6 hours
	te Good, Constructing Utility from DemandFrom, Change inConsur	
	The Inverse Demand Function, The Extensive and the Intensive Mar	
	Supply, Market equilibrium, Inverse Demand and Supply Curves	giii, Elastienty, Elastienty
Module 5	Technology and Profit Maximization	3 hours
	Describing Technological Constraints, Properties of Technology	
• •	shing Technical Rate of Substitution, Returns to Scale, Profits, Th	
	f Firms, Short-Run Profit Maximization, Profit Maximization	-
Maximization and Re		in the Long Itan, From
Module 6	National Income Accounting	2 hours
	Related concepts, Nominal or real GDP, Methods of measuring NI.	
Module 7	Determinants of Equilibrium Output and IS – LM Model	8 hours
	and Equilibrium output, Consumption function and aggregate de	
	Full employment, Asset and Goods Market, Equilibrium and adjustm	-
LM model	un employment, Asset and Ooods Market, Equinorium and aujusti	ient to equinorium in 15 –
		Q h anna
Module 8	Money and Fiscal policy and International Linkages	8 hours
-	policy, crowding out, composition of output and policy mix, l	-
-	nce of Trade and capital mobility, Mundell-Fleming model, Ca	pital Mobility and fixed
exchange rates		1
Module 9	Aggregate Demand, Supply and Growth	4 hours
00 0	nd policies, Aggregate Supply, Fiscal and monetary policy under Al	ternative supply
	untity theory and neutrality of Money.	
	R.: Intermediate Microeconomics, W.W. Norton & Co., New work	
	nis, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macmillan, L	ondon
	rnbusch and Stanley Fisher: Macroeconomics, McGraw Hill.	
Barro Kobe	rt J. "Macroeconomics, New York, John Wiley.	

Subject	Value Education	Credits: 1 (1-0-0)
Code:		Total hours: 14
VE200		
Course	It aims at Holistic Development	
Objectives		
Module 1	Ethics in Engineering	4 hours
Concepts of	Values and Ethics, History and Purposes, Utilitarianism, Duties,	Rights, Responsibility,
Virtue, Hones	ty, Moral Autonomy, Obligations of Engineering Profession and mora	al Propriety
Module 2	Engineer's Moral responsibility	3 hours
	lity, Engineers-Employers Liaison, Whistle-Blowing and Its Moral Ju	
Module 3	Computer Ethics	3 hours
Social Impact	of Computer, Gender-Issues and Privacy, Cyber Crime, Ethical use o	f Software
Module 4	Intellectual property	4 hours
Revocation of	ypes, Rights and Functions, Patents, Trademark, Grant of Patent in f Patents, Compulsory Licensing, Acquisition of Inventions by the Go on of Patents, WTO	
Texts:	1. Vinod V. Sople, Managing Intellectual Property: The PHI,2006	Strategic Imperative,
	2. Govindarajan, Natarajan&Senthil Kumar, Engineering Ethic	
	3. Robin Attfield, A Theory of Value and Obligation, London:	
	4. Jones and barlett, "Cyber Ethics: Morality and Law in Cybe	er Space
	Case Studies from Newspapers	
Reference		

Subject Code EE 253	Electrical Machines- I Lab	Credits: 2 (0-0-3) Total hours:45	
Course Objectives	Laboratory exercises and assignments based on hardware to supplement EE205.		
	 Open circuit and short circuit test on single phase transformer. Direct load test on single phase transformer Sumpner's test on single phase transformer Scott connection of two single-phase transformers Parallel operation of two different KVA 1-phase transformers Magnetization characteristics of dc shunt generator Performance characteristics of dc shunt generator Performance characteristics of dc series generator Swinburne's test on dc shunt motor Speed control of dc shunt motor Load characteristics of dc shunt motor Performance characteristics of dc compound motor Field test on dc series motor 		
Reference	 A.E Fitzgerald, Charles Kingsley, Stephen D Umans "Electrical Machinery" 6th Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design Of DC Machines" CBS, 3rd Edition, 2001 S.J Chapman, "Electric Machinery Fundamentals" McGraw Hill, 4th Edition, 2010. 		
books	 I.J.Nagarath, D.P Kothari, "Electric Machines" Tata McGraw Hill, 4th Edition, 2010. 		

Subject Code EE254	Analog and Digital Electronics Lab	Credits: 2 (0-0-3) Total hours: 45
Course Objectives	Laboratory exercises and assignments based on hardwar supplement EE251 and EE252.	re and SPICE simulation to
	 Testing of Diode clipping (Single/Double ended peak detection Testing of Clamping circuits: positive clamping Testing of a transformer less Class – B push determination of its conversion efficiency. Testing of Half wave, Full wave and Bridge without Capacitor filter. Determination of rip efficiency. Wiring and Testing for the performance of BJT for f0 ≤ 10 KHz Testing for the performance of BJT – Hartley of RF range f0 ≥100KHz. Testing for the performance of BJT - Crystal Osc Study of BASIC Gates Study of Full & Half Adder & Subtractor using C Study of Multiplexer Study of Demultiplexer Study of Shift Register 	/negative clamping. pull power amplifier and Rectifier circuits with and pple factor, regulation and T-RC Phase shift Oscillator &Colpitts Oscillators for sillator for f0 > 100 KHz Gates
Reference books	 M.Morris Mano, "Digital Electronics", Prentice H Edition, 2001. J.F. Wakerly, "Digital Design Principles and Practic 3. R.J.Tocci, "Digital Systems – Principles & Applica New Delhi, 10th Edition, 2008. A S Sedra& K C Smith, "Microelectronic Circuits", Press.2005 Donald A. Neamen, "Electronic Circuit Analysis at 2003, 2nd Edition 	ces", PHI, 1999. tions", Prentice Hall India, , Oxford University

Subject Code EE300	Electrical Power Transmission and Distribution	Credits: 4 (3-1-0) Total hours: 56
Course Objectives	This course is an extension of electric power g with basic theory of transmission lines modellin analysis. Also this course gives emphasis on transmission lines, cables and insulators.	ng and their performance
Module 1	Но	urs : 12
parameters: resistance, i double circuit line, effect lines: representation of (Nominal-T, Nominal- π evaluation of ABCD parameters)	r system, transmission voltages, and bundled cond nductance and capacitance calculations - single ph ect of earth on transmission line capacitance. perf lines, classification of transmission lines, short tr , End condenser method) length transmission line rameters, surge impedance and SIL of long lines, wa incident, reflected and refracted waves, represen-	ase and three phase lines, formance of transmission ransmission line, medium e, long transmission line, ave length and velocity of
Module 2	J	Hours : 14
applications. Skin effect loss, factors and conditi between power and co- insulators, voltage distr	and ice on weight of conductor, stringing chart proximity effect, Ferranti effect, corona: The pheno ions affecting coronal loss, corona in bundled con mmunication lines. Overhead line insulators: insu- ribution over insulator string, improvement of st ors. Capacitance grading and static shielding.	omenon of corona, corona ductor lines. Interference alator materials, types of
Module 3		Hours : 12
materials, calculations of core belted cables.	lassification of cables, types of cables, construct f insulation resistance and stress in insulation. Cap Grading of cables - capacitance grading, des	
	nission lines: choice of voltage, selection of conductor, configuration. Power system earthing.	
	ctor, configuration. Power system earthing.	
number of circuit, condu Module 4 Power system transient recovery transient due t distortion, reflection and conditions, open circuited lattice diagrams. Arcing coordination. Extra hig	ctor, configuration. Power system earthing.	Hours : 10 Hours : 10 hort circuit of alternator, on of surges, attenuation, with different types of active junctions. Bewley's surge arrestors insulation nission, use of bundled

Distribution: comparison of various distribution systems, voltage drop in distribution, Kelvin's Law, general design consideration, load estimation.

- 1) Soni, Gupta, Bhatnagar and Chakrabarti, "A text book on Power Systems Engineering," DhanpatRai and Sons, New Delhi, 1997.
- 2) C.L.Wadhwa,"Generation, Distribution and Utilization of Electrical Energy," Wiley Eastern Ltd, N.D.1992.
- 3) W.D. Stevenson Jr., "Elements of Power System Analysis", McGraw, Hill, 1968.

Subject Co	ode	Electrical Machines-I	I	Credits: 4 (3-1-0)
EE 301		(Induction Machines &		Total hours: 56
		Synchronous Machines)		
Course Objective		To learn the basic concepts about the different types of induction and synchronous machines. To understand the speed control and the starting operations.		
Module 1		Hours 15		5
rotor MMF, 1 slip character	Induction Machines- construction, principle of operation, types of induction motors, phasor diagram, rotor MMF, rotor frequency, rotor current and production of torque, slip, equivalent circuit. torque-slip characteristics, maximum torque, no-load and blocked rotor tests, losses and efficiency, circle diagrams, starters, direct on line starters, star-delta and auto transformer starters.			
Module 2			Hours	s 15
Module 3		ircuit, starting methods, applications.	Hours	
armature read ZPF methods power, transi	ction, v s, two ent, su	uction, principle of operation, winding fa voltage regulation, methods of predetermir reaction theory, power-angle characteristi b transient and steady state reactance, par ion and mechanical input.	nation of received of received and receive	egulation – EMF, MMF and onization and synchronizing
Module 4			Hours	s 11
Synchronous motor -principle of operation, method of starting, equivalent circuit, effect of increased load with constant excitation, effect of changing excitation with constant load. V curves and inverted V curves, power developed, power circles, hunting, different starting methods.				
	2. Cl	 A.E Fitzgerald, Charles Kingsley, Stephen D Umans "Electrical Machinery" 6th Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design Of DC Machines" CBS, 3rd Edition, 2001 		
Reference books		J Chapman, "Electric Machinery Fundamentals" McGraw Hill, 4 th Edition, 2010. S Bimbhra, "Electrical Machinery" 7th Edition, Khanna Publishers, 2008.		

Subject Code	Control Systems	Credits: 4 (3-1-0)	
EE 302		Total hours: 42	
Course Objectives	To be familiar with basic control configurations and modelling of physical systems and analyze their time a	*	
Module 1		Hours 12	
Physical syste	modelling: Introduction of Open loop and Closed loop ms, Mechanical and Electrical systems, Transfer funct , Signal flow graphs, Mason's Gain formula, Feedback c	ions, Block diagrams, Block diagram	
Module 2		Hours 12	
Stepper motor Module 3	sponse with P, PI and PID controllers, Performance s, Tacho-generators, DC and AC Servomotors. bility: Necessary conditions and Routh Criterion, Relation	Hours 10	
*	struction, Gain margin and Phase margin, Addition of po		
Module 4 Hours 12		Hours 12	
· ·	nain Analysis:Frequency response specifications, Freq ar plot, Nyquist criterion, Closed loop frequency response	-	
Module 5	Module 5 Hours 10		
of State, State	Techniques: Design of Lead, Lag, Lead-Lag Compensi- Variables and State Model, State representation of Con- te equations, Concept of Controllability and Observability	ntinuous-time systems, State equation,	
Reference books	 J. Nagrath M. Gopal, "Control Systems Engineering", New Age Int., 4th Edition. K. Ogata, "Modern Control Engineering", PHI, 3rd Edition. M.Gopal, "Control Systems, Principles and Design", Tata McGraw Hill,4th Edition. 		

Subject Code	Microprocessors and	Credits: 3(3-0-0)
EE303	Microcontrollers	Total hours:42
Course Objectives	To introduce the student with knowledge about architecture, interfacing andprogramming with 8086 microprocessors and 8051 microcontrollers. Also to give a brief introduction to ARM 7 and ARM 9 micro controllers. After studying this subject, the student should be able to designMicroprocessor/Microcontroller based system.	
Module 1	<u> </u>	Hours 10
	ory of Microprocessors, Basics of computer a mily Overview, 8085 Architecture, Assembly Langua	
Module2		Hours 12
System, Program Procedures, Macro Module 3	development steps,Implementing Standard Progra s.	m Structure in 8086 ALP, Strings, Hours 10
Programmable Tin	and Output Modes and Interfacing, Interrupts, H ner/Counter, 8255 Programmable Peripheral Interface 279 Programmable Keyboard/ Display Interface, ADO	e, 8259 Priority Interrupt Controller,
Module 4		Hours 10
	ontroller: Architecture, Memory Space, Data Type Language Programming, Introduction to ARM pro	-
Reference books	 Hall D.V., "Microprocessors and Interfacing", McGraw Hill Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085", Penram International Publishing, Fifth edition Muhammad Ali Mazidi, Janice GillispieMazidi and Rolin D Mckinlay," 8051 Microcontroller and Embedded systems", Pearson Education. 	

Subject Code EE 304	Electrical Machines Lab-II	Credits: 2 (0-0-3) Total hours: 45
Course Objectives	Laboratory exercises and assignments based on hardware to supplement EE254.	
	 Load characteristics of single phase capacitor start & run motor Direct load test on 3phase squirrel cage induction motor No load and block rotor test on three phase induction motor Circle diagram of 3-phase induction motor- performance evaluation. Voltage regulation of an alternator by emf and mmf method. Synchronization of the alternator with infinite bus bar Voltage regulation of an alternator by zpf method V' and inverted 'V' curves of a synchronous motor 	
Reference books	 A.E Fitzgerald, Charles Kingsley, Stephen D Umans "Electrical Machinery" 6th Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design Of DC Machines" CBS, 3rd Edition, 2001 S.J Chapman, "Electric Machinery Fundamentals" McGraw Hill, 4th Edition, 2010. I.J. Nagarath, D.P Kothari, "Electric Machines" Tata McGraw Hill, 4th Edition, 2010. 	

Subject Code	Microprocessor and	Credits: 2(0-0-3)	
EE305	Microcontrollers Lab	Total hours:3hrs/week	
Course Objectives	To give hands on experience on 8085/8086 and 8	051 programming	
List of Experiments			
Experiment No. 1			
8085 and 8086 kit fam	iliarization and basic experiments		
Experiment No. 2			
Programming exercise	: sorting ,searching and string		
Experiment No. 3			
Interfacing with A/D ar	nd D/A converters		
Experiment No. 4			
Interfacing with stepper	r motors		
Experiment No. 5			
keyboard interfacing to	8086		
Experiment No. 6			
8255 interface to 8086			
Experiment No. 7			
Assembly language pro	pgramming of 8051		
Experiment No. 8			
Timer programming of	Timer programming of 8051 ,using interrupts		
Experiment No. 9			
LCD interfacing to 805	1		
Experiment No. 10			
Mini-Project	Mini-Project		

Subject Code ES300	Environmental Studies	Credits: 3 (3-0-0) Total hours: 44
Course Objective	human developmental activities vs environment climate change national and	
Module 1		Hours: 2
Multidisciplinary awareness.	nature of environmental studies:Definition, scope and import	ance, Need for public
Module 2		Hours: 8
Use and exploitant Food resources : modern agricultur resources : Grow energy sources, C landslides, soil er	ods, drought, conflicts over water, dams-benefits and problem ion, environmental effects of extracting and using mineral r World food problems, changes caused by agriculture and over the fertilizer-pesticide problems, water logging, salinity, ing energy needs, renewable and non renewable energy so Case studies; Land resources : Land as a resource, land deg osion and desertification; Role of an individual in conservation esources for sustainable lifestyles.	esources, case studies; overgrazing, effects of case studies; Energy urces, use of alternate radation, man induced
Module 3		Hours : 10
and decomposers ecological pyram Following ecosy	cept of an ecosystem, Structure and function of an ecosystem, being flow in the ecosystem, Ecological succession, Food hids, Introduction, types, characteristic features, structure extern, Forest ecosystem, Grassland ecosystem, Desert s, streams, lakes, rivers, oceans, estuaries).	chains, food webs and and function of the
Module 4		Hours: 12
Biodiversity and its conservation: Introduction – Definition : genetic, species and ecosystem diversity, Bio geographical classification of India, Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity, Eco-cultural heritage of India-various festivals related to Environment, Tradition of community conserved areas-Sacred forests, sacred tanks, sacred mountains, sacred rivers.		

Module 5	Hours: 12
----------	-----------

National and International Environment related developments

Environmental ethics : Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear, accidents and holocaust, Environment related Acts, Issues involved in enforcement of environmental legislation, Public awareness, Wasteland reclamation, Consumerism and waste products, UN Frame Convention Climate Change, Kyoto protocol, concept of carbon credits, latest CoP meet Agenda; Filed Work(equal to 5 lecture hours): Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/sacred groves/sacred forests, Visit to a local polluted site-Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes, etc.

	1. Textbook for Environmental Studies For Undergraduate Courses of all Branches of
	Higher Education (online book -UGC Website), Erach Bharucha, University Grants
	Commission, India.
	2. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science and Environment, Edi:1st,1997
	ISBN-13 9788186906200; ISBN-10 8186906207
	3. R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005.
Reference books	4. Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill, 2006.
DUOKS	 Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press, 2005.
	6. Masters, Gilbert M., Introduction to Environmental Engineering and Sciences, Prentice
	Hall India, 1991

Subject Code	Switchgear and Protection	Credits: 4 (3-1-0)	
EE350		Total hours: 56	
Course	Course This course introduces all varieties of circuit breakers and relays for protection o		
Objectives	Objectives generators, transformers and feeder bus bars from over voltages and other hazards.		
	It emphasis on neutral grounding for overall protectio		
Module 1		Hours: 10	
• •	f fuses, application of HRC fuses. Neutral Grounding		
-	effects of ungrounded neutral on system performance.		
	, reactance and arc suppression coil or peterson coil. arc		
Module 2		Hours: 10	
Circuit Breaker	s: Arcs, Interruption, RRRV, current chopping, inter	ruption of capacitive current,	
resistance swite	ching. Types of circuit breakers (minimum and bulk	oil circuit breakers, air blast	
circuit breakers	, vacuum and SF6 circuit breakers), Circuit Breaker ratio	ngs, Auto reclosure.	
Module 3		Hours: 14	
Protective relay	ving: Need for power system protection, evolution of	of protective relays, zones of	
protection, prot	ective relays and schemes. Electromagnetic relays, mi	icroprocessor based protective	
relays. Over cu	rrent protection, distance protection, auto re-closing. Pi	lot relaying schemes, bus zone	
protection, prot	tection of generators, static relays, microprocessor ba	ased relays, advantages, over	
current relays, c	lirectional relays, distance relays.		
Module 4		Hours: 12	
Protection of ge	enerator: Protection against abnormal condition, stator	and rotor protection. restricted	
earth fault and	inter-turn fault protection. Protection of transforme	ers: Incipient fault, differential	
protection, per	centage differential protection, restricted earth fault	protection, Buchholtz relay	
Protection.			
Module 5		Hours: 10	
Protection again	nst over voltages: Causes of over voltage ground wires,	surge absorbers and diverters,	
insulation coord	lination:BIL, impulse ratio, standard impulse test wave	, volt-time characteristics. Bus	
bar protection:	Frame leakage scheme, translay scheme, circulating c	current scheme introduction to	
protection again	st surges.		
	1) Ravindranath, Chander, "Power System Protect	ion and Switchgear," Wiley	
	Eastern, 1994.		
	2) C. L. Wadhwa, "Electrical Power Systems," 2nd Ed	lition, PHI, 1993.	
	3) Arun G. Phadke, S H Horowitz, "Power System	Relaying, 2nd Edition, John	
	Wiley, 1995.		
Referenc	4) Badriram, D. N. Vishwakarma, "Power System	Protection and Switchgear,"	
e books	ТМН, 1995.		
	5) J. L. Blackburn and T. J. Domin, "Protect	ve Relaying: Principles &	
	Applications," CRC Press, 2006.	11:1 1005	
	6) S. S. Rao, "Switch gear and protection," Khanna pu		
	7) T. S. MadhavaRao, "Power system protection: Stat	ic Kelays, ⁷ I ata McGraw Hill,	
	1989 8) V. C. Paithanger "Eurodemontals of neuron system r	notaction "DII	
	8) Y. G. Paithangar, "Fundamentals of power system p	protection, PHI	

Subject Code EE 351	Power System Analysis		Credits: 4 (3-1-0) Total hours: 56
Course Objectives	To learn the fundamentals of power system for designing a system that meets specific need. To analyse the phasor techniques in the analysis of power systems. To know the necessity of load flow in a regulated system. To examine the need of various analysis like fault analysis, short circuit analysis stability analysis, steady state and transient analysis.		
Module 1		Hours 10	
Modelling of power system components: representation of power system components, single phase representation of balanced three phase networks, single line diagram, per unit quantities, impedance diagram, reactance diagram, steady state model of synchronous machine, power transformer, representation of loads, formulation of bus impedance and admittance matrix.			
Module 2		Hours 12	
Power flow Analysis: Network model formulation, load flow problem, Gauss Seidel, Newton Raphsonand fast decoupled methods, comparison of load flow methods, control of voltage profile: excitation control, VAR generators, tap changing transformers, load flow for DC links.			
Module 3		Hours 10	
Symmetrical fault Analysis: Transients on a transmission line, Short circuit analysis of synchronous machine, symmetrical fault analysis in the network, fault analysis through impedance matrix, circuit breaker rating, selection of circuit breakers, current limiting reactors			
Module 4		Hours 12	
Unsymmetrical fault analysis: Symmetrical components, Concept of sequence impedances and sequence networks of synchronous machine, transmission lines, transformers, power system, LG, LL, LLG and open circuit faults analysis through sequence components, Digital methods for fault analysis			
Module 5	Module 5 Hours 12		
Stability Analysis Angle stability dynamics of a synchronous machine, swing equation, power angle equation, steady state and transient stability, equal area criterion, numerical solution of swing equation, multi machine stability analysis, Voltage stability: Reactive power flow and voltage collapse, mathematical formulation of voltage stability problem, voltage stability analysis.			
Reference books	 D P Kothari,I J Nagrath, "Power System Engineering", Tata Mc,Graw 2nd Edition C.L.Wadhwa, "Electrical Power Systems", NewAge International Publishers, 6th Edition W.D.Stevenson Jr. "Elements of Power System Analysis", TMH, 1968. I.J.Nagrath, D.P.Kothari, "Modern Power System Analysis", TMH, 4th Edition, 2011 		

Subject Co	de Dowon Electronica	Credits: 4 (4-0-0)	
EE 352	^{de} Power Electronics	Total hours: 56	
Course Objectives	Understand the principles of operation of particular various control strategies of various p	Learn the static and dynamic characteristics of power semiconductor devices. Understand the principles of operation of power electronic converters. Study the various control strategies of various power converters. Study the design parameters for control circuitry requirement of various converters.	
Module 1		Hours 12	
Introduction- power diodes, types of power semiconductor switches and V-I characteristics, Thyristors: structure, static and dynamic characteristics, device specifications and ratings, methods of turning on (gate firing circuits), methods of turning off (commutation circuits), IGBTs- basic structure and V-I characteristics. MOSFETs - basic structure and V-I characteristics.			
Module 2		Hours 12	
Phase Controlled Rectifiers: single phase, half wave rectifier with R, RL and RLE loads, full wave half controlled and fully controlled converters with R, RL and RLE loads, input side harmonics and power factor, effect of source inductance. Three phase-half wave rectifier with R and RL loads. Full wave half controlled and fully controlled converters with R, RL loads, single-phase and three-phase dual converters.			
Module 3		Hours 10	
converters: si	A.C. Voltage controllers: operation of controllers for R, R-L loads, current and power factor. Cyclo- converters: single phase mid-point and bridge configuration with R, R-L loads, circulating current mode of operation		
Module 4	Module 4 Hours 12		
choppers with	Choppers: principle of operation, time ratio control and current limit control, step-up and step-down choppers with R, RL and RLE loads. Switching regulators: buck regulators, boost regulators, buck-boost regulators. Switched mode power supply: principle of operation and analysis.		
Module 5		Hours 10	
Inverters: principle of operation, series inverter, parallel inverter, single phase bridge inverters. Three phase bridge inverters- 120^{0} and 180^{0} degrees mode of operation, single, multiple and sinusoidal pulse width modulation.			
Reference books	 M.H. Rashid, "Power Electronics - Circuits, Devices and Applications", PHI, 3rd Edition, 2003. Ned Mohan, Undelandand P Robin, "Power Electronics Converters, Applications and Design", John Wiley & Sons, 3rd Edition, 2007 G.K.Dubey, "Thyristorised Power Controllers", Wiley Eastern Ltd, 1993. P.S.Bimbhra, "Power Electronics", Khanna Publishers, New Delhi, 2002 		

1	Integrated Circuits	Credits: 3(3-0-0)	
EE353		Total hours:42	
Course Objectives	To develop the skill of analysis and design of various circuits using operational Amplifiers. To develop design skills to design various circuits using different data conversion Systems.		
Module 1]	Hours 12	
Configuration, Differentia Op Amp circuit, Loop g	Operational Amplifier and its Linear application: Ideal Op Amp circuit Analysis, Inverting and Non-Inverting Configuration, Differentiator, Integrator, The Negative resistance converter, Negative Feedback, Feedback in Op Amp circuit, Loop gain. Circuits with Resistive Feedback: Current-to-Voltage Converters, Voltage-to- Current converters, Current Amplifiers, Difference Amplifiers, Instrumentation Amplifiers and Applications.		
Module2]	Hours 08	
Realization of higher orde	filters (RC, RLC), Emulation of Inductor using Op-Amps-R-C, Salen-Key Biquad, Tow-Thomas Biquad, Realization of higher order filters, All-pass filter.		
Module 3		Hours 10	
Nonlinear circuits: Voltage Comparators, Comparator Applications, Zero-crossing detector, Precision rectifiers, Schmitt trigger (Inverting &Non Inverting),AstableMultivibrator, Triangular wave generator. Non idealities of Op-Amps and their effects. NE555 Timer circuits: Internal architecture, Schmitt trigger, AstableMultivibrator,MonostableMultivibrator, Saw-Tooth Wave generator.			
AstableMultivibrator,Mon			
AstableMultivibrator,Mon Module 4			
Module 4 Digital to Analog (D/A) Offset error, Gain error, conversion techniques and	Converters: Types of D/A converters, Accurac Integral and Differential Nonlinearity. Analo	w, Resolution and Conversion speed, og to digital (A/D) converters: A/D	
Module 4 Digital to Analog (D/A) Offset error, Gain error, conversion techniques and Phase Locked Loop: Bl	Converters: Types of D/A converters, Accurac Integral and Differential Nonlinearity. Analo	w, Resolution and Conversion speed, bg to digital (A/D) converters: A/D range and Capture range, Typical	
Module 4 Digital to Analog (D/A) Offset error, Gain error, conversion techniques and Phase Locked Loop: Bl applications of PLL, Basic Reference books 1. Ser	Converters: Types of D/A converters, Accurac Integral and Differential Nonlinearity. Analo their Nonlinearity's. ock schematic and Analysis of PLL, Lock	Hours 12 y, Resolution and Conversion speed, og to digital (A/D) converters: A/D range and Capture range, Typical) and their applications.	
Module 4 Digital to Analog (D/A) Offset error, Gain error, conversion techniques and Phase Locked Loop: Bl applications of PLL, Basic Reference books 1. Ser I I 3.Sed	Converters: Types of D/A converters, Accurac Integral and Differential Nonlinearity. Analo their Nonlinearity's. ock schematic and Analysis of PLL, Lock Principles of operation of VCO and timer (555) gio Franco, "Design with Operational Amplifier McGraw Hill Book Company 1998. ra A.S. & Smith K.C., "Microelectronic Circuits	Hours 12 y, Resolution and Conversion speed, og to digital (A/D) converters: A/D range and Capture range, Typical) and their applications. rs and Analog Integrated Circuits", s", Oxford University Press 1998	
Module 4 Digital to Analog (D/A) of Offset error, Gain error, conversion techniques and Phase Locked Loop: Bl applications of PLL, Basic Reference books 1. Ser I 3.Sed 4.Ram	Converters: Types of D/A converters, Accurac Integral and Differential Nonlinearity. Analo I their Nonlinearity's. ock schematic and Analysis of PLL, Lock c Principles of operation of VCO and timer (555) gio Franco, "Design with Operational Amplifier McGraw Hill Book Company 1998.	Hours 12 y, Resolution and Conversion speed, og to digital (A/D) converters: A/D range and Capture range, Typical) and their applications. rs and Analog Integrated Circuits", s", Oxford University Press 1998	

Subject Code EE354	Electrical Simulation Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs		
Course Objective	Laboratory exercises and assignments based on hardware and MATLAB simulation to supplement EE352.			
	Experiments lists			
1) Simulation	of 1- Φ half wave controlled rectifier with R and R-L	load using MATLAB.		
2) Simulation and R-L load.	2) Simulation of 1- Φ full wave controlled bridge rectifier and semi-controlled bridge rectifier with R and R-L load.			
3) Simulation of 3- Φ full wave controlled rectifier with R and R-L load.				
4) Simulation	4) Simulation of a basic series inverter.			
5) Simulation	5) Simulation of parallel inverter.			
6) Simulation	6) Simulation of dual converter.			
7) Simulation	7) Simulation of step down/buck chopper and step up/boost chopper.			
8) Simulation	8) Simulation of 120° and 180° modes of operation of inverter.			
9) Simulation	9) Simulation of sinusoidal pulse width modulation.			
10) Simulation	10) Simulation of hysteresis band pulse width modulation.			
11). Simulati	11). Simulation of speed control schemes for DC and AC motors.			
12. Mathema	12. Mathematical modeling of Power Electronic Systems.			
Reference books	 M.H. Rashid, "Power Electronics - Circuits, Devic Edition,2003. Ned Mohan, Undelandand P Robin, "Power Electro and Design", John Wiley & Sons,3rd Edition,20 3 .P.S.Bimbhra, "Power Electronics", Khanna Publi 	onics Converters, Applications		

Subject Code EE355	Control Systems Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs	
Course Objective	Laboratory exercises and assignments based on ha to supplement EE302.	assignments based on hardware and MATLAB simulation	
	Experiments lists		
motor 2. Deter 3. Deter 4. Chara 5. Chara 6. Desig 7. Timer 8. Frequ 9. Desig 10. Simul	mination and analysis of transfer function for Speed co- mination and analysis of transfer function of DC server mination and analysis of transfer function of AC server acteristics of Stepper motor acteristics of Synchrotransmitter / receiver n of PI and PID controller response analysis of first and second order systems usi ency response analysis of second order system using N n of lag-lead compensator link model for servo system ink model for speed control of motors	p-motor p-motor ng MATLAB/SIMULINK	
Reference books	Reference 1. I.J. Nagrath, M. Gopal, "Control Systems Engineering", New Age International 4th Edition 2. K. Ogata, " Modern Control Engineering", PHI, 3rd Edition. 3. M.Gopal, "Control Systems, Principles and Design", Tata McGraw Hill,4th		

Subject Co EE 400	le Electrical Drives	Credits: 3 (3-0-0) Total hours: 56	
Course Objectives	Understand the classification and characteristics of types and operations of DC drives. Analyse the variable induction motor drives	•	
Module 1		Hours 10	
dynamics of torque charac	Introduction: Electrical drives, parts of electrical drives, selection of power rating for drives, dynamics of electrical drives, fundamental torque equation, components of load torques, speed-torque characteristics of various types of motors and loads, condition of steady state stability. DC shunt motor and series motor speed-torque characteristics in different quadrants		
Module 2		Hours 10	
Controlled rectifier fed DC drives:1-phase fully and half controlled converter fed dc separately shunt and dc series motor, mathematical analysis of 1-phase converter fed dc motors, 1-phase dual converter- waveforms, operations with and without circulating current. Steady state analysis of three phase fully and half controlled DC motor drive. Power factor considerations of converters, power factor improvement of phase controlled converters.			
Module 3		Hours 8	
Chopper controlled fed DC drives: Single-quadrant chopper controlled drives, evaluation of performance parameters for separately excited and series motor drives. Two quadrant and four quadrant chopper controlled drives. Closed loop control of dc drives.			
Module 4		Hours 10	
Stator voltage control of 3-phase induction motors by AC voltage controllers. VSI fed induction motor drives, constant v/f control, constant flux control, constant slip-speed control, torque pulsation, effect of harmonics and its control, PWM control, flux weakening operation, Current Source Inverter (CSI) fed induction motor drives. Rotor side control of induction motors: static rotor resistance control, slip power recovery scheme, static scherbius drive, static Kramer's drive and their performance, speed- torque characteristics			
Module 5 Hours 07			
Control of synchronous motor: separate control &self-control of synchronous motor drive by VSI and CSI. Load commutated CSI fed synchronous motor, speed torque characteristics, closed loop control operation of synchronous motor drives, solar and battery powered drives.			
Reference books	2. M.H. Rashid, "Power Electronics - Circuits, Devices and Applications", PHI 2002		

Subject Code HS 400	Management		Credits: 3 Total hours:	
			45	
Course Outcome	Develops the ability to understand and analyse the broad asp financial dynamism	ect of mana	agement and its	
Module 1	Principles of Accounting	5 ho	ours	
Accounting Cycle	, Assumptions, Classifications of Accounts- Journal, Cash Bo	ok, Ledger,	Final Accounts-	
Manufacturing Ac	count, Trading Account, P & L Account, Balance Sheet.	-		
Module 2	Financial Statement Analysis	5 ho	ours	
Balance sheet, Pro	ofit and Loss Account, Economic vs Accounting Profit, Chang	es in Financ	cial Position,	
Funds flow and ca	ash flow statement.			
Module 3	Ratio Analysis	6 ho	ours	
Nature of Ratio A	nalysis, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profi	tability Rati	o, DuPont	
Analysis, Compar	ative statement and Trend Analysis, Inter-firm Analysis.			
Module 4	Working Capital	6 ho	6 hours	
Concept of working	ng Capital, Operating and Cash conversion Cycle, Permanent a	and Variable	e working	
Capital, Balance v	vorking capital position and Issues.			
Module 5	Time Value of Money	5 ho		
Time preference f	or money, Future value, Annuity, Perpetuity, Sinking fund fac	tor, Present	value, Annuity,	
Perpetuity, capital	recovery factor, Multiple period Compounding.			
Module 6	Capital Budgeting	8 ho	ours	
Nature and type o	f Investment decision, Net Present value, (NPV), Internal Rate	e of Return ((IRR), Payback	
period, Profitabili	ty Index, Nature and Behavior of Cost, Breakeven point, mult	iple produc	ts analysis,	
decision points.				
Module 7	Financial System	6 ho	ours	
Introduction to In	dian Financial System, Financial Institutions and Financial Ma	arkets.		
Module 8	Industrial Engineering & Project Management	4 ho	ours	
Work Study, Time	e Study, Industrial Psychology, Project Management (PERT, C	CPM)		
Text Books	I.M Pandey, Financial Management, 10th edition, Vikish Pul			
	Brealey Y Myers, Principles of Corporate Finance, McGrav			
	Rajiv and Anil: <i>Financial Management</i> , 2 nd Edition, Oxford	•	Press	
	L.M Bhole: Financial Institutions and Markets, Tata McGro	w-hill		

Subject Code EE401	Power Electronics and Drives Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs
Course Objective	Laboratory exercises and assignments based on hardware and MATLAB simulation to supplement EE303.	
	Experiments lists	
	 Experiments lists Static characteristics of SCR. Static characteristics of MOSFET and IGBT SCR turn - on circuit using synchronized UJT relaxation oscillator SCR digital triggering circuit for a single – phase controlled rectifier and AC voltage controller Series inverter with R & R L loads Parallel inverter with R & R L loads Buck Converter Boost converter Single – phase controlled full wave rectifier with R and R-L loads AC voltage controller using TRIAC and DIAC MOSFET or IGBT based single-phase full-bridge inverter connected to R load Speed control of universal motor using AC voltage controller Speed control of a separately excited D.C. motor using an IGBT or MOSFET chopper 	
	 14. Speed Control of D.C. motor using single semi converter 1. M.H. Rashid, "Power Electronics - Circuits, Devices and Applications", PHI, 2002. 	
Reference books	books Design", John Wiley & Sons,2002	
	3. P.S.Bimbhra, "Power Electronics", Khanna P4. G.K.Dubey, "Thyristorised Power Controllers"	

Subject Co EE 450	de Power System Operation Control	n and Credits: 3 (3-0-0) Total hours: 45		
Course Objectives	and describe their main functions. To state estimation. To acquaint students and automatic control. To acquaint st	To explain the performance of supervision and control systems of electric power and describe their main functions. To acquaint students with the principles of state estimation. To acquaint students with the problem of system control centre and automatic control. To acquaint students with the performance of electronic systems of control and equipment's of electrical networks		
Module 1		Hours 10		
characteristic neglecting lo power, conce	Economic Load Dispatch (ELD): Characteristics of power generation units, input output characteristics, cost curves, incremental fuel cost curves, formulation of ELD problem, ELD neglecting losses, ELD including losses, transmission loss coefficients in terms of real power, concept of penalty factor, solution methods for ELD, Lambda iteration method, non smooth cost functions, dynamic programming.			
Module 2		Hours 07		
	nent (UC): Problem formulation and constrain mic programming, reliability in optimal uc pr			
Module 3		Hours 10		
systems, spec steady state	ency Control (LFC):LF problem, mod ed governing system, turbine, generator, and dynamic state analysis, analysis of tructured power system.	, load, LFC in single area and two area,		
Module 4		Hours 08		
	em Security (PSS): Factors affecting analysis, Lyapunov method, pattern recog			
Module 5		Hours 10		
State estimation in power system and load forecasting: state estimation, least squares estimation, maximum likelihood criterion, detection and identification of bad data, state estimator linear model, load forecasting techniques, short term and long term load forecasting techniques				
Reference books	 2nd Edition C.L.Wadhwa, "Electrical Power Publishers, 6th Edition W.D. Stevenson Jr., "Eleme McGraw, Hill, 1968. 	er System Engineering", Tata Mc,Graw, r Systems", ,New Age International ents of Power System Analysis", dern Power System Analysis", Tata		

Elective Subjects

Subject Co EE 501	^{le} Data Structures and Algorithms	Credits: 3 (3-0-0) Total hours:45			
EE SolFollowing this course, students will be able to: Assess how the choice of data structures and algorithm design methods impacts the performance of programs. Choose the appropriate data structure and algorithm design method for a specified application. Solve problems using data structures such as linear lists, stacks, queues, hash tables, binary trees, heaps, tournament trees, binary search trees, and graphs and writing programs for these solutions. Solve problems using algorithm design methods such as the greedy 					
Module 1		6 Hours			
	to data structures and objectives, basic concepts Arrays: or Elementary Operations	ne dimensional, multi-			
Module 2		7 Hours			
evaluation,	resentation, elementary operations and applications such as in parenthesis matching; Queues: simple queue, circular queue, ad applications				
Module 3		8 Hours			
Linked lists: polynomial r	Linear, circular and doubly linked lists, elementary operations a nanipulation	nd applications such as			
Module 4		10 Hours			
	y tree representation, tree traversal, complete binary tree, heap, bits like AVL tree and 2-3 tree, tries and other operations and applications applied to the second s	• •			
Module 5	Module 5 15 Hours				
Graphs: Representation, adjacency list, graph traversal, path matrix, spanning tree; introduction to algorithm analysis and design techniques, algorithms on sorting: selection sort, bubble sort, quick sort, merge sort, heap sort, searching, linear and binary search					
 Reference books (8) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, "Data structures & Algorithms", Addison Wesley. 2003 (9) Horowitz and Sahni , "Data Structures and Algorithms using C/C++", 2003 (10) Michael T. Goodrich, Roberto Tamassia, "Data Structures and Algorithms in Java", 4th Edition, John Wiley & Sons, Inc. 					

Subject Cod EE502	e Electronic Instrum	nentation	Credits: 3(3-0-0) Total hours:45	
Course Objectives	To understand the basic principles of instruments and measurements and various practical issues related to measurement.			
Module 1		Hou	rs 14	
Measurement of charge and pul	of voltage, current, power, noise, rest se energy	istance, capacitan	ce, inductance, time, frequency,	
Module2		Hou	rs 7	
	EMC: EMC regulations, typical nois erference in electronic systems.	se path, methods	of noise coupling, and methods	
Module 3		H	Iours 10	
various cable cables.	etic radiation, shielding a receptor configurations, coaxial cable versu	s shielded twiste	ed pair, braided shields, ribbon	
Module 4			Iours 14	
hybrid ground grounding of c Protection Aga	s, signal grounds, single-point gro s, functional ground layout, practic able shields, ground loops, shield gro inst Electrostatic Discharges: Static in equipment design.	al low frequency ounding at high fr	r grounding, hardware grounds, equencies, guarded instruments.	
Reference books	 Clyde F JrCoombs, "Electronic Instrument handbook", Amazon, 1999 Joseph J. Carr, "Elements of Electronic Instrumentation and Measurements", 3rd Ed, Prentice Hall, 1995 Kim R. Fowler, "Electronic Instrument Design", Oxford University Press, 1996. Henry W.Ott, "Noise Reduction Techniques in Electronic Systems", 2nd Ed; John Wiley & Sons, 1988. 			

Subject Code EE 503	Elements of Analog and Digital Communication	Total hours: 45			
Course Objectives	To give a basic insight to Basic Communi	ication Engineering			
Module 1 Introduc Communication	Module 1 Introduction to Analog and Digital Hours 12 Communication Hours 12				
modulation and dem amplifiers (Class A	Bandwidth and information capacity, transmission modes, signal analysis, noise considerations. modulation and demodulation concepts (AM, FM, PM), TDM and FDM concepts, Classification of amplifiers (Class A, B, and C), tuned amplifiers, oscillators, amplitude modulation, demodulation circuits, mixer, TRF, super heterodyne and direct conversion receivers, monochrome TV transmitter and receivers.				
Module 2 Digital a	nd data communication	Hours 12			
	coding and decoding, pulse modulation, wa noise and error probability, quantisation r				
Module 3 Serial an	d parallel interface	Hours 09			
^	configurations and protocols, OSI reference essing in the internet, routing algorithms, pa				
Module 5 Satellite communication	Module 5 Satellite ,Mobile and optical fibreHours 12communication				
Orbital patterns, geostationary satellites, frequency band allocation, digital telephony, PSTN and cellular telephony, Optical fibre communication: Mode of signal transmission, signal sources and detectors, attenuators and channel capacity.					
Reference books	 Wayne Tomasi, "Electronic C Education, 4th Edition, 2002 Kennedy, "Communication System Gary Miller, "Modern Electronic C Andrew S. TanenBaum, "Compute William C. Y. Lee, "Mobile Cellula 	communication", 7th Edition. r Networks", 3rd Edition.			

Subject Code EE 504	Digital Signal Processing		Credits: 3 (3-0-0) Total hours: 56	
Course Objectives	Basic concepts of discrete time signals and systems, interconnection of the systems and filtering. Transform analysis of LTI systems; system functions; All pass systems, minimum phase systems, linear systems with generalized linear phase; structures for discrete time systems, lattice structures; FIR and IIR filter design techniques; The discrete Fourier transform, computational aspects and fast algorithms; miscellaneous topics.			
Module 1		8 hou	irs	
and systems, in convergence of	s and systems: Motivation and introduction t terconnection of the systems and filtering, the system, Complex convolution theorem, ency response of LTI systems and system fund	, Z – and s	transform and the Region of	
Module2		10 ho	ours	
Coefficient Diffe	Structures for Discrete Time systems: Representation of system described by Linear Constant Coefficient Difference Equations, digital filter structures, relation between magnitude and phase, All pass systems, Minimum phase systems, Lattice Structures, Linear Systems with Generalized Linear Phase.			
Module 3		10 ho	ours	
-	echniques: Design of IIR filters and different filter by windowing, FIR filter by the Kaiser		-	
Module 4		9 hou	ırs	
The Discrete Fourier Transform and Computational Aspects: Orthogonal transform, discrete Fourier transform (DFT), Relation between Fourier transform and DFT, Circular Convolution, DFT properties, Computation of DFT, Linear Convolution using the DFT, Fast computation of DFT.				
Module 5	Module 5 8 hours			
DSP Algorithm implementation and Finite Wordlength Effect: Number representation and overflow, Quantization Process and Errors, fixed and floating point numbers, coefficient quantization, A/D conversion noise analysis, Low sensitivity digital filters, Limit Cycle oscillations in IIR digital filters.				
Reference books	 A. V. Oppenheim and Schafer, "Discrete time Signal processing," 3rd Edition, PHI. S. K. Mitra, "Digital Signal Processing," 3rd Edition, TMH. 			

Subject Code EE505	Digital Computer Organization and Architecture (COA)	Credits: 3 (3-0-0) Total hours:45		
Course Objectives				
Module 1		6 Hours		
Introduction to computer architecture and organization: digital components, Von Neumann machine architecture, Flynn classification register transfer language: micro operations, data transfer operations, arithmetic, logic and shift micro operations and their hardware implementations as a simple arithmetic and logic unit.				
Module 2		13Hours		
CPU Organization: Addressing techniques, instruction set design, example for zero address, one address, two address and three address machines, stack, accumulator and general purpose register organization. Arithmetic algorithms: Arithmetic and Logic Unit, adders, multiplication, add and shift method, Booth's Multiplier, m-array multiplier, division, restoring and non restoring method.				
Module 3	Module 3 12 Hours			
organization	Pipeline structure, pipeline performance m , memory device characteristics, RAM organiz n, high speed memories.			
Module 4		14 Hours		
Control unit design, hardwired and micro programmed control unit design, implementation techniques, memory hierarchies, input-output design, IO interface, bus structure, modes of data transfer, interrupts, input output processor, serial communication.				
Referenc e books				
	4. J.P Hayes, Computer Architecture & Organization, McGraw-Hill.			

Subject Code EE 506	Advanced Control System	S Credits: 3 (3-0-0) Total hours: 45		
Course Objectives	To incite a wide knowledge on the description and stability of non-linear system. To examine the conventional technique of non-linear system analysis. To solve the analysis discrete time systems using conventional techniques. To understand the analysis of digital control system using state-space formulation. To look at the formulation and analysis of multi input multi output (MIMO) system			
Module 1		Hours 11		
Discrete control system: Introduction to discrete time control system, block diagram of a digital control system, sampling process, data reconstruction and hold circuits, zero and first order hold, review of z- transforms and inverse z- transforms, solution of difference equations, pulse transfer function, pulse transfer function with dead time, system time response, realization of pulse transfer functions, stability studies.				
Module 2		Hours 10		
time invariant di	alysis of discrete system: Concept of contro screte time control system, condition for c on for arbitrary pole placement, design via po	ontrollability and observability, state		
Module 3		Hours 12		
analysis, constru classification, de functions of com	Non Linear system: Characteristics of non- linear systems, types of non-linearity, phase plane analysis, construction of phase trajectory, Isocline method and delta method ,singular points and classification, describing function analysis, basis of describing function approach, describing functions of common non- linearity namely dead zone saturation, ideal relay, combined dead- zone and saturation, relay with hysteresis			
Module 4		Hours 12		
Stability of non-linear systems: Liapunov Methods, Liapunov stability, definition of stability, asymptotic stability and instability, quadratic forms and sign definiteness of scalar function, Liapunov stability theorems, Liapunov stability analysis of LTI continuous and discrete time systems methods of construction of Liapunov function for non-linear systems.				
Reference books	 M.Gopal, "Control System Principles and Design", TataMcGraw Hill, 4th edition I. J. Nagrath, M. Gopal, "Control Systems Engineering" New Age International, 4th Edition K. Ogata, "Modern Control Engineering", PHI, 3rd Edition K. Ogata, "Discrete Time Control Systems", Pearson Education, 2nd Edition 			

Subject Code	Travelling Waves on	Credits: 3 (3-0-0)
EE507	Transmission System	Total hours: 45
Course Objectives	To understand the various types of travelling wave	es on transmission system.
Module 1		Hours: 12
solution of the in Reflection of tra- current waves, t lattice, construct	hs: The ideal (no-loss) line, the distortion-less line, hfinite line, line of finite length, attenuation and develing waves: behaviour of a wave at a transition pypical cases, current-limiting reactors. Successiv- tion and use of the lattice-diagram, charging of a en a capacitor and a resistor, effect of short lengths	istortion of traveling waves. point, dissimilar voltage and e reflections: the reflection a line from various sources,
Module 2		Hours : 10
surge tests on	s, transition points on multi conductor circui transmission lines, physical concept of mu m, multi conductor system.	•
Theory of grout tower, tower gr	nd-wires: Direct stroke to a tower, effect of reaction of the counterpoise: Multi velocity was nterpoise, successive reflections on the insulate	flections up and down the aves on the counterpoise,
Module 4		Hours: 13
grounds: normal arc extinction, hi	g surges: The field gradient, induced surges with frequency arc extinction - single-phase and three- gh-frequency effects, interruption of line-charging of teady-state waves, recovery voltage, restriking pher	phase, oscillatory-frequency currents, cancellation waves,
Reference books	 L. V. Bewley, "Traveling Waves on Tr Wiley and Sons, 1951. H. H. Skilling, "Electric Transmission Line F. Woodruff, "Principles of Electric Power and Sons, 1952. 	es," TMH, 1951.

Subject Cod EE 508	le Utilisation of Electrical Ener	Credits: 3 (3-0-0) Total hours:45		
Course Objectives	Understand concept of illumination systems the requirements of traction systems.	, heating and welding systems. Learn		
Module 1		Hours 14		
traction moto	on: requirements of an ideal traction system, system rs, comparison and control of traction motors, m eleration ,train resistance, gradient, coefficient of mption.	nechanics of train movement, tractive		
Module 2		Hours 12		
Electric heating: advantages, classification of heating equipment's, methods of heat transfer, resistance heating, design of heating element, induction heating, eddy current heating, dielectric heating.				
Module 3		Hours 12		
Electric welding: resistance welding, arc welding. Electrolytic processes: Faraday's laws of electrolysis, calculation of current required and related definitions, factors governing the character of deposits, preparation of work for electroplating, electro-extraction and refining of copper and aluminium.				
Module 4		Hours 7		
Illumination: definition, illumination standards, laws of illumination, lighting calculations, polar curves, Rousseau's construction, illumination measuring devices, various illumination devices.				
	1. Partab, Art and Science of Utilization of	1. Partab, Art and Science of Utilization of Electrical Energy.		
Reference	2. E. O. Taylor, Utilization of Electric Ener			
books	3. C. L Wadhwa, Generation, Distribution and Utilization of Electrical Energy.			

Subject Code EE509		Introduction to Database management Systems		Credits: 3 (3-0-0) Total hours: 45
Course Objecti	ives	This course covers the relational database system for business, scientific and engineerin	•	*
Module 1			6 Ho	ours
Introduction & database users a		for database systems, views of data, data n ministrator.	nodel	s, database system architecture,
Module 2			10 H	lours
•	-	nodel (E-R model), E-R diagrams, introdunain, relational calculus, tuple relational calcu		to relational databases, keys,
Module 3			15 H	lours
query, union, in	tersec	tabase language, data definition in SQL. SQ et, and except, aggregate operators, specifyin s, introduction to nested queries.		-
Module 4			14 H	lours
		cies, non-loss decomposition, first, second, thi cepts, transaction recovery, ACID properties,		
Storage: overview of physical storage media, magnetic disks, RAID, tertiary storage,file organization, organization of records in files, indexing and hashing, database security.				
	(1) Korth, Silberschatz, "Database System Concepts", 4 th Ed., TMH, 2003.			
books	• •	Elmsari and Navathe, "Fundamentals of Database Systems", 4 th Ed., A. Wesley, 2004.		
		Raghu Ramakrishnan , Johannes Gehrke, "Database Management Systems", rd Edition, , McGraw- Hill, 2003.		
((4) J	D Ullman, "Principles of database systems", 2001.		

Subject Code EE 510	e	Computer Networks	Credits: 3 (3-0-0) Total hours: 45
Course Objecti	ves	This course focuses on understanding tassimilating hubs into a personal network.	the design of computer networks,
Module 1			8 Hours
protocols, practi control protocol	cal lo s, H	iter networks, overview of OSI reference model cal area network design and implementation DLC, ALOHA, SLOTTED ALOHA, FDD networks and internet, network edge, network	n. IEEE LAN standards, logical link I, client server model and related
Module 2			16 Hours
· ·	versio	ces, UDP, TCP, new transport layer protocons of TCP, network layer services, routing,	
Module 3			10 Hours
-		error detection and correction, multiple acceless links, mobility, PPP, ATM, MPLS, VLA	-
Module 4			11 Hours
	ntegri	ng, streaming stored audio and video, real-tir ty, key distribution, network management, er application.	
Reference books	3. Andrew. S. Tanenbaum, "Computer Networks", Prentice Hall of India, 5 Edn, 2002.		

Subject Code EE 511	Embedded Systems	Credits: 3(3-0-0) Total hours:45		
Course Objectives	•	To give ideas about embedded systems and system development. To impart knowledge about real time operating systems and microcontrollers		
Module 1		Hours 10		
power supply,	embedded systems: embedded system example clock, memory interface, interrupt, I/O ports, b memory and I/O devices. memory technologies	ouffers, programmable devices, ASIC,etc.		
Module2		Hours 8		
assembly. Prod Embedded syste debugging. har	where r_{c}^{2} controls and r_{c}^{2} co	npilation, simulators/emulators, hardware		
Module 3		Hours 12		
processes and the	ms: concept of firmware, operating system basic nreads, multiprocessing and multitasking, task sc , device drivers.			
Module 4	Hours 15			
System design	examples : system design using ARM/PSoC/MS	P430 processor		
Reference books	 J.W. Valvano, Embedded Microcomputer System: Real Time Interfacing, Brooks/Cole, 2000. David Simon, An Embedded Software Primer, Addison Wesley, 2000. Shibu K.V.: Introduction to Embedded Systems, Tata McGraw Hill, 200 			

Subject Co EE512		High Voltage DC (HVDC) Transmission		Credits: 3 (3-0-0) Total hours: 45
Course Objective		The course aims at use of high voltages as the key distribution of electrical power. To have an overv insulation and their behaviour, over voltage of equipment's. To analyse the malfunctioning of conv	view a conditio	bout different forms of ons and protection of
Module 1			Hou	rs : 8
technical per Transmission	rforma 1 Syste	nent of HVAC and HVDC links, comparison, econ nce, reliability, limitations, application of dc tran em, types of DC links and converter station, plan C transmission.	nsmissi	ion, description of DC
Module 2			H	ours : 10
analysis of analysis of	HVD Graet	Introduction, thyristor devices, thyristor valve C converters; pulse number, choice of converte z circuit, convertor bridge characteristics, chara ed analysis of converters.	er con	figuration, Simplified
Module 3			H	ours:8
control, sta telecommun	arting	stem control hierarchy firing angle control, c and stopping of dc link, power control, n requirements.	high	er level controllers,
Module 4	1.			ours :9
over voltage reactor and	es in a dc line of dc	nd protection: introduction, converter faults, pro converter station, surge arrests, protection again e; introduction, smoothing reactors, dc line, trans line, dc breakers, monopolar operation, effects	nst ove sient ov	er voltages. smoothing ver voltages in dc line,
Module 5			H	ours : 10
reactive pow filters; intro and RI noi systems, typ	wer, s oductic ise, m pes of	ontrol; introduction, reactive power requirement tatic var systems, reactive power control durin, on, generation of harmonics, design of ac filters, ulti terminal dc systems; introduction, potent MTDC systems, control and protection of M DC Systems study of MTDC systems.	g tran dc fil tial ap	sients, harmonics and ters, carrier frequency oplications of MTDC
Reference books	1) 2) 3)	 K. R. Padiyar, "HVDC Power transmission Sys 1996. J. Arrillaga, "HVDC transmission," IET, 1998. E.X. Kimbark, "Direct Current Transmission," Newyork, 1971. 		

Subject Code	Flexible AC Transmission Systems	Credits: 3 (3-0-0)		
EE513	Ficatole AC Transmission Systems	Total hours: 56		
Course Objectives	To enhance the transmission capability of transmission compensation using static controllers. To understand transmission and the associated problems. To review the shunt control. To study the operation of controllers for capability.	d the concept of flexible AC he static devices for series and		
Module 1		Hours: 10		
FACTS, power FACTS trans	epts and general system consideration: Power flow in er flow control, constraints of maximum transmission mission line compensation: uncompensated line, , phase angle control.	on line loading. Benefits of		
Module 2		Hours:9		
synchronous of Thyristor Sw	compensators: SVC: Static Var Compensator, compensator. operation and control of TSC:Thyristo vitched Reactor, TCR: Thyristor Controlled F control, comparisons between SVC and STATCOM.	or Switched Capacitor, TSR:		
Module 3		Hours:9		
Synchronous	compensation: TSSC:Thyristor Switched Series Series Compensator, Static voltage and phase angle aking Resistor, TCPAR: Thyristor Controlled Phase oplications.	regulators TCBR: Thyristor		
Module 4		Hours:9		
principle of P	er Flow Controller: circuit arrangement, operation a and Q control, independent real and reactive powe o interline power flow controller.			
Module 5		Hours: 8		
filters- passiv power quality based categor	iderations of APFS; technical and economic consider	applications depending on active power filter, converter ystem based categorization, rations.		
Reference books				

Subject Co	le Soft Computing Techniques	Credits: 3 (3-0-0)
EE514		1 otal hours: 45
G	This course presents the basics of neural networks	
Course	networks with single layer and multilayer feed for	
Objective		-
	network system application to electrical engineerin	
Module 1		Hours: 10
	to biological and artificial neuron models, operations of	
	nction, history of artificial neural systems developmen	
learning rules	ctures, neural dynamics (activation and synaptic), neura	al processing,, learning strategies,
-	, 	
Module 2	model, features, and decision regions, discriminant	Hours: 10
networks- in algorithms: d of the single	orks: feed forward network, feedback network, single a ntroduction, perceptron models: discrete, continuou iscrete and continuous perceptron networks, perceptron e layer perceptron model (XOR Problem), Applicati elta rule, Back Propagation Algorithm (BPA), learning o	is and multi-category, training convergence theorem, limitations ons; credit assignment problem,
Module 3		Hours: 8
architecture Counter proj MADALINE	rules, hamming distance, Bidirectional Associative of Hopfield network: discrete and continuous version pagation networks, Full CPN, Forword only CPN, 7 networks. Neural network applications: process ident casting. Applications of neural networks.	ns, storage and recall algorithm. Fraining Phases, ADALINE and
Module 4		Hours: 12
uncertainty, o membership systems: Ma defuzzificatio Design of co	to classical sets - properties, operations and relapperations, properties, fuzzy relations, cardinalities, mer value assignment, development of rule base and decision mdani max-min and max-product composition schen onmethods:centroid of area, bisector of area, mean, sn ontrol rules: trapezoidal MF, triangular MF and Gaus fuzzy logic control and fuzzy classification. Application	mbership functions. Fuzzification, n making system, fuzzy inference ne, defuzzification to crisp sets, nallest, and largest of maximum. ssian MF. Rule base fuzzy logic
Module 5		Hours : 5
	to Type-2 FLC: The structure of Type-2 FLC, Typ y MFs (Trapezoidal membership function, Triangular M	
Reference books	 J. M. Zurada, "Introduction to artificial neural neural Simon Haykin, "Neural Networks A Compreher J. S. R. Jang, C. T. Sun , E. Mizutani, "Neur Computational Approach to Learning and Mach Timothy J Ross, "Fuzzy Logic with Engineering 	nsive Foundation," PHI, 1999. o-Fuzzy and Soft Computing A ine Intelligence," PHI, 2002.

Subject Cod EE515	e Renewable Energy Systems	S Credits: 3 (3-0-0) Total hours:45		
Course Objectives	To explain concept of various forms of a utilization of renewable energy sources applications			
Module 1		Hours: 10		
energy system Solar Energy: concentrating cooking etc, p	o renewable energy, various aspects of energy co as, environment and social implications Solar radiation its measurements and prediction, collectors, applications, heating, cooling, desaling rinciple of photovoltaic conversion of solar energy applications: battery charger, domestic lighting, s tion schemes.	solar thermal flat plate collectors, nation, power generation, drying, gy, types of solar cells and fabrication.		
Module2		Hours: 9		
turbulence, w wind resource	Atmospheric circulations, classification, factors ind speed monitoring, Betz limit, aerodynamics of assessment, wind energy conversion devices: cla Hybrid systems, safety and environmental aspects	of wind turbine rotor, site selection, assification, characteristics, and		
Module 3		Hours: 9		
characteristics combustion, g alcohol prod	Biomass resources and their classification, chem s of biomass, biomass conversion processes, gasification, pyrolysis and liquefaction. Biocher action from biomass.Chemical conversion pro- ation, types of Biogas Plants, applications	thermo chemical conversion: direct nical conversion: anaerobic digestion,		
Module 4		Hours:9		
applications, pathways, sto	d Fuel Cells: Thermodynamics and electrochemic production methods, Biophotolysis: Hydrogen ger rage gaseous, cryogenic and metal hydride and tr pus types, construction and applications.	neration from algae biological		
Module 5		Hours: 8		
systems, ocea energy conver	Of Energy: ocean energy resources: principles of n thermal power plants, and principles of ocean w rsion, microhydelpower, site selection, construction of geothermal energy sites, site selection and geo	vave energy conversion and tidal on, environmental issues.Geothermal		
Reference books	 (1) G. D.Rai, "Non-conventional Energy Sources", Khanna Publishers, Delhi, 2007. (2) S.P.Sukhatme, "Solar Energy", TMH, New Delhi, 2006. 			

Subject Coo EE 516	de	Static Relays	Credits: 3 (3-0-0) Total hours: 45		
Course Object	tives	To understand the causes of abnormal operating conditions (faults, lightning and switchingsurges) of the apparatus and system. To understand the characteristics and functions of static relays and protection schemes and to give an insight on Static Relay protection schemes.			
Module 1	-		Hours 09		
performance of	of sign	on and its requirements, conventional Vs al deriving elements signal mixing ten acteristics function of static relays, static re	chniques and measuring techniques,		
Module 2			Hours 12		
relays, differen	ntial re	ectional units, amplitude comparator dir lays: operating characteristics, restraining ctromagnetic and static differential relays,	g characteristics, types of differential		
Module 3			Hours 12		
current relays.	Distan	al circuits of Instantaneous over current ace relays: standard three zone protection y phase distance relays, operating time	n, characteristics and types, switched		
Module 4			Hours 12		
scheme for trar	nsmissi	c current schemes, pilot relaying scheme on lines. Implementation of over current, Microcontroller.			
Reference books	2.	 MadhavaRao, T.S., "Power System Protection, Static Relays", McGraw Hill, New Delhi, 1991. Van.C.Warrington, "Protective Relays, Their Theory and Practice", Vols. I & II, Chapman & Hall Ltd. London, 1994. Ram.B., "Fundamentals of Microprocessors and Microcomputers", M/s. DhanpatRai& sons, New Delhi, 1992. 			

Subject Code EE517	Photovoltaic and its applications		Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	1. Learn the fundamentals of solar energy conversion systems, available solar energy and the local and national needs, solar engineering applications, emerging technologies,					
	2. Understand the interdisciplinary approach for designing stand-alone PV systems, predicting performance with different systems, Implementing design with cost analysis.					
Module 1		Hour	rs: 5			
sources, environm	Solar energy: solar insolation vs world energy demand, current energy consumption from different sources, environmental and health effects. Sustainable Energy: production and storage, resources and utilization.					
Module2		Hour	rs: 10			
	nversion: Low, medium and high temperat orage, storage media, steam accumulator, othe ored energy.					
Bismuth telluride	ystems: Thermoelectricity, Peltier effect, See e, automotive thermoelectric generators, ra wer generators, thermoelectric refrigerators an	adioiso	otope thermoelectric generator;			
Module 3		Η	ours: 10			
Photovoltaic (PV): Fundamentals of solar cells: types of solar cells, semiconducting materials, band gap theory, absorption of photons, excitation and photoemission of electrons, band engineering, Solar cell properties and design, p-n junction photodiodes, depletion region, electrostatic field across the depletion layer, electron and holes transports, device physics, charge carrier generation, recombination and other losses, I-V characteristics, output power, single junction and triple-junction solar panels, metal-semiconductor heterojunctions and semiconducting materials for solar cells. solar cell applications: pv cell interconnection, module structure and module fabrication, equivalent circuits, load matching, efficiency, fill factor and optimization for maximum power; design of standalone PV systems, system sizing, device structures, device construction, installation, measurements; DC to AC conversion, inverters, on-site storage and grid connections; Solar cell manufacturing processes: material resources, chemistry and environmental impacts; low cost manufacturing processes.						
Module 4	Hours: 10					
Optical engineering: Optical design, anti-reflection coatings, beam splitters, surface structures for maximum light absorption, operating temperature Vs. conversion efficiency, types of solar energy concentrators, fresnel lenses and fresnel reflectors, operating solar cells at high incident energy for maximum power output.Cost analysis and environmental issues: Cost analysis and pay back calculations for different types of solar panels and collectors, installation and operating costs;						

environmental and safety issues, protection systems, performance monitoring.					
Module 5 Hours: 10					
telluride thin-f applications; production.Pho photoelectron	Thin film solar cells: Single crystal, polycrystalline and amorphous silicon solar cells, cadmium telluride thin-film solar cells, conversion efficiency; current trends in photovoltaic research and applications; nanotechnology applications, quantum dots, solution based processes solar cell production.Photo electrochemical cells for hydrogen production: photo electrochemical electrolysis, photoelectron chemical cells for hydrogen production, solar hydrogen efficiency, hydrogen storage, hydrogen economy.				
Reference books	 (1) Jasprit Singh, "Semiconductor Devices, Bas (2) Jenny Nelson "The Physics of Solar Cells" (3) Stephen J. Fonash "Solar Cell Device P (2010) 	, Imperial College Press (2003)			

Subject Code EE 518	i ower bystem Kesti detui ing	Total hours: 45				
Course Objectives	To provide in-depth understanding of operation of deregulated electricity market systems and examine topical issues in electricity markets and how these are handled world-wide in various markets. To analyse various types of electricity market operational and control issues using new mathematical models					
Module 1	Iodule 1 Hours 08					
electricity mark	Introduction: Market models, entities, key issues in regulated and deregulated power markets, electricity markets, California market, New England ISO, Midwest ISO, Nordic pool, power market in China. components of restructured system					
Module 2		Hours 10				
based unit com	d planning activities of a generation company: e mitment design, security constrained unit comr automatic Generation Control.					
Module 3		Hours 10				
system operation	ransmission system: transmission pricing in o on, congestion management in open access trans pen access, coordination strategies, power wheel	mission systems, FACTS in congestion				
Module 4		Hours 07				
	methods open access distribution, changes in d maintaining distribution planning	istribution operations, the development				
Module 5		Hours 10				
Power Market Development: Electricity Act, 2003, key issues and solution, developing power exchanges suited to the Indian market, challenges and synergies in the use of it in power, competition, Indian power market, Indian energy exchange, Indian power exchange, infrastructure model for power exchanges, congestion management, day ahead market, online power trading.						
Reference books	 Loi Lei Lai, "Power System Restructuring and Deregulation", John Wiley & son LTD, New York, 2001. Mohammad Shahidehpour, HatimYamin, "Market operations in Electric power systems", John Wiley & son LTD, Publication, 2002. LorrinPhilipson, H. Lee Willis, "Understanding Electric Utilities and Deregulation" Taylor & Francis, New York 2006. MohammadShahidehpour, MuwaffaqAlomoush, "Restructured Electrical Power Systems", Marcel Dekker, INC., New York, 2001. 					

Subject Cod	le	Distribution automation and		Credits: 3 (3-0-0)		
EE 519		Smart Grid		Total hours: 45		
Course Objectives	;	To understanding the distribution automation and smart grid architecture, working.				
Module 1		4	hour	'S		
	•	m Planning and forecasting techniques, load ch , distribution transformers, types, distribution su				
Module2		12	2 hou	Irs		
		power loss calculations, distribution feeder cost pacitors, distribution system automation, automa				
Module 3		12	2 hou	irs		
		art grid, smart grid functions, advantages, Indian architecture, components, architecture of sm		• •		
Module 4		1	2 ho	urs		
renewable en hybrids, sync	ergy hrop	utational intelligence techniques, distribution ger technologies, Micro grids, storage technolog hasor measurement Units (PMUs), Wide Are ower grid system.	gies,	Electric vehicles and plug in		
Module 5		5	hou	ırs		
Renewable In	tegra	tion, Electric Vehicles and plug - in hybrids, ind	ian s	mart grid. Case studies		
Reference books	1. 2. 3. 4. 5.	 Pabla, A. S, "Electric Power Distribution" Education, 2011. M. V. Deshpande, "Electrical Power SynEducation, 2001. Gil Masters, "Renewable and Efficient Electrical Press, 2004. 	", 61 stem ectric	th Edition, Tata McGraw-Hill Design", Tata McGraw-Hill Power System", Wiley-IEEE		

	•			Credits: 3 (3-0-0)
Subject Cod EE520	e	Power Quality		Total hours: 45
Course]	To study the various issues affecting power quality.	, their	
Objectives		suppression. To understand about the concepts		
Ū		nitigation techniques. To be familiarise with various	_	
Module 1			Hou	rs : 12
transients: sho interruption. V voltages, powe locating harmo harmonics, ha resonance. Har	rt dui oltage r frequ onic se rmonie monic	r quality: terms and definitions: overloading, under ration variations such as interruption, long dura e sag, voltage swell, voltage imbalance, voltage uency variations. Harmonics: harmonic sources from ources. Power system response characteristics: ha c distortion, voltage and current distortion, har e distortion evaluation, devices for controlling harm e standards of power quality,	tion fluctu n com armon	variation such as sustained nation, over voltages, under imercial and industrial loads, ics Vs transients. Effect of c indices, inter harmonics,
Module 2			Н	ours : 10
	to A	PF technology, solutions for mitigation of har		
		ers, active filters, hybrid filters; active filters ap		
-		•	-	
		ction of power filters; categorization of active	-	
-	-	ology based categorization, supply system b	based	categorization, selection
	s of A	PFS; technical and economic considerations.		
Module 3	s of A	PFS; technical and economic considerations.	Н	ours : 10
Module 3		PFS; technical and economic considerations. tive power filter control strategies. shunt ac		
Module 3 Introduction	to ac		tive	filter basic compensation
Module 3 Introduction principle, Cla	to ac rk's t	tive power filter control strategies. shunt ac	tive powe	filter basic compensation er filter control strategies,
Module 3 Introduction principle, Cla signal conditi	to ac rk's t oning	tive power filter control strategies. shunt ac transformations, parks transformations, active	tive powe f gati	filter basic compensation er filter control strategies, ing signals, generation of
Module 3 Introduction principle, Cla signal conditi gating signals	to ac rk's t oning to the	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of	tive powe f gati scher	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis
Module 3 Introduction principle, Cla signal conditi gating signals	to ac rk's t oning to the	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp	tive powe f gati scher	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis
Module 3 Introduction principle, Cla signal conditi gating signals current control	to ac rk's t oning to the	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp	tive powe f gati scher pensa	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis
Module 3 Introduction principle, Classignal condition gating signals current contro compensation Module 4	to ac rk's t oning to the ol sche in tin	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain.	tive powe f gati scher pensa	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, ours: 13
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strates	to ac rk's t oning to the ol sche in tin	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain.	tive powe f gati scher pensa	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, ours: 13
Module 3 Introduction principle, Classignal condition gating signals current control compensation Module 4 Control strategoreactive current	to ac rk's t oning to the ol sche in tin gies In t (I _d -I _q	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain.	tive powe f gati scher pensa He strate	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, ours : 13 egy, Instantaneous active and
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strateg reactive current	to ac rk's t oning to the ol sche in tin gies In (I_d-I_q) Dc li	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain.	tive powe f gati scher pensa He strate	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, ours : 13 egy, Instantaneous active and
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strateg reactive current Introduction to	to ac rk's t oning to the ol sche in tin gies In (I_d-I_q) Dc li	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain. stantaneous active and reactive power (p-q) control) control strategy, and perfect harmonic cancellator. ink voltage regulation: Dc link voltage regulation e-2 fuzzy logic controller, and neural networks.	tive powe f gati scher pensa He strate with	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, ours : 13 egy, Instantaneous active and PI Controller, Type-1 fuzzy
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strateg reactive current	to ac rk's t oning to the ol sch in tin gies In t (I _d -I _q Dc li c, Type	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain. stantaneous active and reactive power (p-q) control) control strategy, and perfect harmonic cancellator. ink voltage regulation: Dc link voltage regulation	tive powe f gati scher pensa He strate with	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, ours : 13 egy, Instantaneous active and PI Controller, Type-1 fuzzy
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strateg reactive current	to ac rk's t oning to the ol sch in tin gies In t (I _d -I _q Dc li c, Type	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain. stantaneous active and reactive power (p-q) control) control strategy, and perfect harmonic cancellator. ink voltage regulation: Dc link voltage regulation e-2 fuzzy logic controller, and neural networks. H. Akagi, "Instantaneous Power Theory and App IEEE Press, 2007.	tive powe f gati scher pensa H e strate with	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, Durs : 13 egy, Instantaneous active and PI Controller, Type-1 fuzzy ons to Power Conditioning,"
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strateg reactive curren Introduction to logic controller	to ac rk's t oning to the ol sche in tim gies In t (I_d-I_q) Dc li (I_d-I_q) (I_d-I_q)	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain. stantaneous active and reactive power (p-q) control) control strategy, and perfect harmonic cancellator. ink voltage regulation: Dc link voltage regulation e-2 fuzzy logic controller, and neural networks. H. Akagi, "Instantaneous Power Theory and App IEEE Press, 2007. G.T. Heydt, "Electric Power Quality," 2nd Editic	tive powe f gati scher pensa H e strate with	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, Durs : 13 egy, Instantaneous active and PI Controller, Type-1 fuzzy ons to Power Conditioning,"
Module 3 Introduction principle, Cla signal conditi gating signals current contro compensation Module 4 Control strateg reactive current Introduction to	to ac rk's t oning to the ol sche in tim gies In t (I_d-I_q) Dc li (I_d-I_q) (I_d-I_q)	tive power filter control strategies. shunt ac transformations, parks transformations, active g, current control techniques for derivation of e devices of the APF, hysteresis current control eme, derivation of compensating signals, comp ne domain. stantaneous active and reactive power (p-q) control) control strategy, and perfect harmonic cancellator. ink voltage regulation: Dc link voltage regulation e-2 fuzzy logic controller, and neural networks. H. Akagi, "Instantaneous Power Theory and App IEEE Press, 2007.	tive powe f gati scher pensa He strate with	filter basic compensation er filter control strategies, ing signals, generation of me and adaptive hysteresis tion in frequency domain, Durs : 13 egy, Instantaneous active and PI Controller, Type-1 fuzzy ons to Power Conditioning,"

Subject Code EE521	OdeReal Time Control of Power SystemCredits: 3 (3-0-0) Total hours: 45			
Course Objectives	Aims to build good up	To learn basics of SCADA and to develop skills to work on SCADA features. Aims to build good understanding about the basics of industrial automation using SCADA, PLC and HMI.		
Module 1		Hou	rs : 8	
Industrial Automat	tory & Process Automation, ion, field bus and Ethernet splay, operator panels, Touch	. HMI Systems: Necessity	y and Role in Industrial	
Module 2		He	ours : 14	
and Control. remo load dispatch ce Processors), Ro electrical power responsibilities of external graphics,	trol and Data Acquisition (te terminal unit (RTU) and on ter (SUB-LDC): Work S tters. Real time software: systems. southern regional SRLDC. Developer and run alarm logging, tag logging, r SCADA application.	communication practices: Stations, FEPS: Function classification of program load dispatch center (statime packages, architectu	Major Components. Sub- n of FEPS (Front End ns. computer control of SRLDC): functions and ure, tools, tag, internal &	
Module 3		He	ours : 11	
	ol Systems (DCS), difference it, Programming language acces.	-		
Module 4		He	ours : 12	
~ ~	ADA & DCS, Case studies of p & & DCS, role of PLC in DCS SCADA.			
Reference books	 Hall of India, New Del Michael P. Lukas, "I Company, 1995. Hassan Bevrani, "Robu and Power Systems," S 	Distributed Control Systems	s," Van NostrandReinfold Control Power Electronics	

Subject Code EE 522	Optimization Techniques	Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	Students will be able to state the different types of optimization problems, their formulation and solution techniques. Students will be able to understand the mechanisms of various traditional and modern optimization techniques. Students will be able to apply the optimization techniques for practical applications				
Module 1 Line	ar models	Hours 12			
formulation, max	optimisation ,classification of optimisation proximization and minimization problems, graphid, duality in linear programming, dual simplex	ical method, simplex method, Big M,			
Module 2 Netw	vork models and Dynamic programming	Hours 09			
decision process	naximum flow and minimum cost problems es, linear programming as a case of dynamic resource allocation, production scheduling.				
Module 3 Nonl	inear programming-Unconstrained	Hours 12			
Ū.	optimization, region elimination methods, poin riable optimization, direct search methods and				
Module 4 Nonli	Module 4 Nonlinear programming-ConstrainedHours 12				
Constrained optimization, Kuhn Tucker conditions, transformation methods, Lagrangian multiplier methods, penalty function methods, gradient projection method, Applications of non-linear programming in Engineering design					
Reference books	 S.S.Rao , "Engineering Optimi Publishers, Third edition, 2013 Fletcher, "Optimization techniques", J K.V.Mittal, "Optimization Methods", H.A.Taha, "Operations Research", Pea Kalyanmoy Deb, "Optimization for Er 	ohn Wiley and Sons. Wiley Eastern, 2003. arson, 2007.			

Subject Code EE 523	Simulation and Modelling of Po Converters	OWER Credits: 3 (3-0-0) Total hours:45
Course Objectives	To study the basics of static and dynamic models And learn usage of the software tools like MA power electronic devices. Understand the d converters using the simulation tools.	TLAB, PSPICE & PSIM for various
Module 1		Hours 12
•	ation of continuous time dynamic systems , hydraulic and pneumatic systems. Introduction t	C
Module 2		Hours 12
	near equations, methods to the solution of electri uction to machine modelling : induction, DC, a	
Module 3		Hours 12
	odelling of single phase and three-phase converter electronic converters in power distribution system	
Module 4		Hours 9
Interaction betwee	en power electronic converters and rotating mach	ines
Reference books		

Subject Code EE 524	Poly-phase Systems and component Transformatio	Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	An overview of poly-phase circuits combined fault analysis and system working in unbalanced load conditions.				
Module 1	Module 1 Hours 10				
and 4 wire system	ase circuits: generation of poly phase voltag ns, wye and delta connections, the n-phase general n-wire balanced systems, harmonics	e star and mesh, power calculations in			
Module 2		Hours 10			
connections, neutr phase sequence, th (n,1) watt meters	Unbalanced poly phase circuits: unbalanced loads, wye-wye system with and without neutral connections, neutral shift, the wye-delta system, phase sequence effects, methods of checking voltage phase sequence, three wattmeter/two wattmeter methods of measuring three phase power, the use of $(n,1)$ watt meters for measuring n-wire power, power factor in unbalanced three phase systems, extensions to non-sinusoidal behaviour.				
Module 3		Hours 08			
symmetrical com	symmetrical components: A brief histor aponent systems, resolution of three ve equences in symmetrical systems, sequence	ctors into symmetrical components,			
Module 4		Hours 10			
outline of short c	balanced faults: sequence networks, connectively calculations, analysis of transformer of transformer of sequence power quantities.	connections, measurement of sequence			
Module 5		Hours 07			
Multiphase systems: resolution of multiphase systems into symmetrical components, 2-phase and 4- phase systems, Irregular systems, analysis of poly phase circuits, Impedances of symmetrical poly phase systems, Harmonics.					
Reference 1. C.F. Wagner, R.D. Evans, "Symmetrical Components", McGraw,Hill, 1933. 2. J.L. Blackburn, "Symmetrical Components for Power System Engineering", Marcel,Dekker ,1993. 3. Edith Clarke, "Circuit Analysis of AC Power Systems – Volumes I and II", John Wiley and Sons, 1950.					

Subject Code EE 525	Power system Dynamics	Credits: 3 (3-0-0) Total hours: 45				
Course Objectives	To investigate and understand the stability of power system, with the main focus on stability theories and power system modelling. To study the steady and transient stability problems. To examine the power system modelling using simulation tools.					
Module 1	Module 1 Hours 10					
	namic modelling requirements, angle stabilitind angle, numerical integration techniques.	y, equal area criterion, critical fault				
Module 2		Hours 10				
equations, stat	nachines: Park's transformation, flux linkage e space current model, simplified models o dy state equations and phasor diagrams.					
Module 3		Hours 10				
5	Synchronous machines: Mechanical reladionation djustment of machine models, Park's equation	1				
Module 4		Hours 08				
•	Induction machines: Induction motor equiv haracteristics, dynamic performance, effect lts.	*				
Module 5 Hours 07						
		Hours 07				
Stability: Tran its oscillation	sient and dynamic stability, linear model of u modes, distribution of power impacts, stabilization signals. 1. Elgerd, O.I., "Electric Energy System	nregulated synchronous machine and effects of excitation on stability,				

Subject Code EE 526	Advanced Power Electronic	S Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	Understand the concept of resonant switch converters, multilevel inverters, pulse width modulation techniques and inductor design.				
Module 1		Hours 15			
pull, half bridge, zero current swi	DC-DC converters: Basic topologies of buck, boost, buck-boost converters, Cuk, flyback, forward, push- pull, half bridge, full bridge & isolated Cuk converters, input & output filter design, zero voltage and zero current switching, classification of resonant converters, basic resonant circuit concepts, types of resonant converters, converter transfer functions, applications.				
Module 2		Hours 10			
effect proximity	Design concepts : Design of inductors, transformers, selection of core, core loss, copper loss, and skir effect proximity effect, design of capacitors, selection of capacitors for different applications, power semiconductor selection and its drive circuit design, controller design, stability considerations.				
Module 3		Hours 12			
various PWM t	Inverters: Single phase half and full bridge inverters, voltage control of single phase inverters using various PWM techniques, three phase voltage source inverters, 180° and 120° mode of operation, selective harmonic elimination, sinusoidal and space vector modulation PWM techniques, .				
Module 4		Hours 08			
	Multilevel Inverters: Introduction, multilevel concept, diode clamped, flying capacitor, H-bridge, cascaded multilevel inverters, applications.				
Reference books1. Ned Mohan, et.al, "Power Electronics converters, Applications and Design", Wiley India, New Delhi, 3 rd , Edition 2003 2. M.H. Rashid, Power Electronics - Circuits, Devices and Applications, PHI, 2002.					

Subject Code	HIGH VAITAGE ENGINEERING	Credits: 3 (3-0-0)			
EE 527	ingir vorage Engineering	Total hours: 45			
Course					
Objectives	Objectives measurement.				
Module 1 6 hours					
cockcroftwalto	Electro static fields: Electric field intensity, electric strength. generation of high dc and ac voltages, cockcroftwalton voltage multiplier circuit, insulation protection, impulse and switching voltages, generation of high impulse currents, applications.				
Module2		10 hours			
impulse voltag	ansmission, ratings, protection mechanism, cost es, definitions, measurement accuracy, sphere r method, rod gap method, high speed CRO, dig	e gap method, peak voltmeters method,			
Module 3		10 hours			
	of high currents, impulse currents, dielectric gth, dielectric partial discharges, corona dischar				
Module 4		10 hours			
specifications, voltage Scherin	high voltage testing of circuit breakers, insulators, bushings and surge diverters, standards and specifications, high voltage testing of electrical equipment, non-destructive test techniques, high voltage Schering bridge, breakdown mechanism of gaseous liquid and solid insulating materials, introduction, Townsend's first ionization coefficient.				
Module 5		09 hours			
	voltage, types, over voltages effects on power s ction against over voltages, insulation coordinat				
 Reference books 1. C.L. Wadhwa, "High voltage engineering", Wiley Eastern Limited, New Delhi, 1994. 2. M.S. Naidu, and V.Kamaraju,, "High Voltage Engineering" Tata McGraw Hill Publishing Company, New Delhi, 2nd Edition, 1994. 3. E Kuffel, and W.S. Zaengl "High Voltage Engineering Fundamentals" Pergamon press, Oxford, London, 1986. 					

Subject Code: HU 501& HU 502	Professional Communication-II and To			
Course	Knowledge of English			
Prerequisite Course	This course aims at Personality Development			
Objectives Course Outcome	At the end, the students should possess a Saleable Image with	employability skills		
Module 1	Principles of Soft Skills and Practice	12 hours		
Definition of	Soft Skills and Personality, Attitude, Dress Code, Body Lang	uage, Individual and		
Group Behav	iour, Personality Test, C.V Writing and the difference between	CV & Resume		
Module 2	2 Group Discussion, Extempore, JAM and Survey 16 hours			
Effects of Ac	oning Ethical, Shopping Mall vs Retailer, Should Animals be lvertisement on Youth, Google vs Social Networking Sites, Net rsity in Indian Culture, Gender Discrimination, Who is Smarted d so on	ewspaper is the thing		
Module 3	Interview	14 hours		
Types of Inte	rview, Interview Ethics, Questions and Mock-Interview Sessio	ns		
Module 4	Business Presentation and Seminars	14 hours		
Business Pre	sentation and Students' Seminar			
Texts: Reference	 W.B. Martin, <i>Ethics in Engineering</i> Tata McGraw Hill, Indi Patnaik, Priyadarshi, <i>Group Discussion and Interview Skill</i> (Video CD) Downes, Colm, <i>Cambridge English for Job Hunting</i>,2009 Audio CDs) TV News (Headlines Today, ND TV and BBC), Chat-Show like India Today, Outlook, The Week and English Dailies. Expressive Skill, English Films & English Comics 	<i>ds</i> , New Delhi: CUP, , New Delhi,CUP (2		

Academic Handbook B.Tech Program

Academic Affairs

(2018-2019)

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Academic Handbook

for

Bachelor of Technology Programme

in

Mechanical Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Programme Structure Summary

Categories of the Courses

The Bachelor of Technology (B.Tech.) program in the Dept. of Mechanical Engineering at National Institute of Technology Goa (NIT Goa) will have 171 credits as the lower limit for the award of degree. These courses are grouped in a number of categories as shown below:

Sl. No.	Category	Credits	Remarks
1.	Basic Sciences (BS)	27	✓Mathematics-14 Credits✓Physics-8 Credits✓Chemistry-5 Credits
2.	2. Basic Engineering Sciences (ES)		 ✓ Engineering Mechanics -3 Credits ✓ Mechanical Engineering -2 Credits ✓ Basic Electrical Science -5 Credits ✓ Computer Programming -4 Credits
3.	Humanities and Languages (HL)	9	 ✓ Professional -3 Credits Communication ✓ Economics -3 Credits ✓ Management -3 Credits
4.	Technical Arts (TA)	5	 ✓ Engineering Drawing ✓ Workshop −3 Credits −2 Credits
5.	Professional Theory and Practice (PT)	110	
6. Others (*Not counted for final CGPA)		6*	 ✓ Environmental Studies → Professional Communication → II and Language Lab ✓ Physical Education → Value Education → 1 Credit
	Total Credits	171	165 credits are counted for CGPA

Semester-wise Credit Distribution

Semester	Total Credits
Ι	22
II	21+1*
III	23
IV	22+1*
V	20+1*
VI	21+3*
VII	18
VIII	18
Total Credits	165+6*

Semester-Wise Distribution of the Courses

I Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem Solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total	Credits	22

II Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic Electrical Science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry Laboratory	0-0-3	2
8	EE152	Basic Electrical Science Lab	0-0-3	2
9	PE150	Physical Education	1-0-0	1*
		Total Credits		21+1*

III Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA200	Mathematics-III	3-0-0	3
2	ME200	Mechanics of Solids	3-0-0	3
3	ME201	Materials and Metallurgical Engineering	3-0-0	3
4	ME202	Fluid Mechanics	3-0-0	3
5	ME203	Electrical and Electronics Technology	3-0-0	3
6	ME204	Basic Thermodynamics	3-0-0	3
7	ME205	Machine Drawing	1-0-3	3
8	ME206	Electrical and Electronics Technology Lab	0-0-3	2
		T	otal Credits	23

IV Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA250	Mathematics-IV (Numerical Methods and Statistics)	3-0-0	3
2	ME250	Applied Thermodynamics	3-0-0	3
3	ME251	Power Plant Engineering	3-0-0	3
4	ME252	Manufacturing Technology-I	3-0-0	3
5	ME253	Mechanics of Machinery	3-0-0	3
6	ME254	Measurements and Metrology	3-0-0	3
7	ME255	Mechanics of Solids Lab	0-0-3	2
8	ME256	Fluid Mechanics Lab	0-0-3	2
9	VE200	Value Education	1-0-0	1*
		Tota	l Credits	22+1*

V Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME300	Manufacturing Technology-II	3-0-0	3
2	ME301	CAD/CAM	3-0-0	3
3	ME302	Turbo Machinery	3-0-0	3
4	ME303	Machine Design-I	3-0-0	3
5	ES301	Environmental Studies	1-0-0	1*
6	HS300	Economics	3-0-0	3
7	ME304	Mechanical Lab-1	0-0-3	2
8	ME305	Measurements and Metrology Lab	0-0-3	2
9	ME306	Mechanical Workshop-I	0-0-3	1
Total Credits				

VI Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME350	Heat Transfer	3-0-0	3
2	ME351	Automobile Engineering	3-0-0	3
3	ME352	Machine Design-II	3-0-0	3
4	ME5**	Elective-I	3-0-0	3
5	HS350	Management	3-0-0	3
6	HU350	Professional Communication-II and Languages Lab	2-0-3	3*
7	ME353	Mechanical Workshop-II	0-0-3	1
8	ME354	Mechanical Lab-II	0-0-3	2
9	ME355	CAD/CAM Lab	0-0-3	2
10	ME356	Mini Project/Industrial training	0-0-3	1
Total Credits				

VII Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME400	Production and Operations Management	3-0-0	3
2	ME401	Automatic Control	3-0-0	3
3	ME5**	Elective-II	3-0-0	3
4	ME5**	Elective-III	3-0-0	3
5	ME402	Seminar	0-0-2	2
6	ME449	Major Project-I	0-0-4	4
Total Credits		18		

VIII Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME450	Industrial Engineering and Operation Research	3-0-0	3
2	ME5**	Elective-IV	3-0-0	3
3	ME5**	Elective-V	3-0-0	3
4	ME5**	Elective-VI	3-0-0	3
5	ME499	Major Project – II	0-0-6	6
Total Credits		18		

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME500	Metal Removal Processes	3-0-0	3
2	ME501	Metal Casting	3-0-0	3
3	ME502	Material Joining	3-0-0	3
4	ME503	Material Forming	3-0-0	3
5	ME504	Composite Materials	3-0-0	3
6	ME505	Computer Integrated Manufacturing	3-0-0	3
7	ME506	Non-Destructive Testing	3-0-0	3
8	ME507	Quality and Reliability	3-0-0	3
9	ME508	Supply Chain Management	3-0-0	3
10	ME509	Optimization Techniques	3-0-0	3
11	ME510	Industrial Safety	3-0-0	3
12	ME511	Maintenance Engineering and Management	3-0-0	3
13	ME512	Lean Manufacturing	3-0-0	3
14	ME513	Fluid Power Control	3-0-0	3
15	ME514	Mechatronics Engineering	3-0-0	3
16	ME515	Integrated Product Design and Prototyping	3-0-0	3
17	ME516	Micro Electro Mechanical Systems	3-0-0	3
18	ME517	Automation Technologies	3-0-0	3
19	ME518	Synthesis of Mechanisms	3-0-0	3
20	ME519	Industrial Robotics	3-0-0	3
21	ME520	Tribology	3-0-0	3
22	ME521	Machine Dynamics	3-0-0	3
23	ME522	Fracture Mechanics	3-0-0	3
24	ME523	Finite Element Methods	3-0-0	3
25	ME524	Refrigeration and Air Conditioning	3-0-0	3
26	ME525	Cryogenic Engineering	3-0-0	3
27	ME526	Computational Fluid Dynamics	3-0-0	3
28	ME527	Renewable Energy Systems	3-0-0	3
29	ME528	Internal Combustion Engines	3-0-0	3
30	ME529	Energy Audit and Management	3-0-0	3

List of Electives

31	ME530	Aerodynamics	3-0-0	3
32	ME531	Heating Ventilation and Air Conditioning	3-0-0	3
33	ME532	Advanced Thermodynamics	3-0-0	3
34	ME533	Experimental Methods in Fluid flow and Heat Transfer	3-0-0	3

Classification of Electives into Streams

Manufacturing and Industrial Engineering	Automation/ Mechatronics	Design	Thermal
ME500	ME513	ME518	ME524
ME501	ME514	ME519	ME525
ME502	ME515	ME520	ME526
ME503	ME516	ME521	ME527
ME504	ME517	ME522	ME528
ME505		ME523	ME529
ME506		ME530	ME531
ME507			ME532
ME508			ME533
ME509			
ME510			
ME511			
ME512			

Detailed Syllabus of Courses

Sl. No.	Sub. Code	Subjects	L-T- P	Credits
1	MA200	Mathematics-III	3-0-0	3
2	ME200	Mechanics of Solids	3-0-0	3
3	ME201	Materials and Metallurgical Engineering	3-0-0	3
4	ME202	Fluid Mechanics	3-0-0	3
5	ME203	Electrical and Electronics Technology	3-0-0	3
6	ME204	Basic Thermodynamics	3-0-0	3
7	ME205	Machine Drawing	1-0-3	3
8	ME206	Electrical and Electronics Technology Lab	0-0-3	2
Total Credits			23	

III Semester Details

Subject Code MA200	Mathematics-III	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	• Mathematics-I & II	
Course Objectives	• This Mathematics course provides requisite and relevant b understand the other important engineering mathematic Engineers and Scientists. Important topics of applied complex analysis, power series solutions, Fourier series an differential equations.	cs courses offered for mathematics, namely

Complex Analysis: Complex Numbers, geometric representation, powers and roots of complex numbers, Functions of a complex variable, Analytic functions, Cauchy-Riemann equations; elementary functions, Conformal mapping (for linear transformation); Contours and contour integration, Cauchy's theorem, Cauchy integral formula; Power Series and properties, Taylor series, Laurent series, Zeros, singularities, poles, essential singularities, Residue theorem, Evaluation of real integrals and improper integrals.

Power Series Solutions: Differential Equations Power Series Method - application to Legendre equation, Legendre Polynomials, Frobenious Method, Bessel equation, Properties of Bessel functions, Sturm- Liouville BVPs, Orthogonal functions.

Partial Differential Equations: Introduction to PDE, basic concepts, second order PDE and classification, D'Alemberts formula and Duhamel's principle for one dimensional wave equation, Laplace's and Poisson's equations, Laplace, Wave, and Heat equations using separation of variables. Vibration of a circular membrane. Heat equation in the half space.

Text/Reference	1. E. Kreyszig, Advanced engineering mathematics (8th Edition), John
Books	Wiley (1999). 2. W. E. Boyce and R. DiPrima, Elementary Differential Equations (8th
	Edition), John Wiley (2005).
	3. R. V. Churchill and J. W. Brown, Complex variables and applications (7th Edition), McGraw-Hill (2003).

Subject Code ME200	Mechanics of Solids	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To build the concept of variety of stresses, strain and deformation due to external acting loads on deformable bodies To study the behavioral pattern of beams, struts, columns, cylinders etc. To make the students comfortable in analyzing shear force and bending moment diagrams of various beams To solve problems relating to torsional deformation of bars and other simple structures To study various failure theories and energy methods 		
across sections Mac Compound stress Power through hold	ress and strain: Simple flexure theory, bending stress and shearing caulay's method for deflection of statically determinate beams. es: Analytical method, Graphical method (Mohr's Circle). Torsio ow and solid shafts, Beams of Uniform strength, Springs, Combined b k and thin pressure vessels, Theory of failures.	n, Transmission of	
Text/Reference Books	 F. L. Singer, "Strength of Materials", 3rd Edition, Harper at New York, 1980 E. J. Hearn, "Mechanics of Materials", Pergaman Press, Engla F. P. Beer, E. R. Johnston, J. T. Dewolf, "Mechanics of Materiata McGraw Hill, New-Delhi, 2007 L. S. Srinath, "Advanced Mechanics of Solids", Tata McGrav Company Ltd., 2009 S. P. Timoshenko, J. N. Goodier, "Theory of Elasticity" McGrard edition, 2010 I. Shames, "Introduction to Solid Mechanics", Prentice Hall of 2003 S. M. A. Kazimi, "Solid Mechanics", Tata McGraw Hill Edu 1982 P. N. Singh, P. K. Jha, "Elementary Solid Mechanics", New A Ltd. Delhi, 2011 	and, 1972 terials", 3 rd Edition, raw Hill Publishing raw Hill Education; of India; 3 rd Edition, ucation, 1 st Edition,	

Subject Code ME201	Materials and Metallurgical Engineering	Credits: 3 (3-0-0) Total hours: 42			
Course Objectives	 To impart knowledge on crystal structure, classification of materials, understand the methods of determining mechanical properties and their suitability for applications To develop knowledge to classify various types of steels and study their applications, Interpret the phase diagrams of materials and select suitable heat-treatment process to achieve desired properties of metals To understand the applications of various metals and non-metallic materials, identify, test and select suitable materials for various engineering applications 				
Iron carbon equilibre Heat treatment of fe Ceramics, Polymers Testing of Engineer	Metals - Solidification, Alloys and Phase diagrams Iron carbon equilibrium diagram Heat treatment of ferrous and non-ferrous alloys Ceramics, Polymers and composite materials Testing of Engineering materials, Fracture and failure of materials Structure- property correlation of Engineering materials				
Text/Reference Books	 Avner H., Introduction to Physical Metallurgy–McGraw H Raymond A. Higgins, Engineering Metallurgy –Part 1 Metallurgy, ELBS, London, 1988. Callister W.D., Material Science and Engineering-An Intro & Sons, Inc., New York, 2003. 	1: Applied Physical			

Subject Code ME202	Fluid Mechanics	Credits: 3 (3-0-0) Total hours: 42		
Course Objectives Fundamentals of fl	 bjectives To familiarize with the properties of fluids and the applications of fluid mechanics. To formulate and analyze problems related to calculation of forces in fluid structure interaction. To understand the concept of fluid measurement, types of flows and dimensional analysis. 			
floatation, Kinema Boundary layer the	Fundamentals of fluid properties, pressure measurement, hydrostatic forces on surfaces, Buoyancy and floatation, Kinematics of fluid flow, Fluid dynamics, Compressible flow, gas nozzles, Flow of real fluids, Boundary layer theory, Flow around immersed bodies, Flow through pipes, Impact of jets, Hydraulic Machines, pumps, Turbines, Hydraulic systems.			
Text/Reference Books	1. Kumar K.L. Fluid Mechanics, Eurasis Publishing House, New Deini, 1995.			

Subject Code ME203	Electrical and Electronics Technology	Credits: 3 (3-0-0) Total hours: 42	
Course	To provide foundation about few of the basic electrical machines		
Objectives	• To understand the basics of their operating principles		
• To analysis the functioning and operation of ener		on systems	

Transformers: Principle, construction (single phase, three phase), development of equivalent circuit through coupled circuit approach, phasor diagram, regulation, efficiency, autotransformers,

Induction machines: Principle, construction, classification, equivalent circuit, phasor diagram, characteristics, starting techniques, speed control, operation under unbalanced supply conditions and harmonics,

DC Machines: Construction, classification, emf and torque equation, characteristics of DC motors, speed control, brushless DC motor, stepper motor, servomotor.

Synchronous machines: Construction, prime- mover and excitation control systems. Operational Amplifier & Linear Applications: Difference amplifiers, Instrumentation amplifiers, voltage to current converters, Filters.

Microprocessors: Introduction to Microprocessor Systems. System Architecture, operation and application of microprocessors; microprocessor programming;

Text/Reference	1. Albert E. Clayton and V.N. Hancock, Performance and Design of Direct Current
Books	Machines
DUUKS	2. Charles V Jones, Unified theory of Electrical Machines, Butterworth, 1967
	3. O I Elgerd, Patrick D Van der Puije, Electric Power Engineering, 2nd edition, Chapman &Hall,1998.
	4. M.G. Say, Performance and Design of Alternating Current Machines, CBS, 1983.
	5. Fitzgerald, Kingsley, Umans, Electric Machinery, 5th Edition, McGraw-Hill, 1992
	6. Arthur R. Bergen, and Vijay Vittal, Power System Analysis, 1st Edition, Pearson Education Asia, 2001.
	7. Sergio Franco, Design with OPAMPS and Linear Integrated circuits, Tata McGraw Hill, 2002.
	8. Sedra and Smith, Microelectronics Circuits, Oxford Univ. Press, 2004
	9. Coughlin, Driscoll, OP-AMPS and Linear Integrated Circuits, Prentice Hall, 2001.
	10. Douglas V. Hall, Microprocessors & Interfacing, McGraw Hill International Edition, 1992.
	11. Jonathan W Valvano, Embedded Microcomputer Systems: Real Time Interfacing, Cengage Learning, Jan- 2011.
	12. Steve Furber, ARM System Architecture, Edison Wesley Longman, 1996.
	 William Hohl, ARM Assembly Language- Fundamentals and Techniques, CRC Press, 2009.

Subject Code ME204	Basic Thermodynamics	Credits: 3 (3-0-0) Total hours: 42
Course	 To provide the foundation for analysis of energy conversion To analyze the relations governing thermodynamic properties To assess the performance of engineering systems and proce	and its application.
Objectives	of thermodynamics. To apply the concents of entropy and energy in engineering systems	esses based on laws

• To apply the concepts of entropy and energy in engineering analysis.

Thermodynamics: Introduction and Basic Concepts, Application Areas of Thermodynamics, Systems and Control Volumes, Properties of a System, State and Equilibrium, Processes and Cycles, Temperature and the Zeroth Law of Thermodynamics, Pressure.

Energy Conversion and General Energy Analysis: Forms of Energy, Energy Transfer by Heat, Energy Transfer by Work, the First Law of Thermodynamics. Moving Boundary Work, Energy Balance for Closed Systems, Specific Heats, Internal Energy, Enthalpy, and Specific Heats of Ideal Gases, Solids and Liquids.

The Second Law of Thermodynamics: Thermal Energy Reservoirs, Heat Engines, Refrigerators and Heat Pumps, Perpetual-Motion Machines, Reversible and Irreversible Processes, the Carnot Cycle, Pure substance, Entropy, Available and unavailable energy, Analysis of cycles, Helmholtz and Gibbs Functions and its applications, Ideal and Real gases, Non-reactive mixtures, properties of air and water vapour.

Subject Code ME205	Machine Drawing	Credits: 3 (1-0-3) Total hours: 42
Course Objectives	 To understand various sectional views, fasteners, joints, represented the levels of surface finish of machine elements To draw an assembly drawing from various working drawing To construct an assembly drawing using various part draw components using conventional drafting as well as 3D modeling 	wings of machine
Machine compon	ents done using conventional drawing board and AutoCAD	

Assembly drawing from working drawing: Swivel bearing, Machine Swivel vice, Tool head of shaper, Tailstock, Fuel pump, Fuel Injector, Rams bottom safety valve, Stop valve, Blow-off cock, Screw Jack, Centrifugal pump

Part drawing from assembly drawing: Foot step bearing, Eccentric, connecting rod, square tool post, Drill jig, Feed check valve

Reference	1. Bhat N. D, Machine Drawing, Charotar Publishing House, Anand, India, 1984.		
Books	2. Gopalkrishna K. R. Machine Drawing, Subhas Publication, Bangalore, 1999.		
	3. Narayana K. L, Kannaiah P, Venkat Reddy K, Machine Drawing 3rd Edition, New		
	Age International Ltd, 2006.		
	4. Goutam Pohit, Goutam Ghosh, Machine drawing with AutoCAD, Pearson		
	Education, 2007.		

Subject Code	Electrical and Electronics Technology	Credits: 2 (0-0-3)	
ME206	Lab	Total hours: 42	
Course Objectives	 To see the practical operation of electrical machines and electronics To understand the basics of their operating principles 		
summing amplifie amplifier, Voltage	DPAMPS Linear application: Voltage follower, Non-inverting amplifier er, Inverting amplifier, Inverting summing amplifier, Difference amplifier e to current converter. Inverting integrator, Filters, Use of electrical m al motors and generators, Load test on transformers	er, Instrumentation	
Reference	1. Albert E. Clayton and V.N. Hancock, Performance and Design	n of Direct Current	
Books	 Albert E. Clayton and V.N. Hancock, Performance and Design of Direct Current Machines Charles V Jones, Unified theory of Electrical Machines, Butterworth, 1967 I Elgerd, Patrick D Van der Puije, Electric Power Engineering,2nd edition, Chapman &Hall,1998. M.G. Say, Performance and Design of Alternating Current Machines, CBS, 1983. Fitzgerald, Kingsley, Umans, Electric Machinery, 5th Edition, McGraw-Hill, 1992 Arthur R. Bergen, and Vijay Vittal, Power System Analysis, 1st Edition, Pearson Education Asia, 2001. Sergio Franco, Design with OPAMPS and Linear Integrated circuits, Tata McGraw Hill, 2002. Sedra and Smith, Microelectronics Circuits, Oxford Univ. Press, 2004 Coughlin, Driscoll, OP-AMPS and Linear Integrated Circuits, Prentice Hall, 2001. Douglas V. Hall, Microprocessors & Interfacing, McGraw Hill International Edition, 1992. Jonathan W Valvano, Embedded Microcomputer Systems: Real Time Interfacing, Cengage Learning,Jan- 2011. Steve Furber, ARM System Architecture, Edison Wesley Longman, 1996. William Hohl, ARM Assembly Language- Fundamentals and Techniques, CRC 		

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA250	Mathematics-IV (Numerical Methods and Statistics)	3-0-0	3
2	ME250	Applied Thermodynamics	3-0-0	3
3	ME251	Power Plant Engineering	3-0-0	3
4	ME252	Manufacturing Technology-I	3-0-0	3
5	ME253	Mechanics of Machinery	3-0-0	3
6	ME254	Measurements and Metrology	3-0-0	3
7	ME255	Mechanics of Solids Lab	0-0-3	2
8	ME256	Fluid Mechanics Lab	0-0-3	2
9	VE200	Value Education	1-0-0	1
	•	Tota	Credits	22+1

IV Semester Details

Subject Code	Mathematics-IV (Numerical	Credits: 3 (3-0-0)
MA 250	Methods and Statistics)	Total hours: 42
Course Objectives	• This is a one semester course that covers elements of I notion of vector spaces, norm, and basic topology and vie model useful to model most real-world observations. It probabilistic models for Information processing and syste	ews the signal space aims at developing

Module1: Signal Modeling: Review of vector spaces, linear data models, Eigen-decomposition & matrices, Fourier series and transforms, Some other transforms and applications to data representation.

Module2: Motivating probability via measure theory and Borel-Field, Kolmogorov axioms, Bayes' theorem and applications, random variable, properties of CDF/PDF, inequalities & bounds, moment generating function & probability generating functions.

Module2: One function of one random variable, discrete and continuous random variables, Bernoulli, binomial, Poisson, geometric, uniform, exponential, Gaussian, statistical tests on surveys and sampling as experiments.

Module4: Computational models using randomness, information theory, pattern recognition, random sequences, random processes, measurements with random processes, types of random processes, detection and estimation (statistical inference models), Markov chains and discrete random processes, examples from communication networks

Text/Reference	1. M. K. Jain, S. R. K. Iyenger and R.K. Jain, "Numerical Methods for Scientific
books	and Engineering Computation, "New Age Publishers, 6th Edition, 2012.
	2. E. Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley
	India Pvt. Ltd., 2010.
	3. R. L. Burden and J. D. Faires, "Numerical Analysis", 9th Edition,
	Brooks/Cole, 2012.
	 S. C. Gupta, and V.K. Kapoor, "Fundamentals of Mathematical Statastics", 7th Edition, Sultan Chand and Sons, 1980.
	5. A. Papoulis, and P. Unnikrishnan, "Probability, Random Variable and
	Stochastic Process", 4 th Edition, Tata McGraw-Hill, 2002.

Subject Code ME250	Applied Thermodynamics	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To understand the significance of thermodynamic cycles w.r.to. Steam power plant. To understand the principles and applications of refrigeration systems To analyze air-conditioning processes using the principles of psychrometry 	
Compressors, reciprocating and rotary, Steam nozzles and steam turbines, Air standard cycles, Vapour power cycles, Gas turbine cycles, performance testing of IC engines, Refrigeration cycles, vapour absorption system, Psychrometric processes.		
Text/Reference Books	Newvork 1969	

Subject Code ME251	Power Plant Engineering	Credits: 3 (3-0-0) Total hours: 42	
Course Prerequisites	Basic Thermodynamics		
Course Objectives	 To Understand functions of the components of various power plants To Evaluate the design layout, working of hydroelectric power plants, economic feasibility and its implications on power generating units To gain knowledge on various Non-conventional or Renewable energy sources 		
function of different Non-conventional	 rgy Sources: Hydel, Steam, Gas turbine, Diesel and Nuclear Pett components and types, Power plant Economics or Renewable energy sources: Solar energy, application of solar energies, Energies, Energy Conversion Principles and types 	•	
Text/Reference Books	 Houghton E.L., Carruthers, Aerodynaimcs for E Butterworth-Hinemann Ltd., 2006 Sukathme S.P., Solar Energy Principles of Thermal Collect Ed., TMC New Delhi,1984 M.M. El. Wakil, Power Plant Techniques, McGraw Hill, N 4. G.D. Rai, Non-Conventional Energy, Dhanpat Rai & Sons 5. P.K Nag, Power Plant Engineering, McGraw Hill, 2017 	New York, 1985.	

Subject Code ME252	Manufacturing Technology-I	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	• To understand various metal casting, joining and removal	derstand various metal casting, joining and removal processes	

Metal casting processes, special casting processes, casting defects, rising and gating design, solidification mechanisms, melting practices;

Metal joining process: Gas Welding, Arc Welding, Advanced Welding processes, Welding defects, Brazing, Soldering;

Metal removal Processes: Introduction to machine tools and classification, Lathe, Drilling Machine, Shaping Machine, Milling Machine, Advanced machine tools.

Text/Reference	1. Ghosh and Mallick, Manufacturing Science, Prentice Hall PTR, 2001
Books	 Paul Degramo, Materials and Processes in Manufacturing, 9th Edition, John Wiley & sons, 2003.
	3. Rao P. N, Manufacturing Technology Vol I and II, 2nd Edition, TMH education, 2006.
	4. P. K Mishra, Non-Conventional Machining, 6th Edition Narosa Publishing house, 1997.

Subject Code ME253	Mechanics of Machinery	Credits: 3 (3-0-0) Total hours: 42
Course	• To learn how to analyze the mechanisms of machine 1	inkages, motions, and
Objectives	analyze forces in machine componentsTo study the dynamics of motion of machine component	te and design of georg
	• To study the dynamics of motion of machine component gear trains, cams, and linkages, simultaneous	is and design of gears,
	 To understand the basic concepts and kinematics of tooth 	ed gear trains
	tics: Links, kinematic pair, mobility, basic mechanisms and its eration analysis, Static force analysis, Inertia forces in machines,	s inversions. Position,
Synthesis of Mecha	anisms: Type, number and dimensional synthesis, Coupler curves	,
Gear and gear trai	ins: Helical, Spiral, Worm and Worm Wheel, Bevel gears.	
Text/Reference	1. R.L. Norton, "Design of Machinery", McGraw Hill Bost	
Books	 J. J. Uicker, Jr, G. R. Pennock and J. E. Shigley & Shigley and Mechanisms", Oxford University Press, 2003 	, "Theory of Machines
	 J. S. Rao, R. V. Dukkipati, "Mechanism and Machine T Limited, 1989 	heory", Wiley Eastern
	4. S.S. Rattan, "Theory of Machines", McGraw-Hill Education (India) Pvt Ltd.,	
	4 th Edition, 2014	
	 5. H. H. Mabe and C.F. Rainbotten, "Mechanism and Design", John Wiley, 1987 6. V Ramamurti, "Mechanics of Machines", CRC press, 2010A. G. Erdman, 	
	"Mechanism Design –Analysis and Synthesis", Vol. I Jersey, 1997	

Subject Code ME254	Measurements and Metrology Credits: Total ho	
Course Objectives	 To Identify techniques to minimize the errors in measure To Identify methods and devices for measurement of thread parameters, surface roughness and geometric feature 	length, angle, gear &

Standards, Errors in measurement, calibration, Linear, angular measurement, Quality control fundamentals, Standard deviation, normal curve pattern of variations, control charts for variables, Comparators, Limits and Tolerances, statistical aspect of tolerances and setting tolerances, Surface finish terminology and measurement, Optical measuring instruments, Measurement of screw thread and Gear elements, Acceptance test for machines.

Text/Reference	1. I.C. Gupta, Engineering Metrology, Dhanpat Rai Publications, New Delhi,
Books	 Control Statistical Quality Control, Mc Graw Hill Publication. 6th Edition, 1988 R.K. Rajput, Mechanical Measurements and Instrumentation (Including Metrology and Control Systems), S.K. Kataria and Sons, 2013

Subject Code VE200	Value Education	Credits: 1 (1-0-0) Total hours: 14	
Course Prerequisite	General Awareness of the Society/ Environment we live in		
Course Objectives	 It aims at Holistic Development At the end, the students should be a complete human being in every respect 		
	Ethics in Engineering: Concepts of Values and Ethics, History and Purposes, Utilitarianism, Duties, Rights, Responsibility, Virtue, Honesty, Moral Autonomy, Obligations of Engineering Profession and moral		
Engineer's Moral responsibility: Engineer's Moral responsibility for Safety and Human Rights, Risk Assessment and Communication, Product Liability, Engineers-Employers Liaison, Whistle-Blowing and Its Moral Justification			
Computer Ethics: Software	Computer Ethics: Social Impact of Computer, Gender-Issues and Privacy, Cyber Crime, Ethical use of Software		
Intellectual property: Definition, Types, Rights and Functions, Patents, Trademark, Grant of Patent in India, Surrender and Revocation of Patents, Compulsory Licensing, Acquisition of Inventions by the Government, Contents of draft application of Patents, WTO			
Text/Reference Books	 Vinod V. Sople, Managing Intellectual Property: The Strategic Imperative, PHI,2006 Govindarajan, Natarajan & Senthil Kumar, Engineering Ethics, PHI Robin Attfield, A Theory of Value and Obligation, London: Croomhelm, 1987 Jones and barlett, "Cyber Ethics: Morality and Law in Cyber Space" Case Studies from Newspapers 		

Subject Code ME255	Mechanics of Solids Lab	Credits: 2 (0-0-3) Total hours: 42	
Course	To understand the practical aspects of the theoretical knowledge g	ained.	
Objectives			
Tension tests on mi	Tension tests on mild steel and cast iron, Compression tests on mild steel and cast iron, Shear tests, Bending		
test on mild steel, T	Torsion test, Hardness test and Impact test. Demonstration on fatigue test and springs.		
Reference Books	1. Hearn, E.J., Mechanics of Materials, Pergaman Press, H	England, 1972.	
	2. Beer and Johnston E. R. Mechanics of Materials, 3rd Ed	lition, Tata McGraw	
	Hill, New-Delhi, 2007.		

Subject Code	Fluid Mechanics Lab	Credits: 2 (0-0-3)
ME256		Total hours: 42
Course	To understand the practical aspects of the theoretical knowledge ga	ained.
Objectives		
Calibration of notches, Venturimeter, Orifice meter, Water meter. Friction in pipes. Impact of jet on vanes.		
Tests on centrifuga	pump, reciprocating pump, Pelton wheel, Kaplan turbine.	
Reference Books	1. Modi, P.N and Seth, S.M., Hydraulics and Fluid Mechanics, Standard Book	
	House.	

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME300	Manufacturing Technology-II	3-0-0	3
2	ME301	CAD/CAM	3-0-0	3
3	ME302	Turbo Machinery	3-0-0	3
4	ME303	Machine Design-I	3-0-0	3
5	ES301	Environmental Studies	1-0-0	1
6	HS300	Economics	3-0-0	3
7	ME304	Mechanical Lab-I	0-0-3	2
8	ME305	Measurements and Metrology Lab	0-0-3	2
9	ME306	Mechanical Workshop-I	0-0-3	1
	Total Credits 20+			20+1

V Semester Details

Subject Code ME300	Manufacturing Technology-II	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I	
Course Objectives	 To Understand in detail of metal cutting process, machinin To impart the knowledge of various Non - Conventional m To understand various metal forming processes 	• •

Metal cutting: Metal Cutting Mechanics, mechanics of chip formation, types of chips produced - orthogonal and oblique cutting, velocity relationships, cutting forces, cutting power, temperature in cutting – single point and multipoint tools, tool geometry, tool designation, cutting variables, tool wear and tool life, machinability, cutting tool materials, cutting fluids, economics of machining.

Machining Processes: Turning , lathes and lathe operations, material removal rate, cutting force, Milling , up milling and down milling, types of milling machines, power, torque, cutting forces, drilling and allied machines, drill geometry, cutting forces, broaching, tapping, boring, planning, shaping, slotting, grinding – cylindrical and surface grinding, grinding wheels, wheel wear.

Introduction to Non - Conventional machining processes

Metal Forming: Press working operations, types of presses, press selection, press working terminology, forming, principles, cutting forces, dies and punches, clearance, constructional features, simple, compound, combination &progressive dies, strippers, scrap strip layout, centre of pressure, press tonnage, drawing, drawing forces, blank holding pressure, bending force, die blank size estimation, forging, forgeability, open and closed die forging, forging force, grain flow, extrusion, explosive forming, electro hydraulic forming, electromagnetic forming, rolling, extrusion.

Text/Reference	1. Serope Kalpakjaian, Steven R. Schmid., Manufacturing Engineering and
Books	Technology, Pearson, New Delhi. 2. PN Rao, Manufacturing Technology- Volume II, Metal Cutting and Machining
	Tools by TMH.
	3. M.P.Groover, Principles of Modern Manufacturing, John Wiley 5 th Edition
	4. P C Pandey and H S Shan, Modern Machining Processes, Tata McGraw-Hill
	Education Pvt. Ltd., 1980
	5. Sharma. P C, A Text book of Production Engineering, S. Chand & Co, 2006
	6. Jain.R K, Production Technology, Khanna Publishers. 17th edition edition (1976)
	7. Ghosh & Mallick, Manufacturing science, East-West Press, 2010.
	8. J Pualo Davim Modern Machining technology, Elsevier, 2011.
	9. HMT, Production Technology, Tata McGraw Hill Pvt. Ltd.
	10. ASTME, Fundamentals of Tool Design, Prentice Hall of India, Society of Manufacturing Engineers; 6th Revised edition edition, 2010

Subject Code ME301	CAD/CAM	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To understand geometric transformation techniques in C. To impart knowledge on Geometric Modelling of C exchange formats and applications To develop CNC programs to manufacture industry understand group technology concepts 	Curves, surfaces, data

Introduction to CAD/CAM: Fundamentals of CAD/CAM, hardware and software requirements, CAD process.

Transformations of geometry: Translation, Scaling, Reflection, Rotation, Homogeneous representation of transformation, Concatenation of transformations.

Geometric Modelling of Curves: 3D Wire frame modeling, modelling of cubic spline, Bezier and B-spline curves.

Geometric Modelling of Surfaces: Basic surfaces entities, Surface of revolution, blends, intersections, Modelling of analytical and sculptured surfaces. Geometric Modelling of Solids: Solid entities, Boolean operations, B-rep of Solid Modelling, CSG approach of solid modelling.

Data Exchange Formats and Applications: CAD standards, Data exchange formats, Rapid prototyping.

Computer Aided Manufacturing (CAM): Introduction to Computer Numerical Control (CNC), Structure of NC machine tools, Designation of axes, Drives & actuation systems, Feedback devices, CNC tooling, Automatic tool changers & Work holding devices.

CNC Programming: Part programming fundamentals, Manual Part Programming, APT Programming.

Introduction to Group technology, Computer Aided Process Planning (CAPP) and Flexible Manufacturing System (FMS)

Text/Reference	1. Groover and Zimmer, CAD/ CAM, Pearson Education; 1 edition 2003	
Books	2. Rao, P.N., CAD / CAM Principles and Applications, McGraw Hill Publishers, New Delhi, 2010.	
	3. Groover, Automation, Production Systems and Computer-Integrated manufacturing, Pearson Education; Fourth edition (22 July 2016)	
	4. Yoram Koren, Computer Control of Manufacturing Systems, McGraw Hill Publications, 2005.	
	 Ibrahim Zeid and R. Sivasubramanian, CAD/CAM: Theory & Practice, McGraw Hill Education; 2nd Edition (25th June 2009) 	

Subject Code ME302	Turbo Machinery	Credits: 3 (3-0-0) Total hours: 42	
Course	Fluid Mechanics		
Prerequisites			
Course Objectives	used for energy transformation, such as pumps, fans, con hydraulic and steam turbines.	used for energy transformation, such as pumps, fans, compressors, as well as hydraulic and steam turbines.It will focus on application of turbo machinery in power generation, power	

Introduction: Definition and components of turbo machines, Classification, Dimensionless parameters and their significance, Effect of Reynolds number, Unit and specific quantities, model studies.

Energy exchange in Turbo machines: Euler's turbine equation, Alternate form of Euler's turbine equation, Velocity triangles for different values of degree of reaction, Components of energy transfer, Degree of Reaction, utilization factor, Relation between degree of reaction and Utilization factor

General Analysis of Turbo machines: Radial flow compressors and pumps – general analysis, Expression for degree of reaction, velocity triangles, Effect of blade discharge angle on energy transfer and degree of reaction, Theoretical head – capacity relationship, General analysis of axial flow pumps and compressors, degree of reaction, velocity triangles

Steam Turbines: Classification, Single stage impulse turbine, condition for maximum blade efficiency, stage efficiency, Need and methods of compounding, Multi-stage impulse turbine, expression for maximum utilization factor, condition for maximum utilization factor

Hydraulic Turbines: Classification, various efficiencies. Pelton turbine – velocity triangles, design parameters, Maximum efficiency. Francis turbine - velocity triangles, design parameters, runner shapes for different blade speeds. Draft tubes- Types and functions. Kaplan turbines - velocity triangles, design parameters.

Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Minimum speed for starting the flow, Maximum suction lift, Net positive suction head, Cavitation, Need for priming, Pumps in series and parallel.

Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems. Axial flow Compressors: Expression for pressure ratio developed in a stage, work done factor, efficiencies and stalling.

Text/Reference	1. Kadambi and Manohar Prasad, "An Introduction to Energy Conversion, Volume
Books	 III, Turbo machinery", New Age International Publishers, reprint 2008. S. M. Yahya, "Turbines, Compressors & Fans", Tata McGraw Hill Co. Ltd., 2nd
	edition, 2002. 3. D. G. Shepherd, "Principals of Turbo machines", The Macmillan Company (1964).
	4. S. L. Dixon, "Fluid Mechanics & Thermodynamics of Turbo machines", Elsevier (2005).

Subject Code ME303	Machine Design-I	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To apply the concepts of stress analysis, theories of failure and material science to analyze, design and/or select commonly used machine components. Detailed study of mechanical components such as fasteners, shafts, couplings etc. and emphasize the need to continue learning. To teach students how to apply mechanical engineering design theory to identify and quantify machine elements in the design of commonly used mechanical systems. To teach students how to apply computer-based techniques in the analysis, design and/or selection of machine components. 		
concentration	sign process: Factor of safety, strength, rigidity, fracture, material c on in design: levers, curved members	onsiderations. Stress	
Flexible power dri	ves: belt drives and chain drives		
Design: for fatigue springs.	, joints, shafts and keys, Design of couplings, Design of helical sp	prings and multi leaf	
Text/Reference Books	 J. E. Shigley, "Mechanical Engineering Design", Metric M V. B. Bhandari, "Design of Machine Elements", TMH, 201 R. L. Norton, "Machine Design: An Integrated Approach", 1 2nd Edition, 2006 Design Data, PSG Tech, Coimbatore, 1995 	10	

Subject Code ES301	Environmental Studies	anding environment, its constituents, importance for living, ecosystem, developmental activities vs environment, climate change, national and onal environment related developments, need for public awareness, its	
Course Objective	human developmental activities vs environment, climate		

Introduction: Multi-disciplinary nature of environmental studies: Definition, scope and importance, Need for public awareness.

Renewable and non-renewable Natural resources: Natural resources and associated problems; Forest resources: Use and over-exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forest and tribal people;

Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems; Mineral resources : Use and exploitation, environmental effects of extracting and using mineral resources, case studies; Food resources : World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies; Energy resources : Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, Case studies; Land resources : Land as a resource, land degradation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids, Introduction, types, characteristic features, structure and function of the Following ecosystem, Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Biodiversity and its conservation: Introduction – Definition : genetic, species and ecosystem diversity, Bio geographical classification of India, Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity, Eco-cultural heritage of India-various festivals related to Environment, Tradition of community conserved areas-Sacred forests, sacred tanks, sacred mountains, sacred rivers.

National and International Environment related developments: Environmental ethics : Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear, accidents and holocaust, Environment related Acts, Issues involved in enforcement of environmental legislation, Public awareness, Wasteland reclamation, Consumerism and waste products, UN Frame Convention Climate Change, Kyoto protocol, concept of carbon credits, latest CoP meet Agenda; Filed Work (equal to 5 lecture hours): Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/sacred groves/sacred forests, Visit to a local polluted site- Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems- pond, river, hill slopes etc.

Text/Reference Books	1. Erach Bharucha, Textbook for Environmental Studies For Undergraduate Courses of all Branches of Higher Education (online book -UGC Website), , University Grants Commission ,India.
	2. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science and Environment, Edi:1st,1997, ISBN-139788186906200; ISBN-108186906207
	 R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005.
	4. Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill, 2006.
	5. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press,2005.
	6. Masters, Gilbert M., Introduction to Environmental Engineering and Sciences, Prentice Hall India, 1991

Subject Code HS300	Economics	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Basic concept of macroeconomic & Indian Economy.	
Course Objectives	• To develop the ability to understand and analyze the broad scenario and its dynamism	macroeconomic

Introduction to Economics: Constructing a Model, Optimization and Equilibrium in market demand and supply, Comparative statistics and asset allocation.

Budget Constraint and Consumer Preference: Budget constraint in case of two goods, Shifting of budget line and impact of Taxes, Subsidies, and Rationing. Indifference curve, Marginal Rate of Substitution, Cardinal utility and utility function, Indifference curve from utility functions, Marginal Utility vs MRS.

Choice and Demand: Optimal Choice, Consumer demand, Implication of MRS conditions, Normal and Inferior Goods, Income Offer Curves and Engel Curves, The Price Offer Curve

Technology: From Individual to Market Demand, The Inverse Demand Function, The Extensive and the Intensive Margin, Elasticity, Elasticity and Demand, Market Supply, Market equilibrium, Inverse Demand and Supply Curves

Profit Maximization: Profits, The Organization of Firms, The Organization of Firms, Short-Run Profit Maximization, Profit Maximization in the Long Run, Profit Maximization and Returns to Scale.

Cost Function: Cost Minimization, Revealed Cost Minimization, Returns to Scale and the Cost Function, Average Costs, Marginal Costs, Marginal Costs and Variable Costs.

Markets: Monopoly, Maximizing Profits, Linear Demand Curve and Monopoly, Markup Pricing, Oligopoly and Choosing a Strategy, Price Leadership, Comparing Price Leadership and Quantity Leadership.

National Income Accounting: National Income and Related concepts, Nominal or real GDP, Methods of measuring NI.

Determinants of Equilibrium Output: Aggregate demand and Equilibrium output, Consumption function and aggregate demand, Multiplier, Govt. sector, Budget and Full employment

Money, Interest and Income: The goods market and is curve, The Asset market and LM Curve, Equilibrium in Goods band asset market and Adjustment towards equilibrium.

Monetary and Fiscal Policy: Monetary policy, Fiscal Policy, crowding out, Composition of output and policy mix and implementation

Text/Reference Books	1.	Varian, Hal R.: Intermediate Microeconomics, W.W. Norton & Co., New work (ISBN:0393978303)
	2.	Koutsoyiannis, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macmillan, London (ISBN:0333778219)
		Dornbusch and Stanley Fisher: Macroeconomics, Mc Graw Hill Barro Robert J. "Macroeconomics, New York, John Wiley.

Subject Code ME304	Mechanical Lab-I	Credits: 2 (0-0-3) Total hours: 42	
Course Objectives	To understand the practical aspects of the theoretical knowledge gain	ned.	
List of Experiments	2		
1. The first law	of thermodynamics on petrol engine.		
2. The second la	aw of thermodynamics on petrol engine.		
3. Performance	Test on Petrol Engine (2 stroke)		
4. Performance	Test on Petrol Engine (4 stroke)		
5. Performance	5. Performance Test on Petrol Engine Diesel engine (4 stroke)		
6. Performance	Test on Single stage Reciprocating Air Compressor test rig.		
7. Performance	Test on Two stage Reciprocating Air Compressor test rig.		
8. Performance	Test on Centrifugal blower		
9. Performance	Test on Vapour Compression test rig		
10. Performance	Test on Vapour Absorption Refrigeration test rig		
11. Performance	evaluation of Air Conditioning system		
12. Estimation of	f Cooling load of Simple Air Conditioning system		
13. Performance	Test on Heat Pump Test rig		

Subject Code ME305	Measurements and Metrology Lab	Credits: 2 (0-0-3) Total hours: 42		
Course Objectives	To understand the practical aspects of the theoretical knowledge g	lerstand the practical aspects of the theoretical knowledge gained.		

List of Experiments

- 1. Linear Measurement: Using Vernier Calliper (Dial, Digital and Plain), Vernier Height Gauge
- 2. Linear/Circular Measurement using Micrometer Screw Guage (Digital and Plain)
- 3. Angular Measurement: Sine bar/Sine center, Bevel Protractor, Height Gauge.
- 4. Use of Dial Gauge as Mechanical Comparator.
- 5. Measurement of straightness and roundness using Dial Gauge.
- 6. Measurement of Surface Roughness using Surface Roughness Tester.
- 7. Measurement of various elements of screw thread using Tool Makers Microscope.
- 8. Measurement of Screw thread parameters using Floating Carriage Micrometer.
- 9. Measurement of Gear tooth thickness using Gear tooth Vernier caliper and Span Micrometer.
- 10. Linear and angular measurement using Profile Projector.
- 11. Calibration of Linear /Circular measurement tools

Subject Code ME306	Mechanical Workshop-I	Credits: 1 (0-0-3) Total hours: 42	
Course Objectives	To understand the practical aspects of the theoretical knowledge g	e practical aspects of the theoretical knowledge gained.	

List of Experiments

- Sand Molding using 2- and 3-piece patterns
- Hot Forging (1 Job)
- Plumbing and pipe fitting
- Gas and Spot Welding (1 Job each)
- 3 Jobs covering all lathe operations

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME350	Heat Transfer	3-0-0	3
2	ME351	Automobile Engineering	3-0-0	3
3	ME352	Machine Design–II	3-0-0	3
4	ME5**	Elective-I	3-0-0	3
5	HS350	Management	3-0-0	3
6	HU350	Professional Communication-II and Languages Lab	2-0-3	3
7	ME353	Mechanical Workshop-II	0-0-3	1
8	ME354	Mechanical Lab-II	0-0-3	2
9	ME355	CAD/CAM Lab	0-0-3	2
10	ME356	Mini Project/Industrial training	0-0-3	1
		То	tal Credits	21+3

VI Semester Details

Subject Code	Heat Transfer	Credits: 3 (3-0-0)		
ME350		Total hours: 42		
Course	• Applying the knowledge of mathematics, and analyze the	• Applying the knowledge of mathematics, and analyze the different situations		
Objectives	in which heat transfer is involved.			
• To calculate heat transfer rate, time required for heating or coolid obtaining the temperature distribution with respect to the domain of a				
	under different situations.			

Introduction to Heat Transfer and Concepts: Thermodynamics versus Heat Transfer, Modes of heat Transfer, Basic laws of Heat Transfer.

Conduction: General heat conduction equation in cartesian, cylindrical & spherical coordinates, Initial and Boundary conditions, One dimensional steady state conduction: plane walls & composite plane walls, hollow and composite cylinders and spheres, Thermal contact resistance, Critical radius of Insulation - spheres & cylinders.

Conduction with Heat Generation: Plane wall with uniform heat generation, Cylinder with uniform heat generation, sphere with uniform heat generation.

Heat Transfer from Extended Surfaces: Generalized Fin Equation, Heat dissipation from fins: infinitely long fin, insulated fin, fin losing heat at the tip, Fin effectiveness & efficiency.

Natural Convection: Physical Mechanism of Natural Convection – Grashof's number, Natural Convection over surfaces – natural convection correlations, Natural Convection inside enclosures – effective thermal conductivity, Natural convection from finned surfaces.

Forced Convection: Physical Mechanism of forced Convection, Velocity boundary layer – laminar & turbulent flows, Reynolds number, Thermal Boundary layer, Flow over flat plates – laminar flow, turbulent flow, Combined Laminar & turbulent flow, Flow across Cylinders & spheres –the Drag coefficient, the heat transfer coefficient, Flow in tubes.

Radiation Heat Transfer: Thermal Radiation, Blackbody radiation, Radiation properties, Planck's law, Stefan Boltzman's Law, Wien's Displacement Law, Kirchoff's law, Gray body & selective emitters, Intensity of Radiation & Lambert's Cosine Law, Atmospheric and solar radiation.

Radiation Exchange between Surfaces: The view factor, View Factor Algebra, Radiation heat transfer – black surfaces, diffuse and gray surfaces, Surface and space resistance, Electrical approach between for radiation heat exchange, Radiation shields.

Boiling and Condensation: Boiling heat transfer, pool boiling regime, condensation heat transfer, film condensation – vertical plate, sphere, horizontal cylinders, Drop wise condensation.

Heat Exchangers: Classification of Heat Exchangers, Overall heat transfer coefficient, The LMTD Method for Heat exchanger analysis, Correction for LMTD for use with cross flow &multi pass exchangers, e - NTU method for heat exchanger analysis.

Text/Reference	1. N. M. Ozisik, "Heat transfer - A basic approach" McGraw Hill Publication;
Books	 1985. J. P. Holman; "Heat Transfer", McGraw Hill Publication; 10th edition, 1996. S.P. Sukhatme, "A Text book on Heat Transfer", Universities Press, 4th Edition, 2012 Y. A. Cengel, "Heat transfer - A Practical Approach"; McGraw Hill Publication; 5th edition 1998.

Subject Code ME351	Automobile Engineering	Credits: 3 (3-0-0) Total hours: 42	
Course	 To Understand the basic lay-out of an automobile To understand the operation of engine cooling, lubrication, ignition, electrical 		
Objectives	 and air conditioning systems. To understand the principles of transmission, suspensior systems. 		
Introduction, Automotive Chassis layout, frame and body construction, Fuel System, Ignition System and Electrical system, Lubricating system and cooling systems, Transmission system, Steering System, Braking and suspension system, Automotive air conditioning, Wheels and tyres, Automotive Restraint Systems, Engine testing, automotive Safety aspects. Advancements in Automobile Engineering.			
Text/Reference Books	 Kirpal Singh, "Automobile Engineering Vol. I& II",8th edition, Standard Publishers Distributors, Delhi, 1999 Joseph Heitner, "Automotive mechanics Principles and Practices", 2nd edition, D. Van Nostrand Company, 1967. 		
DUUNS			
	3. William H Crouse and Donald L Anglin, "Automot edition, Pearson Higher Education, 1993.	ive Mechanics", 10th	
	4. William H Crouse and Donald L Anglin, "Automotiv McGraw-Hill, 1994.	e engine", 8 th edition,	
	5. William H Crouse and Donald L Anglin, "Automotive cooling systems", 6 th edition, McGraw-Hill, 1981.	fuel - lubricating and	
	6. William H Crouse and Donald L Anglin, "Automotive edition, McGraw-Hill, 1975.	chassis and body", 5th	
	7. William H Crouse, Automotive electrical equipment, 8 th 1976.	edition, McGraw-Hill,	

Subject Code ME352	Machine Design-II	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To teach students how to formulate the design and manufacturing problem simple systems and mechanical components To demonstrate the methodology of designing under real life situations the problem solving 	
	 To elaborate the design process, material selection, calcul stress concentrations under dynamic loading. To enable the student to apply engineering tools and te design. 	

Design of Gears: Lubrication and Wear consideration in Design;

Design and selection of Bearings: Hydrodynamic lubrication theory, Hydrostatic and Hydrodynamic bearings, Journal and Rolling Element Bearings; Mechanical Vibrations and Machine Dynamics,

Systems Approach to Design: Decision Making, Simulation of mechanical systems using CAD tools, Sensitivity analysis of design parameters, Value Analysis and Value Addition to designed components and systems; Exercises of mechanical systems design with examples; Overview of Optimization in Design; Reliability and Robust Design; Communicating the Design.

Subject Code HS350	Management	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	• Basic concept of monetary economic, financial concepts and Basic statistics.	
Course Objectives	• To develop the ability to understand and analyze the broad aspect of management and its financial dynamism	

Principles of Accounting: Accounting Cycle, Assumptions, Classifications of Accounts- Journal, Cash Book, Ledger, Final Accounts-Manufacturing Account, Trading Account, P & L Account, Balance Sheet.

Financial Statement Analysis: Balance sheet, Profit and Loss Account, Economic vs Accounting Profit, Changes in Financial Position, Funds flow and cash flow statement.

Ratio Analysis: Nature of Ratio Analysis, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profitability Ratio, DuPont Analysis, Comparative statement and Trend Analysis, Inter-firm Analysis.

Working Capital: Concept of working Capital, Operating and Cash conversion Cycle, Permanent and Variable working Capital, Balance working capital position and Issues.

Time Value of Money: Time preference for money, Future value, Annuity, Perpetuity, Sinking fund factor, Present value, Annuity, Perpetuity, capital recovery factor, Multiple period Compounding.

Capital Budgeting: Nature and type of Investment decision, Net Present value, (NPV), Internal Rate of Return (IRR), Payback period, Profitability Index, Nature and Behavior of Cost, Breakeven point, multiple products analysis, and decision points.

Financial System: Introduction to Indian Financial System, Financial Institutions and Financial Markets.

Industrial Engineering & Project Management: Work Study, Time Study, Industrial Psychology, Project Management (PERT, CPM)

Text/Reference Books	 I.M Pandey, Financial Management, 10th edition, Vikish Publication Brealey Y Myers, Principles of Corporate Finance, McGraw-Hill Rajiv and Anil, Financial Management, 2nd Edition, Oxford University Press L.M Bhole, Financial Institutions and Markets, Tata McGraw-hill

Subject Code HU300	Professional Communication-II and Languages Lab	Credits: 3 (2-0-3) Total hours: 42
Course	Knowledge of English	
Prerequisite		
Course Objectives	• This course aims at Personality Development. Towards the end of the course, the students should possess a Saleable Image with employability skills.	
Principles of Soft Sl	kills and Practice: Definition of Soft Skills and Personality, Attitud	de, Dress Code, Body
Language, Individua	l and Group Behavior, Personality Test, C.V Writing and the differ	ence between CV &
Resume		
Beings or Computer Interview: Types of	ng of Past, Diversity in Indian Culture, Gender Discrimination, W and so on Interview, Interview Ethics, Questions and Mock-Interview Sessio on and Seminars: Business Presentation and Students' Seminar	
Text/Reference	1. W.B. Martin, Ethics in Engineering Tata McGraw Hill, Indi	a
Books	2. Patnaik, Priyadarshi, Group Discussion and Interview Skills (Video CD)	
	3. Downes, Colm, Cambridge English for Job Hunting, 2009, J Audio CDs)	New Delhi, CUP (2
	 TV News (Headlines Today, ND TV and BBC), Chat-Show like India Today, Outlook, The Week and English Dailies. F Expressive Skill, English Films & English Comics 	

Subject Code ME353	Mechanical Workshop-II	Credits: 1 (0-0-3) Total hours: 42
Course Objectives	To understand the practical aspects of the theoretical knowledge	ge gained.
List of Experimen	<u>nts</u>	
1. Milling- Slab	Milling, face milling, end milling, gear cutting	
2. Shaper- surfac	e machining, keyway/groove cutting	
3. Hole making-	Drilling and allied process.	
4. Grinding – Cy	lindrical and Surface (1 Job each)	
5. 1 Job on CNC machining center.		
6. Micro machin	ing	
Reference Books	on Shop Theory Tata McGraw-Hill Education	

- 1. James Anderson, Shop Theory, Tata McGraw-Hill Education.
- 2. PN Rao, Manufacturing Technology- Volume I and II, TMH

Subject Code ME354	Mechanical Lab-II	Credits: 2 (0-0-3) Total hours: 42	
Course Objectives	To understand the practical aspects of the theoretical knowledge	stand the practical aspects of the theoretical knowledge gained.	
List of Experimen	<u>ts</u>		
1. Study of var	ous components and systems of an automobile		
2. Thermal Cor	nductivity of a plane and/or composite wall.		
3. Analysis of a	3. Analysis of a parallel and counter flow heat exchanger.		
4. Estimation o	4. Estimation of Natural and Forced Convection heat transfer coefficient.		
5. Estimation o	f Stefan Boltzman Constant.		
6. Determination	6. Determination of natural frequency of single DOF systems - spring mass system and/or simple		
pendulum an	d/or single rotor system.		
7. Determine th	7. Determine the damping ratio in a damped single degree of freedom system		
8. Static and dy	8. Static and dynamic balancing of rotating masses		
9. Verification	of Gyroscopic Rule		
10. Speed Contro	ol using governors.		

Subject Code ME355	CAD/CAM Lab	Credits: 2 (0-0-3) Total hours: 42		
Course Objectives	To understand the practical aspects of the theoretical knowledge	e gained.		
List of Experiments				

- CAD: Graphics programming, drafting techniques, Solid modeling and FEA of machine parts using commercial solid modelling and analysis software
- CAM: CNC Programming on turning and milling centers.
- Interfacing CAD and CAM.

VII Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME400	Production and Operations Management	3-0-0	3
2	ME401	Automatic Control	3-0-0	3
3	ME5**	Elective-II	3-0-0	3
4	ME5**	Elective-III	3-0-0	3
5	ME402	Seminar	0-0-2	2
6	ME449	Major Project-I	0-0-4	4
		Tota	Credits	18

Subject Code ME400	Production and Operations Management	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I & II	
Course Objectives	 To understand the different stages of production process To ensure quality production. 	and control.

Introduction to Production and Operations Management: Product Design & Development Process Planning, Types of Production System, Tools for selecting the process. Operations function, globalization, factors affecting operation management, new trends in operation management. Operations strategy – forming operation strategies, strategy deployment, world class manufacturing practices,

Economic analysis: Break Even analysis and Profit Volume Chart

Forecasting: Qualitative and Quantitative methods.

Facility Capacity, Location and Layout: Long-range capacity planning, definition, measurement, Economies of scale; Facility location - analysing industrial facility locations; Facility layout - types, new trends, analyzing manufacturing facility layouts, systematic layout design procedure, CRAFT.

Aggregate Planning and Master Production Scheduling: Approaches to aggregate planning - graphical, empirical, optimization and parametric. Development of a master production schedule, Make-to-stock, assemble-to-order, make-to-order/engineer-to-order, materials requirement planning (MRP-I) manufacturing resource planning (MRP-II) and ERP.

Inventory Analysis and Control: Need for inventory, continuous and periodic review policies, lot sizing techniques, EOQ, EMQ models, Inventory model with purchase discounts, inventory models with uncertain demand and lead times; Selective inventory control techniques, ABC and other classification of materials; vendor managed inventory.

Sequencing and Scheduling: Objectives in scheduling, single machine models, SPT and EDD sequences, mean flow time, weighted mean flow time, number of tardy jobs and mean tardiness, Parallel machine models, minimizing make span and weighted mean flow time, Flow shop models, Johnson's algorithm, Job shop models - branch and bound approach.

Lean Production and JIT: Elements of lean production, MRP Vs JIT, cycle time, takt time, KANBAN, SMED, 5S, theory of constraints - drum, buffer and rope, Agile manufacturing.

Text/Reference	1. Samuel Eilon, "Elements of Production Planning and Control", Mc Millon
Books	 Company 1962. 2. E S Buffa, "Modern Production/ Operations Management", John Wiley, 1983. 2. D. Damage "Due bettigenend Operations Management", DIH Isomirae
	3. R. Pannerselvam, "Production and Operations Management", PHI learning, 2006.
	4. K. Aswathappa, K. Sridhar Bhat, "Production and Operations Management", Himalaya Publishing 2018.
	5. WJ Stevenson, "Operations Management", MH Educations, 2018.

Subject Code ME401	Automatic Control	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Mathematics-I & II	
Course Objectives	 Provides a background of control principles in various engineering applications. Applications of mathematical tools such as Laplace transform, transfer function, block diagram, signal flow graph, mathematical modeling of dynamic systems, time response analysis, stability of linear system, root locus and frequency domain analysis are done To model a complicated system into a more simplified form to interpret different physical and mechanical systems for analysis. To employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions and identify the needs of different types of controllers and compensator to ascertain the required dynamic response from the system 	
	back systems, mathematical modelling of physical systems; Labow graphs, state-space models;	aplace transforms, block
Time domain anal order systems;	ysis: Performance specifications, steady state error, transient resp	ponse of first and second
	Routh-Hurwitz stability criterion, relative stability; proportion ad, lag, and lag-lead compensators; Root-locus method: analysis	U
Frequency respor design;	nse method: Bode diagrams, Nyquist stability criterion, perf	ormance specifications,
State-space metho electronic controlle	ods: Analysis, design; Physical realizations of controllers: hy rs.	draulic, pneumatic, and
Text/Reference Books	 K Ogata, Modern Control Engineering, 4th ed, Pearson Education Asia, 2002. B C Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed, John Wiley (students ed.), 2002. M Gopal, Control Systems: Principles and Design, 2nd ed, TMH, 2002. M Gopal, Modern Control System Theory, 2nd ed., New Age International, 1993. R. C. Dorf and R. H. Bishop, Modern Control Systems, 8th ed., Addison Wesley, 1998. P. Belanger, Control Engineering: A modern approach, Saunders College Publishing, 1995. 	

VIII Semester Details

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME450	Industrial Engineering and Operation Research	3-0-0	3
2	ME5**	Elective- IV	3-0-0	3
3	ME5**	Elective- V	3-0-0	3
4	ME5**	Elective- VI	3-0-0	3
5	ME499	Major Project – II	0-0-6	6
		Total	Credits	18

Subject Code ME450	Industrial Engineering and Operation Research	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Production and Operations Management	
Course Objectives	 To understand the different stages of production process and control. To ensure quality production. 	

Introduction: Introduction to industrial engineering; Productivity; Work study -- method study, principles of motion economy, ergonomics, work measurement

Project management: CPM, PERT, project crashing.

Quality Management: Understanding quality, quality, competitiveness and customers, building quality chains, managing quality, quality in all functions, models and frame works for total quality management, Early TQM frameworks - quality award models - the four Ps and three Cs of TQM - a new model for TQM

Logistics and Supply Chain Management: Definition of logistics and supply chain management, decision phases in a supply chain, objectives of SCM, examples of supply chains, supply chain drivers, supply chain integration, supply chain performance measures

Maintenance Management: Objective, types of maintenance, statistics of failure, Time to failure and probability distributions, reliability, bath tub curve, Weibull's probability distribution

Design of Experiments and Simulation: ANOVA, Normality analysis and Hypothesis testing, Manufacturing system simulation and its performance measurement

Operations Research: Introduction to concepts of operations research, Linear programming -- problems formulation, graphical method, simplex method, Primal-dual problems; Transportation model; Assignment model.

Information Technology: Digital product development, PLM, ERP, use of CAD/CAM/CAE, automated process planning, planning of resources, tomorrow's industry – AI, ANN

Text/Reference	1. K. George, "Introduction to Work Study by ILO", Universal Book Corporation,
Books	Bombay, 2011.
	2. W. J. Stevenson, "Operation Management", McGraw Hill Education (India) Pvt.
	Ltd., 12th Edition, 2018.
	3. Besterfield D H et al, "Total Quality Management", Pearson Education Private
	Limited, 2004.
	4. Chopra S and Meindl P, "Supply Chain Management: Strategy, Planning, and
	Operation", Prentice Hall India Pvt. Ltd, New Delhi, 2007.
	5. H. A. Taha, "Operations Research An Introduction", Dorling Kindersley
	(India) Pvt. Ltd., 8th Edition, 2008.
	6. Ravindran, D. T. Philips and J. J. Solberg, "Operations Research, Principles and
	Practice", John Wiley & Sons, 2005.
	7. F. S. Hillier, G. J. Lieberman, B. Nag, P. Basu, "Introduction to Operations
	Research", McGraw Hill Education (India) Pvt. Ltd., 10th Edition, 2017.
	8. Chary S N, "Production and Operations Management", Tata McGraw Hill
	Publishing Company Limited, 2004.
	9. Panneerselvam, R, "Operations Research", Prentice – Hall of India, New Delhi,
	2002.

ELECTIVES

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	ME500	Metal Removal Processes	3-0-0	3
2	ME501	Metal Casting	3-0-0	3
3	ME502	Material Joining	3-0-0	3
4	ME503	Material Forming	3-0-0	3
5	ME504	Composite Materials	3-0-0	3
6	ME505	Computer Integrated Manufacturing	3-0-0	3
7	ME506	Non-Destructive Testing	3-0-0	3
8	ME507	Quality and Reliability	3-0-0	3
9	ME508	Supply Chain Management	3-0-0	3
10	ME509	Optimization Techniques	3-0-0	3
11	ME510	Industrial Safety	3-0-0	3
12	ME511	Maintenance Engineering and Management	3-0-0	3
13	ME512	Lean Manufacturing	3-0-0	3
14	ME513	Fluid Power Control	3-0-0	3
15	ME514	Mechatronics Engineering	3-0-0	3
16	ME515	Integrated Product Design and Prototyping	3-0-0	3
17	ME516	Micro Electro Mechanical Systems	3-0-0	3
18	ME517	Automation Technologies	3-0-0	3
19	ME518	Synthesis of Mechanisms	3-0-0	3
20	ME519	Industrial Robotics	3-0-0	3
21	ME520	Tribology	3-0-0	3
22	ME521	Machine Dynamics	3-0-0	3
23	ME522	Fracture Mechanics	3-0-0	3
24	ME523	Finite Element Methods	3-0-0	3
25	ME524	Refrigeration and Air Conditioning	3-0-0	3
26	ME525	Cryogenic Engineering	3-0-0	3
27	ME526	Computational Fluid Dynamics	3-0-0	3
28	ME527	Renewable Energy Systems	3-0-0	3
29	ME528	Internal Combustion Engines	3-0-0	3

30	ME529	Energy Audit and Management	3-0-0	3
31	ME530	Aerodynamics	3-0-0	3
32	ME531	Heating Ventilation and Air Conditioning	3-0-0	3
33	ME532	Advanced Thermodynamics	3-0-0	3
34	ME533	Experimental Methods in Fluid flow and Heat Transfer	3-0-0	3

Classification of Electives into Streams

Manufacturing and Industrial Engineering	Automation/ Mechatronics	Design	Thermal
ME500	ME513	ME518	ME524
ME501	ME514	ME519	ME525
ME502	ME515	ME520	ME526
ME503	ME516	ME521	ME527
ME504	ME517	ME522	ME528
ME505		ME523	ME529
ME506		ME530	ME531
ME507			ME532
ME508			ME533
ME509			
ME510			
ME511			
ME512			

Subject Code ME500	Metal Removal Processes	Credits: 3 (3-0-0) Total hours: 42	
Course Prerequisites	Manufacturing Technology-I		
Course Objectives	 To perform different machining operations like turning, drilling, milling and finishing. To predict tool life and tool failure To select suitable cutting fluid for respective materials 		
cutting, Merchant c energy relationship, Friction in metal cu parameters on tool angle in controlled temperature distribu cutting speed and to High speed machin	Mechanism of chip formation, Determination of shear plane angle, forces on the chips, forces in orthogona cutting, Merchant circle diagram and analysis, Theory of Lee & Shaffer, co-efficient of friction, power & energy relationship, velocity relationship, shear-strain, forces and power, Tool Materials and their properties Friction in metal cutting, Mechanisms of tool wear, tool failure criteria, tool life equations, effect of process parameters on tool life, tool life tests, machinability index, Machining with controlled contact tools, shear angle in controlled contact machining, Thermal Aspects in metal cutting, temperature in chip formation temperature distribution and analysis, Economics of Machining, element of total production cost, optimum cutting speed and tool life for minimum cost, optimum cutting speed and tool life for maximum production High speed machining abrasive processes, machining of polymers, ceramics, glasses and composites Difficult to machine materials, Dry machining.		
Text/Reference Books	 M.C Shaw, "Metal Cutting Principles", Oxford Publica 2012. Trent Edward M. Et.Al, "Metal Cutting", Elsevier India, F Geoffrey Boothroyd, "Fundamentals of Metal Machinin McGraw-Hill Inc.,US, 1975. P N Rao, "Manufacturing Technology: Metal cutting and Graw Hill Education, 2015. Ghosh and Amitabha, "Manufacturing Science", Affilia (Pvt.) Ltd., 2006. A. Bhattacharya, "Metal Cutting: Theory and Practice" Agency, 1899. 	Fourth Edition, 2013. g & machine tools", I machine tools", Mc ated East-West Press	

Subject Code ME501	Metal Casting	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I	
Course Objectives	• To know the basic concepts of metal casting technolo produce of new materials.	by and to apply them to

Introduction to casting and foundry industry Basic principles of casting processes; sequence in foundry operations; patterns; moulding practice; ingredients of moulding sand and core sand, sand testing; different moulding processes

Types of furnaces Furnace used in foundry; furnaces for melting; melting practice for steel, cast iron, aluminium alloys, copper alloys and magnesium alloys; safety considerations; fluxing, degassing and inoculation

Sand casting Permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, continuous casting, squeeze casting, full mould process, strip casting

Overview of pouring and solidification Concept of shrinkage, Chvorinov's rule, chilling; gating systems, functions of riser, types of riser, bottom pouring and top pouring, yield calculations, visualization of mould filling (modeling), methoding

Concepts of solidification Directional solidification, role of chilling; filtration of liquid metals; consumables; details of inoculation and modification – with respect to cast irons and Al-Si system; casting defects; soundness of casting and its assessment.

Text/Reference	1. Heine R. W., Loper C. R., Rosenthal P. C., "Principles of Metal Casting",
	Tata McGraw Hill Publishers, 2nd Edition, 1985
Books	2. Jain P. L., 'Principles of Foundry Technology', Tata McGraw Hill, 3rd
	Edition, 1995
	3. Srinivasan N. K., "Foundry Technology", Khanna Publications, 1986

Subject Code ME502	Metal Joining	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I	
Course Objectives	• To know the concepts of different materials joining tech on underlying science and engineering principle of every	

Introduction: Classification of welding processes, energy sources used in welding, working principle, advantages, limitations of arc welding processes –MMAW, GTAW, GMAW, SAW, ESW & EGW

Welding Process: Working principle, advantages and limitations of solid-state welding processes. Friction, friction stir, explosive, diffusion and ultrasonic welding. Working principle, advantages and limitations of power beam processes: Plasma arc welding, electron beam & laser beam welding.

Principles of operation, process characteristics, types and applications – Resistance welding, Gas welding, brazing, soldering and joining of non-metallic materials.

Welding metallurgy: Introduction, thermal cycles, prediction of peak temperature, pre heat and cooling rate, PWHT. Weldability of carbon steel, stainless steel & aluminum. Hot & cold cracking phenomenon, weld defects, causes and their remedies

Applications: Application of welding in heavy engineering, oil & gas industries, Nuclear Power, automotive industries, shipbuilding & Aerospace Industry.

Text/Reference	1. Parmer R. S., "Welding processes", Khanna Publishers, 1997	
Books	 Robert W Messler, Jr. "Principles of welding, Processes, physics, chemistry a metallurgy", Wiley,2004 	
	3. Larry Jeffus, "Welding Principles and Applications" Thomson, Fifth edition, 2002	
	4. Carry B., "Modern Welding Technology", Prentice Hall Pvt Ltd., 2002.	

Subject Code ME503	Material Forming	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I	
Course Objectives	• To apply basic of metal forming processes to shape proforms without any defects.	oducts to their desired

Brief introduction to the Theory of Elasticity, Elastic stress-strain, relations, Plasticity, Plastic stress-strain relations, Yield conditions, Graphical representations of yield criteria, Work hardening, Forming fundamentals, classification, flow stress, flow curves, effect of parameters such as strain rate and temperature, workability, anisotropy. Deformation zone geometry, uniform deformation energy method, and slab analysis, friction and lubrication, residual stress. Forging: Classification of forging processes, Hammer or drop forging, Press forging, Open-die forging, Closed- die forging, Calculation of forging loads, Effect of forging on microstructure, Residual stresses in forgings, Typical forging defects. Extrusion: Introduction/objectives, Classification of extrusion processes, Extrusion equipment, Presses, dies and tools, Hot extrusion, Deformation, lubrication, and defects in extrusion, Analysis of the extrusion process, Cold extrusion and cold forming, Hydrostatic extrusion, Extrusion of tubing, Production of seamless pipe and tubing. Rolling: Introduction/objectives, Rolling mills, Classification of rolling processes, Hot rolling, Cold rolling, Forces and geometry relationships in rolling, Simplified analysis of rolling load: Rolling variables, Problems and defects in rolled products, Rolling-mill control, Theories of cold rolling, Theories of hot rolling, Torque and power. Drawing of rods, wires and tubes: Introduction/objectives, Rod and wiredrawing, Analysis of wiredrawing, Tube drawing processes, Analysis of tube drawing, Residual stress in rod, wire and tubes.

Text/Reference	1. George E., "Mechanical Metallurgy", S.I. Metric edition, Dieter, McGraw
Text/Reference Books	 George E., "Mechanical Metallurgy", S.I. Metric edition, Dieter, McGraw Hill Book Company, 1989. William F. Hosford, and Robert M.Caddell, "Metal Forming: Mechanics and Metallurgy", PTR Prentice Hall,USA, 1993. R.H.Wagoner and J.L.Chenot, "Metal Forming Analysis", Cambridge University Press, New York, U.S.A., 2001. Heinz Tschaetsch, "Metal Forming Practice", Springer-Verlag, Berlin Heidelberg, 2010. Samuel H. Talbert and Betzalel Avitzur, "Elementary Mechanics of Plastic Flow in Metal Forming", John Wiley and Sons, New York, 1996. B.L. Juneja, "Fundamentals of Metal Forming Processes", New Age
	International, Publishers, New Delhi, 2000.

Subject Code ME504	Composite Materials	Credits: 3 (3-0-0) Total hours: 42	
Course	Materials and Metallurgical Engineering		
Prerequisites			
Course Objectives	 To understand the properties of composite materials To classify the composites based on properties To design metal matrix composite. 		
Introduction to Composites, Classification of composite materials, Matrix Materials, Dispersed Phase, Dispersion strengthened, particle-reinforced and fiber-reinforced composites, Micro and Macro mechanics of Laminates, Classical Laminated theory, ABD Matrix, Design, Joining and Testing of composite materials, Failure modes, laminates, Self-healing composites, Processing of Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Carbon Carbon Composites, Nano-composites, Injection molding, Compression molding and 3D printing of advanced composites, Laboratory Practice, Testing methodologies. Fatigue and environmental effects. 3D, 4D composites.			
Text/Reference Books	 F.L. Matthews and R.D. Rawlings, "Composite materia science", Wood head publishing limited; New edition, 1999 RoberM.Jones, "Mechanics of composite Materials", McG Ltd., Second Edition, 2015. Krishnan K Chawla, "Composite material science and En Publishing, Third edition, 2012. P.K.Mallik, "Fibre reinforced composites", Third edition, 0 M M Schwartz, "Composite Materials Hand book", Mo edition, 1992. 	9. Fraw Hill Kogakusha gineering", Springer CRC Press, 2007.	

Subject Code ME505	Computer Integrated Manufacturing	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	• CAD/CAM	
Course Objectives	 To gain knowledge in Engineering product specificat Integration To impart knowledge in CAD software package for mode of mechanical components and CNC programming for Mi 	eling, assembly, FEA

CIM: CIM evaluation, hardware and software of CIM, concurrent engineering, advance modeling techniques.

Numerical Control: Concepts and features, Classification, Input media, Design considerations, Functions of MCU, CNC concepts, Point-to-point and Contouring systems, Interpolators, Feedback devices, DNC, Adaptive Control, ACO and ACC systems.

Part programming: Manual part programming, preparatory, miscellaneous functions, computed aided part programming, post processors, APT programming.

Manufacturing: Cellular manufacturing, Group Technology, Flexible Manufacturing Systems Configurations, Workstations, Control systems, Applications and benefits

Materials handling and Storage Systems: Types of material handling systems, storage systems, Automated storage and retrieval systems, Robotics technology-control systems, Programming, Applications, Automated inspection and testing, Coordinate measuring machines.

Text/Reference	1. Paul Ranky, "Computer Integrated Manufacturing", Prentice Hall, 2005.
Books	2. YoramKoren, "Computer Control of Manufacturing Systems", McGraw Hill
DOOKS	Book co. New Delhi, 1986.
	3. Mikell P Groover, "Automation, Production Systems and Computer
	Integrated Manufacturing", Prentice Hall, 2007
	4. Donatas T I junclis, Keith E Mekie, "Manufacturing High Technology Hand
	Book", Marcel Decker.

Subject Code ME506	Non-Destructive Testing	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Materials and Metallurgical Engineering	
Course Objectives	• To study and understand various Non-Destructive Eva methods, theory and their industrial applications	aluation and Testing

Overview of NDT: NDT Versus Mechanical testing, Overview of the Non-Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT. Visual inspection – Unaided and aided.

Surface NDE Methods: Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

Thermography and Eddy Current Testing: Thermography- Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

Ultrasonic Testing (UT) and Acoustic Emission: Ultrasonic Testing Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique – Principle, AE parameters, Applications

Radiography: Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films - graininess, density, speed, contrast, characteristic curves, Penetrometers, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

Text/Reference	1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive		
Books	Testing", Narosa Publishing House, 2009		
DOOKS	2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New		
	Age International Publishers, 2010		
	3. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control",		
	American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17		
	4. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley,		
	2nd Edition New Jersey, 2005		
	5. Charles, J. Hellier, "Handbook of Nondestructive evaluation", McGraw Hill,		
	New York 2001.		

Subject Code ME507	Quality and Reliability	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Production and Operations Management	
Course Objectives	 To identify and analyze failures of components and mechanical and electronic items. To distinguish different concepts in maintenance and increase service life of the products/machines To list various safety measures concerned with environ safety engineer 	explore in order to

Introduction: Introduction to quality assurance and quality control, Statistical concepts in quality, Central limit theorem, Quality control tools

Control Charts: Control charts for variables and attributes, process capability studies, Sampling Inspection, Quality System standards

Reliability: Reliability, Failure Rate, Mean Time Between Failures (MTBF), Mean Time To Failure (MTTF), Bathtub curve, analysis using exponential, normal and Weibull distribution, system reliability, Series, Parallel, complex structures, Redundancy, Reliability Allocation, Mechanical Reliability, Fault tree analysis, Down time, Repair time, maintainability, Availability, Failure Mode and Effect Analysis.

Safety: Importance of Safety, Fundamental Concepts and Terms, Workers' Compensation, Product Liability, Hazards and their Control, Walking and Working Surfaces, Electrical Safety -Tools and Machines, Materials Handling.

Fire Protection and Prevention: Explosions and Explosives, Radiation, Biohazards, Personal Protective Equipment, Managing Safety and Health.

Text/Reference	1. David J Smith, Butterworth-Heinemann, "Reliability Maintainability and Risk;	
Books	Practical methods for engineers", New Delhi, 2001	
DOOKS	2. E.L.Grant and Leavenworth, "Statistical Quality Control", McGraw-Hill Inc,	
	Sixth Edition, 1988.	
	3. Charles E Ebeling "An Introduction to Reliability and Maintainability	
	Engineering"	
	4. B.S. Dhillon, "Maintainability, Maintenance and Reliability for Engineers",	
	CRC Press, 2006	
	5. Roger L. Brauer, "Safety and Health for Engineers", John Wiley Sons, 2006	
	6. Hoang Pham, "Handbook of Reliability engineering", Springer Publication,	
	2003	
	7. B.S. Dhillon, "Engineering maintenance; a modern approach", CRCPress, 2002	

Subject Code ME508	Supply Chain Management	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Production and Operations Management	
Course Objectives	• To provide an insight on the fundamentals of supply chain strategy, logistics, s chain networks, tools and techniques	ourcing and outsourcing supply
selection, outsourci approaches LP, MIL Demand forecastin planning in supply of	iguration design : Factors involved, sourcing, models for strate ng and procurement process, facility location and capacity P, network design in uncertain environment, evaluation using sing: Collaborative forecasting models, bullwhip effect, information chain, strategies, multi echelon inventory planning, models, dis ecentralized systems.	allocation, modeling mulation models.
-	tion: tradeoffs in transportation design, modes of transportation a ing, models, packaging, pricing and revenue management.	nd their design, vehicle
	ly chain : IT infrastructure, CRM, SRM, e-business, RFID, suppy stem (DSS) for supply chain, selection of DSS for supply chain.	•

Text/Reference Books	1. Sunil Chopra, Pet`1er Meindl, Edith Simchi-Levi, "Supply Chain Management: Strategy, Planning and Operations", Prentice Hall India, 3rd ed., 2007.
	2. David Simchi-Levi, Philip Kaminsky, "Designing and Managing the Supply Chain: Concepts, Strategies, and Cases" Tata McGraw Hill, 3rd ed, 2007
	3. J. Shapiro, "Modeling the supply chain", Thomson, 2nd ed., 2002

Subject Code ME509	Optimization Techniques	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	• Mathematics-I & II	
Course Objectives	• To perform different optimization techniques to solve problems	various engineering

Introduction: Introduction to engineering optimization, General principles, Classification, Problem formulation & their classifications, Classical optimization techniques, Single variable and multivariable optimization, Single and Multi-objectives, Pareto Optimal solutions.

Unconstrained Optimization Techniques: Techniques of unconstrained optimization, Golden section, Random, Pattern and Gradient search methods, Interpolation methods.

Constrained Optimization Techniques: Optimization with equality and inequality constraints, Direct methods, Indirect methods using penalty functions.

Unconventional Optimization Techniques: Genetic Algorithms, Particle Swarm Optimization, Simulated Annealing and Ant Colony algorithm.

Applications: Application of Fuzzy logic and Artificial Neural Networks in optimization.

Structural applications, Design of simple truss members, Design applications, production planning, controlling and scheduling, Facility layout applications, etc.

Text/Reference Books	 S.S. Rao, "Engineering Optimization – Theory & Practice", New Age International (P) Limited, New Delhi, 2009.
DUOKS	2. R.L.Fox, Addison, Optimization Methods for Engineering Design. Wesley Publishing
	3. Kalyanamoy Deb, "Optimization for Engineering Design Algorithms and Examples", Prentice Hall of India Pvt. Ltd., 2006.
	 Johnson Ray, "Optimum Design of Mechanical Elements", Wiley, John & Sons, Digitized 2007.
	5. C.S.Rao, "Optimization Techniques", Dhanpat Rai& Sons, New Delhi
	 S. Rajasekaran, G. A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications" PHI Learning Pvt. Lmt. 2nd Edition, New Delhi, 2017

Subject Code ME510	Industrial Safety	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I	
Course Objectives	To understand and apply the principles of science, technology, engineer maths to solve industry-related problems.	
	• Contribute to the profitable growth of industrial economic analytical tools, effective computational approaches, methodologies.	• •
Introduction : Evol budgeting for safety	ution of modern safety concept, safety policy, Safety Organizat	ion, Safety Committee
• •	reating awareness, awards, celebrations, safety posters, safety e eme, safety campaign	displays, safety pledge
principles of accide	of an accident, reportable and non-reportable accidents, reporting ant prevention, accident investigation and analysis, records for cumentation of accidents, unsafe act and condition, domino sequ	accidents, departmenta
	g: Machine Guarding, guarding of hazards, Machine Guarding ty and Gas cutting, Safety in Manual and Mechanical material har	
	Oxicity, TLV, Types of Chemical Hazards, Occupational disease olvent hazards, control measures	s caused by dust, fumes
Fire Safety: Fire tri	angle, Types of fire, first aid firefighting equipment, flammabili	ty limit, LPG safety
Acts: Overview of f	factories act 1948 – OHSAS-18000	
Text/Reference	1. "Accident Prevention Manual for Industrial Operations"	, N. S. C. Chicago, 1982
Books	2. Blake R.B., "Industrial Safety" Prentice Hall, Inc., New	Jersey, 1973
	 Heinrich H.W. "Industrial Accident Prevention" McGra York, 1980. 	w-Hill Company, Nev
	 Krishnan N.V. "Safety Management in Industry" Ja Bombay, 1997. 	ico Publishing House
		1 1002

5. John Ridley, "Safety at Work", Butterworth & Co., London, 1983.

Subject Code ME511	Maintenance Engineering and Management	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology-I	
Course Objectives	 To enable the student to understand the principles, funct maintenance activities. To develop ability in formulating suitable maintenance reliable manufacturing system. To introduce the different maintenance categories and fai To equip with essential system diagnosis techniques so a appropriate actions on error symptoms and causes of failu To illustrate the techniques used for maintenance manage To empower with the skills to manage a manufacturing continuous system availability for production. 	strategies to achieve lure analysis tools. as to identify and take ures. ement.

Maintenance: Key to reliability & productivity, Basic elements of maintenance system, inspection, planning & scheduling, job execution, record keeping, data analysis, learning & improvement. Preventive, operating and shutdown maintenance; Condition based maintenance and Application of preventive maintenance for system of equipment.

Vibration and signature analysis: Causes; remedy in rotating machinery. Fluid analysis for condition monitoring, various methods of fluid analysis. Vibration monitoring, Data acquisition, Transducers, Time domain and frequency domain analysis, Phase signal analysis, Fault diagnosis of rotating equipment, antifriction bearings and gears.

Non-destructive testing: Visual examination, optical aids, liquid penetrate testing, magnetic particle testing, eddy current testing, radiography, ultrasonic testing, acoustic emission testing, thermography, leak testing, corrosion monitoring, standards for NDT.

Lubrication: Introduction to lubrication engineering, types, classification of lubricants with their properties and characteristics. Bearing lubrication technique for minimization of friction and wear.

Science of friction and wear: Different types of wear, such as abrasive, corrosive, seizure, scoring, scuffing, pitting, spalling, adhesive, etc. and techniques for minimization of wear. Data collection and analysis, Introduction to computer-aided maintenance management system

Text/Reference	1. H.P.Garg, "Industrial Maintenance", Kindle edition, S Chand, 2014	
Books	 Srivastava S. K., "Maintenance Engineering and Management", S. Chand & Company Ltd., New Delhi, 1998. 	
	 Venkataraman, "Maintenance Engineering and Management", Prentic-Hall of India Pvt. Ltd., New Delhi, 2007. 	
	 Gupta A. K., "Reliability, Maintenance and Safety Engineering", University Science Press, New Delhi, 2009. 	
	5. Rao S. S., "Reliability-Based Design", McGraw-Hill, Inc, New York, 1992.	

Subject Code ME512	Lean Manufacturing	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Manufacturing Technology I	
Course Objectives	 To introduce the fundamentals of Lean Manufacturing Components for Lean including: Waste identification ar stream analysis), 5S, JIT, Kaizen and Poke Yoke. 	nd elimination (value

Role of Inventory in Production: Principles of Production systems, Production System Models

Objectives of lean manufacturing: Key principles and implications of lean manufacturing- traditional Vs lean manufacturing. Value creation and waste elimination, main kinds of waste, pull production, different models of pull production continuous flow, continuous improvement/Kaizen- worker involvement, cellular layout, administrative lean.

Standard work: communication of standard work to employees, standard work and flexibility, visual controls, quality at the source, 5S principles, preventative maintenance, total quality management, total productive maintenance, changeover/setup time, batch size reduction, production levelling.

Value Stream Mapping: The as-is diagram-the future state map, application to the factory simulation scenario, line balancing, Poke Yoke, overall equipment effectiveness. One Piece Flow, Process razing techniques, cells for assembly line, case studies

Introduction: Elements of JIT, uniform production rate, pull versus push method Kanban system, small lot size, quick, inexpensive set-up, continuous improvement. Optimized production technology.

Team establishment: Transformation process, Project Management, Lean implementation, Reconciling lean with other systems, lean six sigma, lean and ERP lean with ISO 9001:2000.

Text/Reference Books	1. Askin R G and Goldberg J B, "Design and Analysis of Lean Production Systems", John Wiley and Sons Inc., 2003
	2. Hobbs, D.P. "Lean Manufacturing implementation", Narosa Publisher, 2004.
	3. Micheal Wader, "Lean Tools: A Pocket Guide to Implementing Lean Practices", Productivity and Quality Publishing Pvt. Ltd, 2002.
	4. Michael L George, David T Rowlands, Bill Kastle, "What is Lean Six Sigma", McGraw Hill, New York, 2004.

ME513	Fluid Power Control	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Fluid mechanics	
Course Objectives	 To understand fundamental principles, design and oper pneumatic machines, components and systems To impart knowledge on hydraulics and Pneumatics automation revolution 	
 Fluid Power fundamentals: Fluid properties and qualities; Hydraulic and Pneumatic symbols and Circuits, Flow through conduits, orifices, minor losses, temperature rise and Pressure transients. Theory, construction, operation and characteristics of Positive displacement Pumps and Motors; Flow and Torque losses and machine efficiencies, Construction, operation and characteristics of pressure, flow and direction control valves. Construction, operation and selection of accumulators, intensifiers, Hydraulic Cylinders. Construction and design of hydraulic circuits for specific applications. Fluid Power Circuits: Single and Multi-Actuators system, Electro-hydraulic Servo-Valve and its dynamics, Theory, Construction and operation of Pneumatic actuators, valves and other accessories. System Dynamics and Control: Basics of System Dynamics and Control; Application to a servo-valve motor open loop and closed loop drive systems; Servo-valve with linear actuators. 		
Theory, Construction System Dynamics motor open loop an	on and operation of Pneumatic actuators, valves and other accesso and Control: Basics of System Dynamics and Control; Applic d closed loop drive systems; Servo-valve with linear actuators.	ories.
Theory, Construction System Dynamics motor open loop an	and operation of Pneumatic actuators, valves and other accessor and Control: Basics of System Dynamics and Control; Applic d closed loop drive systems; Servo-valve with linear actuators. CC: Introduction to the use of PLC (Programmable Logic Contro	ries. ration to a servo-valve l) for sequence control

Subject Code ME514	Mechatronics Engineering	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	• To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation	
	• To understand the application of Mechatronic Systems in	various fields

Introduction: Introduction to Mechatronics, need and applications, elements of mechatronic systems, role of mechatronics in automation, manufacturing and product development

Sensors and Feedback Devices: Importance of sensors in Mechatronics, Static and Dynamic characteristics of sensors, errors and output impedance of sensors, transducers for measurement of displacement, strain, position, velocity, noise, flow, pressure, temperature, humidity, vibration, liquid level, vision sensors

Control Elements and Actuators: On/off push buttons, control relays, thermal over load relays, contactors, selector switches, solid state switches. Mechanical actuators – types of motion, gear trains, belt and chain drives, screw rods. Electrical actuators, solenoids, DC drives and AC variable frequency drives, AC and DC motors, servomotors, stepper motors, linear motors. Hydraulic and Pneumatic controls, functional diagram - control valves, cylinders and hydro motors

PLC: Introduction to PLC, simple programs for process control application based on relay ladder logic-Supervisory Control and Data Acquisition Systems (SCADA) and Human Machine Interface (HMI)

Interfacing Systems: Introduction to interfacing of different hard wares in industry, need for networks in industrial plants, hierarchy and structure of networking, RS 232 based network, Ethernet, TCP/IP, MAP/TOP

Application of Mechatronic Systems: Introduction to factory automation and integration, design of simple Mechatronics systems, Case studies based on the application of mechatronics in manufacturing, autotronics, bionics and avionics

Text/Reference	1. Bolton W, Mechatronics, Pearson Education Asia, New Delhi, 2004.		
Books	2. S Cetinkunt, Mechatronics, John wiley, 2007.		
DUUKS	3. D. G. Alciatore and M. B. Histand, Introduction to Mechatronics and		
	Measurement systems, McGraw Hill, NY, 2007.		
	4. J Stenersons, Fundamentals of Programmable Logic Controllers Sensors and		
	Communications, Prentice Hall, 2004.		
	5. Kuttan K K, Introduction to Mechatronics, Oxford University Press, 2007.		
	6. HMT, Mechatronics, Tata McGraw Hill Publishers, New Delhi, 1998.		
	7. S. Soloman, Computer Control of Manufacturing Systems, McGraw Hill, New		
	York, 1983.		

Subject Code ME515	Integrated Product Design and Prototyping	Credits: 3 (3-0-0) Total hours: 42
Course	• To understand the fundamentals of product design, strateg	gies and analysis
Objectives	• To understand human considerations and modern approac	ches in product design
	• To know the basic knowledge on reverse engineering	

Introduction: Definition of Product Design, Design by Evolution and Design by Innovation, Essential Factors, Morphology of Design, Primary Design Phases and Flow Charting,

Product Strategies and Analysis: Standardization, Generic Process of Product development- Concept generation, concept selection, TRIZ, concept testing.

Industrial Design Organisation: Role of Aesthetics in Product Design, Functional Design Practice, Strength, Stiffeners and Rigidity Considerations in Product Design, Review of Production Processes Economic Factor Effecting Design, Product Value, Design for Safety, Reliability and Environmental Considerations, Economic Analysis,

Human Considerations in Product Design: Introduction to Human Considerations in Product Design, Anthropometry, Design of Control and displays, Introduction to Reverse Engineering.

Modern Approaches to Product Design: Concurrent Design. Prototyping, Virtual and Physical. Rapid Prototyping Technologies

Text/Reference	1. Ulrich and Eppinger, Product Design and Development; Tata McGraw Hill,
Books	2005
DUUKS	2. K Otto and K Wood, Product Design, Pearson Education, Inc. 2001
	3. Chitale & Gupta, Product Design and Manufacturing, PHI, 3rd edition, ISBN-
	10: 8120326369, 2005.
	4. K G Cooper, Rapid Prototyping Technology, Marcel Dekker, Inc. 2001
	5. D T Pham and S S Dimov, Rapid Manufacturing, Springer-Verlag, 2001

Subject Code ME516	Micro Electro Mechanical Systems	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices. To educate on the essentials of Micro fabrication techniques. To introduce various sensors and actuators 		
	 To introduce various sensors and actuators To introduce different materials used for MEMS 		
	 To educate on the applications of MEMS to disciplines by Mechanical engineering. 	beyond Electrical and	

MEMS and Micro integrated Systems: Introduction, history of MEMS development, intrinsic characteristics of MEMS. Devices: Sensors and Actuators. Overview of microfabrication, microelectronics fabrication process, silicon-based MEMS processes, new materials and fabrication processes. Points of consideration for processing.

Scaling Laws and Miniaturization: Introduction. Scaling in geometry. Scaling in rigid body dynamics. The trimmer force scaling vector – scaling in electrostatic forces, electromagnetic forces, scaling in electricity and fluid dynamics, scaling in heat conducting and heat convection.

MEMS Processing: Photolithography. Photoresist and applications. Light sources. X-ray and electron beam lithography. Ion implantation. Diffusion process. Oxidation, thermal oxidation. Silicon di oxide. Thermal oxidation rates. Oxide thickness by colour

Micromachining Methods: Bulk micromachining, Isotropic and anisotropic etching, Wet etchants, etch stops, dry etching comparison of wet and dry etching. Dry etching, physical etching, reactive ion etching, comparison of wet and dry etching, Surface micromachining, process in general, problems in surface micromachining. The LIGA process, description, materials for substrates and photoresists, electroplating, the SLIGA process.

Micro System Packaging: The three levels of microsystem packaging – die level, device level and system level. Essential packaging technologies – die preparation – surface bonding, wire bonding and sealing. Three-dimensional packaging. Assembly of Microsystems – selection of packaging materials

Text/Reference	1. Tai-Ran Hsu, -MEMS and Microsystems Design and Manufacturel, Tata Mc	
Deeler	Graw Hill Publishing Co Ltd, New Delhi, 2002.	
Books	2. JJ Allen, MEMS Design CRC Press Publisher, 2010	
	3. Chang Liu, Foundations of MEMS, Pearson International Edition, 2006.	
	4. Mark Madou, Fundamentals of Microfabrication, CRC Press, New York, 1997.	
	5. Julian w. Gardner, Vijay K. Varadan, Osama O. Awadelkarim, "Micro Sensors	
	MEMS and Smart Devices", John Wiley & Son LTD, 2002	

Subject Code ME517	Automation Technologies	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	Electrical and Electronics Technology	
Course Objectives	• To impart knowledge on basics of automation, ser application	nsors, robots and its

Introduction to automation: basic notions and definitions, technical and economic requisites. Automation as a means of control and inspection, basic control system concepts, control system analysis, systems of automatic control.

Sensors: sensory equipment, range sensing, proximity sensing, touch sensing, force and torque sensing, signal conditioning equipment.

Introduction to machine vision: sensing and digitizing, image processing and analysis, applications.

Introduction to robots: definition of robot, basic concepts, robot configurations, types of robot drives, basic robot motions - point to point control, continuous path control, Components and operations, basic actuation mechanisms, robot actuation and feedback, manipulators –director and inverse kinematics, coordinate transformation, brief robot dynamics. Types of robot and effectors, grippers, tools as end effectors, robot end - effort interface.

Robot programming: Methods, languages, capabilities and limitation, artificial intelligence, Knowledge representation, search techniques, AI and robotics. Some Industrial applications of robots

Tart/Dafamara	1 K C Fr. D. C. Caralar - C. C. Lee Deletine sector language Michael		
Text/Reference	1. K. S. Fu., R. C. Gonalez, c. S. G. Lee, Robotics control sensing, Vision and		
Books	Intelligence, McGraw Hill international edition, 1987.		
DUUKS	2. Michelle P. Groover, Mitchell Weiss, Industrial Robotics, Technology,		
	Programming, and Applications, Mc Graw Hill international editions, 1986.		
	3. Klafter Richard D., Chmielewski Thomas A., Negin Michael, Robotic		
	Engineering – An Integrated approach, Prentice hall inc, 1989.		

Subject Code ME518	Synthesis of Mechanisms	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To apply the concepts of stress analysis, theories of failure to analyze, design and/or select commonly used machine Detailed study of mechanical components such as fasten etc. and emphasize the need to continue learning To teach students how to apply mechanical engineering des and quantify machine elements in the design of common systems To teach students how to apply computer-based techni design and/or selection of machine components 	components lers, shafts, couplings sign theory to identify only used mechanical

Introduction to kinematics: types of mechanism, kinematics synthesis, science of relative motion, tasks of kinematic synthesis with practical applications,

Degree of freedom: class-I, class-II chain, Harding's notation, Grash of criterion, Grubler's criterion.

Introduction to position generation problem: concept of pole, two & three position generation synthesis, pole triangle, Relationship between moving & fixed pivots, Four position generation, opposite pole quadrilateral, center point & circle point curve, Burmester's point. **Matrix method** for position generation problem, rotation matrix, displacement matrix.

Introduction to function generation problem: co-ordination of input-output link motion, relative pole technique, inversion technique, overlay technique, graphical synthesis of quick return mechanisms for optimum transmission angle. Types of errors, accuracy points cheby shev's spacing and frudenstein's equation.

Introduction to path generation problem: synthesis for path generation with and without prescribed timing using graphical method. Coupler curves, cognate linkages, Robert's law of cognate linkages.

Complex number method for path generation problem, 3 precision points. Synthesis for infinitesimally separated position, concept of polode and centrod, Euler's savery equation, inflection circle, Bobbilier and Hartman's construction. Optimal synthesis of planer mechanisms, least square method.

Introduction to spatial mechanisms: D-H notations, Introduction to kinematic analysis of robot arms.

1. D. C. Tad, "Applied linkage synthesis", Addison Wesley publication, 1964
 A. G. Erdman, "Mechanism Design -Analysis and Synthesis", Vol. I, Prentice Hall, New Jersey, 1997 G. N. Sandor, A. G. Erdman, "Advanced mechanism design", Prentice Hall Inc, 1984
 C. H. Suh, C. W. Radcliff, "Kinematics and mechanisms design", John Wiley &Sons., 1978
 A. H. Soni, "Mechanism Synthesis and Analysis", McGraw Hill, 1984 R. L. Norton, "Design of Machinery- An Introduction to the Synthesis and Analysis of Mechanisms", McGraw-Hill Higher Education, Boston, 2004

Subject Code ME519	Industrial Robotics	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	Industrial Robotics	

Types of industrial robots: Load handling capacity, general considerations in Robotic material handling, material transfer, machine loading and unloading, CNC machine tool loading, Robot centered cell. Construction of manipulators, advantages and disadvantages of various kinematic structures. Pneumatic, hydraulic and electric. Robotic vision systems, image representation, object recognition and categorization, depth measurement, image data compression, visual inspection, software considerations. Characteristics and control. Nonservo robots, motion planning. Feedback systems, encoders, servo control PTP and CP. Application of Robots in continuous arc welding, Spot welding, Spray painting, assembly operation, cleaning, robot for underwater applications. Gripper force analysis and gripper design, design of multiple degrees of freedom, active and passive grippers. Manipulator dynamics and force control. Vision, ranging, laser, acoustic, tactile. Developments in sensor technology, sensory control. SELECTION OF ROBOT: Factors influencing the choice of a robot, robot performance testing, economics of robotisation, Impact of robot on industry and society.

Programming Language: VAL, RAIL, AML. Mobile robots, walking devices.

Text/Reference	1. K. S. Fu, R. C. Gonzalez, C. S. G. Lee, "Fundamental of Robotics", McGraw
Books	 Hill, 1987 2. Y. Koren, "Robotics for Engineers", McGraw Hil, 1985 3. A. Ghosal, "Robotics-Fundamental Concepts and Analysis", Oxford University Press. 2013 4. J. J. Craig, "Robotics", Addison Wesley, 1986 5. R. D. Klafter, T. A. Chmielewski, M. Negin, "Robotic Engineering – An
	 6. M. P. Groover, "Automation, Production Systems, and Computer Integrated Manufacturing" Pearson, 2013 7. J. A. Rehg, "Introduction to Robotics in CIM Systems", Prentice Hall, India, 2002 8. S. R. Deb, "Robotics Technology and Flexible Automation", TMH, New Delhi, 2010

Subject Code ME520	Tribology	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To establish the fundamental understanding of tribole balancing both, theoretical and practical aspects of tribol To understand basic lubrication mechanism and various 	nd practical aspects of tribology	
	 To understand different types of bearings in context of tribased applications To understand the friction and wear phenomenon 	ibology and its design-	

Engineering Surfaces: Properties and Measurement, Surface Contact Adhesion, models, indices, adhesive surface contact Friction, origin, theories, components, measurement, friction behavior of materials. Wear, origin, types – adhesive, abrasive, corrosive, fatigue, erosion etc., measurement, theories, delamination theory, wear debris analysis, ferrography, wear behavior of materials. Thermal Considerations in Sliding Contact, measurement of flash temperature, modeling.

Surface Engineering: treatments and coatings.

Liquid Lubricants: Properties and Measurement, Fluid Film Lubrication, Hydrodynamic and hydrostatic lubrication, Thrust and Journal Bearing, Squeeze Film Bearings, Gas-Lubrication, Elasto hydro dynamic Lubrication, Rolling Element Bearings,

Boundary Lubrication: metal working, Bio-tribology. Nanotribology – concept, measurement tools.

Text/Reference	1. A. Cameron, "Basic Lubrication Theory", John Wiley & Sons, Incorporated,
Books	 Second Edition, 1977 G. W. Stachowiak & A. W. Batchelor, "Engineering Tribology", Elsevier, 3rd Edition, 2011
	 Edition, 2011 B. C. Majumdar, "Introduction to Tribology of Bearings", S. Chand, 2008 (5) S. K. Basu, S. N. Sengupta, B. B. Ahuja, "Fundamentals of Tribology", PHI learning, 2005

Subject Code ME521	Machine Dynamics	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To establish the fundamental understanding of tribolog balancing both, theoretical and practical aspects of tribolo To understand basic lubrication mechanism and various lu To understand different types of bearings in context of trib based applications To understand the friction and wear phenomenon 	gy abrication systems

Introduction: Force analysis of slider crank mechanism, Flywheel. Revision of Balancing of rotating masses, Balancing of Reciprocating masses. Applications to balancing of inline, V and radial engines.

Introduction to Kinetics of Mechanisms Review of SDOF theory: free undamped, free damped, forced vibration, detailed engineering applications inclusive of Transmissibility, rotor vibration, principles of vibration measurement etc. Transient and Non harmonic vibration of SDOF systems. Introduction to random vibration of SDOF systems.

Preliminary treatment of MDOF systems: natural frequency and mode shape, harmonic excitation and applications inclusive of vibration absorption. Approximation methods- Dunkerlay & Rayleigh

Text/Reference	1. Ghosh & Malik. "Theory of Mechanism and Machine", Affliated East-West
Books	 Press, 1988 2. S. S. Rattan, "Theory of Machine", Tata McGraw Hill, 12th Reprint Edition, 2009 3. J.S. Rao, "Introductory Course on Theory and Practice of Mechanical Vibrations", New Age International, 2nd Edition, 1999 4. L. Meirovitch, "Elements of Vibration Analysis", McGraw Hill Publications, 2nd Edition, 1975

Subject Code ME522	Fracture Mechanics	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	fracture phenomenonTo examine the concept of failure in engineering ma flaws	To examine the concept of failure in engineering materials with pre-existing flaws To design the parts from fracture mechanics point of view by selecting proper	
	 To introduce the physical and mathematical principles of their applications in wide range of engineering design To determine the fracture toughness and stress intens engineering materials 		

History of failure by Fracture: failure of structures, bridges, pressure vessels and ships, brittle fracture, development of testing for failure, identification of reasons for failure, existence of crack, Griffith crack and experiment, energy release rate and stress for failure in presence of crack. Stress field around crack tip; revision of theory of elasticity conformal mapping,

Airy's stress function: for crack tip stress field with crack emanating from straight boundary, stress state in crack tip vicinity, modes of crack face deformation, stress intensity factor and Irwin's failure criterion, fracture toughness. Determination of Stress Intensity Factor, different specimen configuration, numerical techniques-boundary collocation and boundary integral, finite element method, experimental method-reflection and refraction polariscopy.

Determination of fracture toughness: Energy consideration; potential energy, surface energy, plastic deformation around crack tip, energy release rate, compliance and correlation with fracture toughness, crack opening displacement (COD), COD as fracture criterion, experimental determination of COD, use of fracture toughness and COD as design criteria.

Concepts: *J*-Integral, Stress corrosion cracking, hydrogen embrittlement, leak before burst, Crack Propagation; law of fatigue crack propagation, life calculation when a crack is present and loaded, microscopic aspects of crack propagation, elastic crack and plastic relaxation at crack tip.

Text/Reference	1. T. L. Anderson, "Fracture Mechanics-Fundamentals and Applications", 3rd
Books	Edition, CRC Press, 2005
DOOKS	2. Prashant Kumar, "Elements of Fracture Mechanics", McGraw Hill Education
	(India) Pvt., Ltd, New Delhi, 2014
	3. S.A .Meguid, "Engineering Fracture Mechanics", Springer Publications, 1989
	4. K. Hellan, "Introduction to Fracture Mechanics", McGraw Hill Publications, 1985
	5. D. Broek, "Elementary Engineering Fracture Mechanics", Springer, 1982 (3)
	6. K. R. Y. Simha & K. R. V. Simha, "Fracture Mechanics for Modern Engineering
	Design", Universities Press, 2001

Subject Code ME523	Finite Element Method	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To study the characteristics of basic mechanics behind fracture phenomenon To examine the concept of failure in engineering mate flaws To design the parts from fracture mechanics point of view 	eering materials with pre-existing	
	 materials and geometric features To introduce the physical and mathematical principles of their applications in wide range of engineering design To determine the fracture toughness and stress intensitiengineering materials 		

Introduction: weak formulations, weighted residual methods, linear and bilinear Forms, variational formulations, weighted residual, collocation, subdomain, least square and Galerkin's method, Second-order differential equations in one dimension,

Basis steps: discretization, element equations, linear and quadratic shape functions, assembly, local and global stiffness matrix and its properties, boundary conditions, penalty approach, multipoint constraints, applications to solid mechanics, heat and fluid mechanics problems, axisymmetric problems, Plane truss, local and global coordinate systems, stress calculations, temperature effect on truss members, Euler Bernoulli beam element, Hermite cubic spline functions, frame element,

Solution of practical problems: Formulation, FEM models, semi discrete FEM models, time approximation schemes, applications, problems, Single variables in 2-D, triangular and rectangular elements, constant strain triangle, isoparametric formulation, higher order elements, six node triangle, nine node quadrilateral, master elements, modelling considerations, numerical integration, approximations errors, convergence and accuracy computer implementation, Torsion, heat transfer, heat transfer in thin fins, potential flow problems, axisymmetric problems, impositions of essential BCs, Review of equations of elasticity, stress-strain and strain-displacement relations, plane stress and plane strain problems, velocity pressure formulation, LMM and PM model.

Text/Reference	1. J. N. Reddy, "An Introduction to Finite Element Methods", 3 rd Edition, Tata
Books	 McGraw-Hill, 2005 2. O. C. Zienkiewicz, "The Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2002
	 K. D. Cook, D. S. Malkus and M. E. Plesha, "Concept and Applications of Finite Element Analysis", 3rd Edition, John Wiley and Sons, 1989
	 S. S. Rao, "The Finite Element Method in Engineering", 4th Edition, Elsevier Science, 2005
	5. J. N. Reddy and D. K. Gartling, "The Finite Element Method in Heat Transfer and Fluid Dynamics", 3 rd Edition, CRC Press, 2001
	6. J. Fish and T. Belytschko, A First Course in Finite Elements, 1 st Edition, John Wiley and Sons, 2007
	 J. Chaskalovic, Finite Element Methods for Engineering Sciences, 1st Edition, Springer, 2008

Subject Code ME 524	Refrigeration and Air ConditioningCredits: 3 (3-0-0) Total hours: 42
Course Objectives	• To provide fundamentals of refrigeration and air conditioning, psychrometry.
	• To accustom with various methods of production of cold.
	• To impart knowledge about applications of refrigeration and air conditioning.
	• To familiarize with industrial protocols, regulations in the field.

Introduction about Refrigeration: Definitions of various terms. Methods of refrigeration. Air refrigeration system. Bell, Coleman cycle, Introduction about Air craft Air Conditioning, Analysis of Vapour compression cycle, Modifications to basic cycle. Multi pressure systems.

Multi-evaporator system and Cascade systems: Properties of refrigerants. Selection of refrigerants. Discussion of components of V.C system, Servicing. vacuumizing and charging of refrigerant. Introduction to cryogenics.

Psychrometry: Definitions for properties. Introduction to cooling load calculations. Comfort conditions. Effective temperature concept.

Air-conditioning systems: Discussion about the central plant with direct evaporator and chiller applications, Ice plant, refrigerators. Food preservation, IQF technique and freeze drying etc. Cold storage and thermal insulation.

Text/Reference Books	1. Arora, C.P., "Refrigeration and Air Conditioning", Tata McGraw-Hill, 2 nd edition., 2000		
	 Manohar Prasad, "Refrigeration and Air Conditioning", New Age International, 3rd edition, 2004. 		
	3. Dossat R.D., "Principle of Refrigeration", Prentice-Hall, 4th edition, 1997.		

Subject Code ME 525	Cryogenic Engineering	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	• To provide the fundamentals of cryogenics	
	• To accustom with various methods of production of cryogenic fluids	
	• To impart knowledge about applications of cryogenics	

Introduction: Definition and Engineering Applications of Cryogenics, Properties of solids for cryogenic systems.

Refrigeration and Liquefaction: Simple Linde cycle, Pre-cooled Joule-Thomson cycle, dual pressure cycle, Simon helium liquefier, classical cascade cycle, mixed-refrigerant cascade cycle.

Ultra-low-temperature refrigerators: Definition and Fundamentals regarding ultra-low temperature refrigerators, Equipment associated with low-temperature systems, Various Advantages and Disadvantages.

Storage and Handling of Cryogenic Refrigerants: Storage and Transfer systems, Insulation, Various Types of Insulation typically employed, Poly Urethane Foams (PUFs) and Polystyrene Foams (PSFs), Vacuum Insulation

Applications: Broad Applications of Cryogenic Refrigerants in various engineering systems.

Text/Reference Books	1. Mamata Mukhopadhyay, "Fundamentals of Cryogenic Engineering", PHI, 4 th edition, 2010.	
DUUKS	2. Thomas Flynn, "Cryogenic Engineering, Revised and expanded", CRC, 2nd edition, 2004.	
	3. A. R. Jha, "Cryogenic Technology and Applications", Butterworth- Heinemann, 2005.	

Subject Code ME 526	Computational Fluid Dynamics		Credits: 3 (3-0-0) Total hours: 42
Course Objectives	•	To provide the fundamentals of cryogenics	
	•	To accustom with various methods of production of cry	yogenic fluids
	•	To impart knowledge about applications of cryogenics	

Introduction: Introduction to analytical, numerical and computational methods, Mathematical description of physical phenomena, Physical significance for mathematical classifications of partial differential equations as elliptic, parabolic and hyperbolic, Physical meaning of general partial differential equations, Simplification methods, proper choice of coordinate, transformed coordinates, normalization, Physical domain and computational domain, Discretization methods for converting derivatives to their finite difference forms. Taylor series method, polynomial fitting method, integral method and physical formulation, Discretization error, first order, second order and higher order accuracy discretization methods.

Model equations: Laplace's equation, heat equation, first order wave equation, Burger's equation (INVISCID), Computational methods for one, two, three-dimensional steady state conduction problem in Cartesian and cylindrical co-ordinates, Methods to deal Dirichlet, Neumann and Robins type boundary conditions for regular and irregular shapes, Fine, coarse, uniform and non-uniform grids, Solution of the linear algebraic equations, Gaussian elimination method, Tri-diagonal Matrix Algorithm (TDMA), Iterative methods, Gauss-Seidel point by point method, Gauss Seidel line by line methods, under and over relaxations

Computational Methods: Computational Methods for one, two and three-dimensional heat equations, explicit, implicit, Crank- Nicholson, ADI schemes, ADE schemes, Fractional step methods, Hopscotch scheme, Douglass scheme, Conservative form of partial differential and finite difference equations, Methods to deal interface property and no linearity, Consistency, stability and convergence of computational methods, Discrete perturbation stability analysis, Von- Neumann stability analysis, Validation of computational solution.

Computational methods of first order wave equations and Burger's Equation (INVISCID), explicit schemes, implicit schemes, upstream difference schemes, Lax–Wendroff scheme, Mac Cormack, hybrid and power law schemes, Dissipation and dispersion errors, Four basic rules to obtain consistency and stability, Computation of the flow field using stream function-vorticity formulation, Analysis of two dimensional incompressible viscous flow inside a Lid Driven Cavity, Algorithms to obtain flow field by solving coupled system of equations. semi implicit methods for pressure linked equations and its revised schemes

Text/Reference	1. John D Anderson, "Computational Fluid Dynamiocs" McGraw-Hill
Books	Education 1995.
	2. Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", CRC Press, 2017.
	3. Muraleedhar, K., and Sundararajan, T. "Computational Fluid Flow & Heat Transfer", Alpha Science International Ltd; 2nd edition,2003
	 Versteeg, H.K. & Malalasekera, W. "An introduction to computational fluid Dynamics: The Finite Volume Method" 2nd edition, Adison Wesley- Longman, 1995.
	5. Roache, P.J. "Computational Fluid Dynamics", 2 nd edition, Hermosa, 1982

Subject Code ME 527	Renewable Energy Systems	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	• To understand basic characteristics of renewable sources of energy and technologies	
	• To give review on utilisation trends of renewable sour	ces of energy

Introduction: Energy problem, finite conventional energy sources, energy and environment, need for renewables and energy efficiency, Solar energy, measurement of solar radiation ,estimation of terrestrial solar radiation, methods of solar collection and thermal conversion, thermal analysis of flat plate collectors, testing procedures, solar pond, parabolic collectors, paraboloid dish, central receiver, Energy storage systems, Applications of solar thermal systems, residential water heating, industrial heating, power generation.

Biomass energy systems: Biomass conversion routes, combustion, gasification, anaerobic digestion, pyrolysis, cogeneration, Performance analysis and testing, Thermal applications, power generation.

Wind energy conversion: Wind distribution, types and operation of wind turbines and their characteristics, generators and control strategies, Small hydro power, classification of hydro turbines, performance analysis, selection and sizing, Ocean thermal energy conversion, power generation options, Wave and tidal energy, systems for power generation.

Economic analysis: Calculation of energy cost from renewables, comparison with conventional energy systems, calculation of carbon dioxide reduction, incremental costs for renewable energy options, Introduction to integrated energy systems.

Text/Reference Books	1. Sukhatme, S.P., and Nayak, J.K., "Solar Energy-Principles of Thermal Collection and Storage", Tata McGraw Hill, 3 rd edition, 2008.
	2. Duffie, J.A., and Beckman, W.A., "Solar Engineering of Thermal Processes", Wiley, 3 rd edition, 2006
	 Goswami, D.Y., Kreith, F., and Kreider, J.F., "Principles of Solar Engineering", Taylor and Francis, 2nd edition. 2003.
	 Twidell, J. and Weir T., "Renewable Energy Resources", Taylor and Francis, 2nd edition, 2006.
	5. Boyle, G. (Ed.), "Renewable Energy", Oxford University Press, 2nd edition, 2004.
	 Deublein, D., and Steinhauser A., "Biogas from Waste and Renewable Resources: An Introduction", Wiley, 2nd edition, 2010

Subject Code ME 528	Internal Combustion Engines	edits: 3 (3-0-0) otal hours: 42	
Course Objectives	 To describe the performance and operating characteristics of Internal Combustion Engines. To explain the parts and complete knowledge of type of fuels used in IC engines and the fuel supply systems To describe combustion process phenomena in IC engines To explain the different methods of performance analysis of IC engines 		
Fuel-air cycles, Actual cycles, Combustion in SI engines, Stages of combustion, Flame propagation, SI combustion chambers, Combustion in CI engines, Delay period, CI engine combustion chambers, Testing and Performance, Adiabatic flame temperature, Enthalpy of product, CRDI, MPFI, CDI, Supercharger, Turbocharger. Alternative fuels for IC engines.			
Text/Reference Books	Dhannat Rai & Sons New Delhi 2001		
	2. John. B. Heywood, "Internal combustion engine fundament Hill, 1st Edition, 1988.	als", McGraw	
	3. E.F Obert, "Internal combustion engines", Addision Wesley 1968,	y, 3rd edition,	
	4. V.Ganesan, "Internal Combustion Engines", McGr edition,1995.	raw-Hill, 4 th	

Subject Code ME 529	Energy Audit and Management	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To learn the benefits and drivers of an energy audit. To have knowledge of the energy audit of electrical ut To understand to plan and carry out an energy audit. To be confident with the process of reviewing energy the energy audit process 	

Energy Scenario: Introduction, energy problems, energy use trends in developing countries, prospects of changes in energy supply, strategies for sustainable development, finite fossil reserve, Energy and environment, Need for renewable and energy efficiency, Energy conservation principles.

Energy management: Definitions and significance, Two sides of energy management, Sectors of supply side energy management, Objectives of energy management, Hierarchical levels of supply side energy management, Trade-off between energy and environment, Energy and economy, energy management and control system (EMC's or EMS) for demand side, Energy management in end user plant, Seven principles of energy management, Energy policy of supply organization and demand side organization for energy management, Organization of energy management, Training and human resource development, motivation.

Energy Planning : Energy strategy, Energy policy and energy planning, Essential imperatives and steps in supply side energy planning, energy planning flow for supply side, Essential data for supply side energy planning, infrastructure planning, Transportation of energy, Per capita energy consumption, Essential imperatives and steps in user side energy planning, Energy policy of demand side organization (energy consumer).

Energy Audit: Introduction, Types of energy audits, energy audit, Intermediate energy audit, Comprehensive energy audit, End use energy consumption profile, Procedure of energy auditing, Composition of comprehensive auditing, Data for comprehensive audit, Site testing and management.

Energy Conservation and Recycling : Introduction, Listing of energy conservation opportunities, Electrical ECOs, Thermodynamic ECOs, ECOs in chemical processing industries, ECOs in medium and small industries, ECOs in residential buildings, shopping complexes and in university campus, Human and animal bio-muscle energy, Waste management, Recycling of discarded materials and energy recycling, Waste recycling management.

Text/Reference	1. S. Rao, Dr. B.B. Parulekar, "Energy Technology (Non-Conventional, Renewable and Conventional)" Khanna publications, 3 rd edition, 1994			
Books	 A.B. Gill, "Power Plant Performance", Standards media, 2003 I.G.C. Dryden, "The Efficient use of Energy", Butterworth-Heinemann Ltd; 2nd edition, 1982 			
	 Wood, A.J., Wollenberg, B.F., "Power generation, Operations and control", Wiley-Blackwell, 3rd edition, 1984. 			

Subject Code ME 530	Aerodynamics	Credits: 3 (3-0-0) Total hours: 42
Course	• To define basic aerodynamic forces acting on an aircraft	
Objectives	To list the factors affecting aerodynamic forcesTo define geometric characteristics of airfoil and wing	

Equations for incompressible inviscid flows, Fluid circulation and rotation, vorticity, Kelvin's theorem, velocity potential, stream function, equation of a stream line, complex potential, Blasius theorem for force and moment on bodies, Elementary flow patterns and their superposition. Flow past a cylinder, Magnus effect, Kutta condition, Vortex theory of lift. Conformal transformation, The Joukowski transformation, lift on arbitrary cylinder, Aerodynamic center, Pitching moment. Aerofoils, low speed flows over aerofoils, the vortex sheet, Thin aero foil theory, symmetric aerofoil, Tear drop theory, Camber line at zero angle of attack, Characteristics of thin aero foils, Motion in three dimensions, Flow past slender bodies. Finite wings, downwash and induced drag, Prandtl-Lachester theory, Biot- Savart law, General series solution, Glauret method, Multhop's method, Horseshoe effects, Ground effects, Lineraised compressible flows in two dimensions, flow past a wavy wall, Similarity rules, Aerofoil in compressible flows.

1. Anderson, J.D., "Fundamentals of Aerodynamics", 5th edition., McGraw Hill		
New York, 1998		
 Kuethe, A.M., and Chow, C., "Foundations of Aerodynamics" 4th Edition, Wiley Eastern, New Delhi, 1986. 		
 Katz, J., and Plotkin, A., "Low Speed Aerodynamics", McGraw Hill, New York, 1991. 		
4. Houghton,E.L., and Brock,A.E. ",Aerodynamics for Engineering Students", Edward Arnold, London,1960.		

Subject Code	Heating Ventilation and Air	Credits: 3 (3-0-0)	
ME 531	Conditioning	Total hours: 42	
Course	• To understand the fundamentals of Psychrometry		
Objectives	• To apply human comfort indices and comfort chart to design indoor conditions of HVAC systems.		
	 To estimate heating and cooling loads for buildings accorprocedures/standards. 	ording to ASHRAE	
	• To design and evaluate complete air distribution syst duct, and installation requirements for a typical HVAC	0	

Principles of refrigeration, Carnot refrigeration cycle, unit of refrigeration, capacity, coefficient of performance. Refrigeration systems, vapour compression system, theoretical and practical cycles, system components, compressors, condensers, expansion devices, evaporators, refrigerants. Air refrigeration cycle, Vapour absorption refrigeration system. Psychrometry, psychrometric processes, determination of condition of air entering conditioned space. Air conditioning systems, summer, winter and year-round-year air conditioning systems, central and unitary systems. Requirement of air conditioning, human comfort, comfort chart and limitations, effective temperature, factors governing effective temperature, design considerations. Cooling load calculations, various heat sources contributing heat load, solar load, equipment load, infiltration air load, duct heat gain, fan load, moisture gain through permeable walls and fresh air load, Design of air conditioning systems. Duct design, equal friction method, static regain method, velocity reduction method, Air distribution systems, steam heating systems, panel and central heating systems, Heat pump circuit, Heat sources for heat pump. Air conditioning equipments and control systems, air filters, humidifiers, fan, blowers, control systems for temperature and humidity – noise control. Installation and charging of refrigeration unit, Testing for leakage, Cause for faults and rectification.

Text/Reference	1. Noman C. Harris, "Modern Air conditioning Practice", McGraw-Hill,
Books	2^{nd} edition, 1974.
	 Stoecker, W.F., "Refrigeration & Air conditioning", McGraw Hill, 2nd edition New York, 1987.
	 Dossat, R.J., "Refrigeration & Air conditioning", prentice hall, 4th edition. 1997.
	4. Arora, C.P., "Refrigeration & Air conditioning", McGraw Hill, 2 nd edition, 2000.
	5. Stoecker, W.F., "Principles of Air conditioning", industrial press, 2 nd edition, 1977.
	6. Laub, J.M.,"Heating & air conditioning of buildings", Holt, Rinehart and Winston, 1963.
	 Kell, J.R., and Martin, P.L., "Air conditioning & Heating of buildings", Architectural Press, 6th edition, 2007.
	 Carrier's Handbook for Design of Unit Air Conditioners, Kenrick Place Media Ltd, 14th edition,1996

Subject Code ME 532	Advanced Thermodynamics	Credits: 3 (3-0-0) Total hours: 42
Course	• To understand Maxwell's and thermodynamic relations of	gas mixtures.
Objectives	• To estimate thermodynamic properties of gas mixtures.	
Objectives	• To identify the models to estimate the properties of real ga	uses.
	• To analyze reactive and non-reactive gas mixtures using the concepts of	
	statistical thermodynamics and kinetic theory of gases.	
	• To analyze chemical reaction and combustion of gas-mixtures.	

General principles of classical thermodynamics, postulational approach, basic postulates conditions of equilibrium, fundamental equations, equations of state, Euler equation, Gibbs-Duhem equation, Multi component simple ideal gases. Reversible processes, maximum work theorem, alternate formulation, energy minimum principle, Legendre transformations, Extremum principles in the Legendre transformed representation, Thermodynamic potentials and Massieu functions, Maxwell relations and Jacobian methods, Procedure to reduction of derivatives, applications, Stability criteria of thermodynamic systems, First-order phase transition, single component and multi-component systems, Gibbs phase rule, phase diagram for binary systems. Critical phenomena, Liquid and solid Helium, Nernst postulate, Introduction to irreversible thermodynamics, linearised relation, Onsager's reciprocity theorems, Special topics on advanced thermodynamics.

Text/Reference	1. Callen, H.B., "Thermodynamics and an Introduction to Thermostatics", 2 nd
Books	Edition, John Wiley &Sons, 1985.2. Rao, Y.V.C., "Postulational and Statistical Thermodynamics", Allied Publishers, 1994.
	3. Zemansky, M.W., Abbot, M.M. and Van Ness, H.C., "Basic Engineering Thermodynamics", McGraw-Hill, 1987
	4. Saad, M.A., "Thermodynamics for Engineers", Prentice Hall of India, 1987.
	5. Lee, J.F., Sears, F.W., "Thermodynamics: An Introductory Text for Engineering Students", Addison Wesley, 1964.
	6. Wark Jr., K., "Advanced Thermodynamics for Engineers", McGraw-Hill, 1995.
	7. O' Cornell, J. P. and Maile, J. M., "Thermodynamics – Fundamentals for Applications", Cambridge University Press, 2004.
	 Sonntag, R.E., Borgnakke, C and Van Wylen, G. J., "Fundamentals of Thermodynamics", John Wiley & Sons, 6th Edition, 2004.

Subject Code	Experimental Methods of Fluid	Credits: 3 (3-0-0)
ME 533	Flow and Heat Transfer	Total hours: 42
Course Objectives	 To understand the concepts of errors in measurements, s data, regression analysis, correlation and estimation of understand conceptual development of zero, first and s To describe the working principles in the measurement quantities. To analyse sensing requirements for measurement properties, radiation properties of surfaces, and vibration. 	certainty. econd order systems of field and derived

Introduction to experimental methods: Basic concepts, accuracy, precision, resolution, uncertainty, Pressure measurements: dynamic response considerations, dead-weight tester, bourdon-tube pressure gage, diaphragm and bellows gages, bridgman gage, pirani thermal-conductivity gage, knudsen gage, ionization gage, alphatron.

Flow measurement: Passive-displacement methods, flow-obstruction methods, sonic nozzle, flow measurement by drag effects, pressure probes, hot-wire and hot-film anemometers, magnetic flowmeters,

Flow visualization methods: Smoke methods, shadowgraph, schlieren photography, laser Doppler anemometer, laser-induced fluorescence, particle image velocimetry.

Temperature measurements: Temperature scales, ideal-gas thermometer, temperature measurement by mechanical effects, temperature measurement by electrical effects, temperature measurement by radiation, transient response of thermal systems, thermocouple compensation, temperature measurements in high-speed flow, interferometric method.

Transport-property measurements, thermal conductivity measurements, measurement of viscosity, gas diffusion, calorimetry, convective heat transfer measurement, humidity measurement, heat flux meters, pH measurement, Thermal-radiation measurements, emissivity measurement, reflectivity and transmissivity measurement, solar radiation measurement.

Text/Reference	1. J.P. Holman, "Experimental Methods for Engineers", McGraw-Hill
Books	 Company, 7th edition, 2004. Figliola, Richard S, & Beasley, Donald E, "Theory and Design for Mechanical Measurements", John Wiley & Sons Inc, 3rd edition, 2008 Doebelin, Ernest O., "Measurement Systems", McGraw-Hill International, 7th edition, 2019

Academic Handbook

for

Bachelor of Technology Programme

in

Civil Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Programme Structure Summary

Categories of the Courses

The Bachelor of Technology (B.Tech.) program in the Dept. of Civil Engineering at National Institute of Technology Goa (NIT Goa) will have 171 credits as the lower limit for the award of degree. These courses are grouped in a number of categories as shown below:

Sl. No.	Category	Credits	Remarks	
1.	Basic Sciences (BS)	27	 ✓ Mathematics ✓ Physics ✓ Chemistry 	-14 Credits -8 Credits -5 Credits
2.	Basic Engineering Sciences (ES)	14	 ✓ Engineering Mechanics ✓ Mechanical Engineering ✓ Basic Electrical Science ✓ Computer Programming 	-3 Credits -2 Credits -5 Credits -4 Credits
3.	Humanities and Languages (HL)	9	 ✓ Professional Communication ✓ Economics ✓ Management 	-3 Credits -3 Credits -3 Credits
4.	Technical Arts (TA)	5	✓ Engineering Drawing✓ Workshop	-3 Credits -2 Credits
5.	Professional Theory and Practice (PT)	110		
6.	Others (*Not counted for final CGPA)	6*	 ✓ Environmental Studies ✓ Professional Communication -II and Language Lab ✓ Physical Education ✓ Value Education 	-1 Credit -3 Credits -1 Credit -1 Credit
Total Credits 171		165 credits are counted for CGPA		

Semester-Wise Credit Distribution

Semester	Total Credits
Ι	22
II	21+1*
III	21+1*
IV	24
V	19+4*
VI	24
VII	19
VIII	15
Total Credits	165+6

Semester-wise Distribution of the Courses

I Semester

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA100	Mathematics-I	3-1-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem Solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

II Semester

Sl. No.	Sub. Code	Subjects	L-T-P	Credits
1	MA150	Mathematics-II	3-1-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic Electrical Science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry Laboratory	0-0-3	2
8	EE152	Basic Electrical Science Lab	0-0-3	2
9	PE150	Physical Education	1-0-0	1*
		Total Credits		21+1*

III Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	MA200	Mathematics-III	3-0-0	3
2	CV200	Mechanics of Solids	3-0-0	3
3	CV201	Mechanics of Fluids	3-0-0	3
4	CV202	Engineering Earth Sciences	3-0-0	3
5	CV203	Planning and Functional Design of Buildings	3-0-0	3
6	CV204	Fluid Mechanics Lab	0-0-3	2
7	CV205	Material Testing Lab-I	0-0-3	2
8	CV206	Geology Lab	0-0-3	2
9	VE200	Value Education	1-0-0	1*
Total Credits				21+1*

IV Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	MA250	Mathematics-IV	3-0-0	3
		(Computational Methods for Civil Engineering)		
2	CV250	Structural Analysis-I	3-0-0	3
3	CV251	Surveying	3-0-0	3
4	CV252	Building Material and Construction Technology	3-0-0	3
5	CV253	Environmental Engineering-I	3-0-0	3
6	CV254	Geotechnical Engineering-I	3-0-0	3
7	CV255	Surveying Lab	0-0-3	2
8	CV256	Material Testing Lab-II	0-0-3	2
9	CV257	Geotechnical Engineering Lab	0-0-3	2
Total Credits			24	

V Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV300	Structural Design-I (RCC)	3-0-0	3
2	CV301	Structural Analysis-II	3-0-0	3
3	CV302	Transportation Engineering-I	3-0-0	3
4	CV303	Geotechnical Engineering-II	3-0-0	3
5	ES301	Environmental Studies	1-0-0	1*
6	HU300	Professional Communication-II and Language Lab	2-0-3	3*
7	HS300	Economics	3-0-0	3
8	CV304	Transportation Engineering Lab	0-0-3	2
9	CV305	Building Design and Drawing Lab	0-0-3	2
Total Credits				19+4*

VI Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV350	Structural Design-II (Steel)	3-0-0	3
2	CV351	Water Resource Engineering	3-0-0	3
3	CV352	Transportation Engineering-II	3-0-0	3
4	CV353	Environmental Engineering-II	3-0-0	3
5	CV5**	Elective-I	3-0-0	3
6	HS350	Management	3-0-0	3
7	CV354	Minor Project	0-0-3	2
8	CV355	Structural Design and Drawing Lab	0-0-3	2
9	CV356	Environmental Engineering Lab	0-0-3	2
Total Credits				24

VII Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV400	Profession Practice (Construction Planning and Management)	3-0-0	3
2	CV401	Estimation, Costing & Specifications	3-0-0	3
3	CV5**	Elective-II	3-0-0	3
4	CV5**	Elective-III	3-0-0	3
5	CV402	Mini Project/Industrial Training	0-0-3	1
6	CV449	Major Project-I	0-0-4	4
7	CV450	Seminar	0-0-3	2
Total Credits			19	

VIII Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV5**	Elective-IV	3-0-0	3
2	CV5**	Elective-V	3-0-0	3
3	CV5**	Elective-VI	3-0-0	3
4	CV499	Major Project–II	0-0-6	6
Total Credits			15	

List of Electives

	ELECTIVE I (VI SEM)					
Sl. No.	Course Code	Course Name	L-T-P	Credits		
1	CV501	Concrete Technology	3-0-0	3		
2	CV502	Composite Materials	3-0-0	3		
3	CV503	Advanced Fluid Mechanics	3-0-0	3		
4	CV504	Structural Design of Foundations	3-0-0	3		
5	CV505	Disaster Management and Mitigation	3-0-0	3		
6	CV506	Advanced Surveying	3-0-0	3		
7	CV507	Computer Aided Design	3-0-0	3		
8	CV508	Smart Materials and Structures	3-0-0	3		

ELECTIVE II (VII SEM)					
Sl. No.	Course Code	Course Name	L-T-P	Credits	
1	CV509	Advanced RCC Structures	3-0-0	3	
2	CV510	Earth Retaining Structures	3-0-0	3	
3	CV511	Advanced Solid Mechanics	3-0-0	3	
4	CV512	Advanced Irrigation Engineering	3-0-0	3	
5	CV513	Industrial Waste Treatment	3-0-0	3	
6	CV514	Advanced Highway Engineering	3-0-0	3	
7	CV515	Ground Improvement Techniques	3-0-0	3	
8	CV516	Pavement Design	3-0-0	3	

ELECTIVE III (VII SEM)					
Sl. No.	Course Code	Course Name	L-T-P	Credits	
1	CV517	Finite Element Method	3-0-0	3	
2	CV518	Advanced Steel Structures	3-0-0	3	
3	CV519	Non-Destructive Testing and Evaluation	3-0-0	3	
4	CV520	Experimental Stress Analysis	3-0-0	3	
5	CV521	City and Urban Planning	3-0-0	3	
6	CV522	Remote Sensing and GIS	3-0-0	3	
7	CV523	Environmental Pollution and Control	3-0-0	3	
8	CV524	Geo-environmental Engineering	3-0-0	3	

ELECTIVE IV (VIII SEM)				
Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV525	Advanced Pre-Stressed Composite Materials	3-0-0	3
2	CV526	Earthquake Resistant Structures	3-0-0	3
3	CV527	Structural Reliability	3-0-0	3
4	CV528	Occupational Safety and Health Act	3-0-0	3
5	CV529	Advanced Geo-Environmental Engineering	3-0-0	3
6	CV530	Multi-Hazard Resistant Designs	3-0-0	3
7	CV531	Non-conventional and Renewable Energy	3-0-0	3

ELECTIVE V (VIII SEM)				
Sl. No.	Course Code	Course name	L-T-P	Credits
1	CV532	Structural Dynamics	3-0-0	3
2	CV533	Design of Bridges	3-0-0	3
3	CV534	Rapid Transport System and Smart Cities	3-0-0	3
4	CV535	Structural Stability	3-0-0	3
5	CV536	Rock Mechanics and Engineering	3-0-0	3
6	CV537	Ocean Engineering	3-0-0	3
7	CV538	Computational Fluid Dynamics	3-0-0	3
8	CV539	Green Building Design	3-0-0	3

	ELECTIVE VI (VIII SEM)				
Sl. No.	Course Code	Course name	L-T-P	Credits	
1	CV540	Wind Resistant Designs	3-0-0	3	
2	CV541	Repair and Rehabilitation of Structures	3-0-0	3	
3	CV542	Engineering Optimization	3-0-0	3	
4	CV543	Structural Optimization	3-0-0	3	
5	CV544	Failure Forensics	3-0-0	3	
6	CV545	Structural Health Monitoring	3-0-0	3	
7	CV546	Tunnel and Underground Structures	3-0-0	3	
8	CV547	Offshore Structures	3-0-0	3	
9	CV548	Hazardous Waste Management	3-0-0	3	

Detailed Syllabus of Courses

III Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	MA200	Mathematics-III	3-0-0	3
2	CV200	Mechanics of Solids	3-0-0	3
3	CV201	Mechanics of Fluids	3-0-0	3
4	CV202	Engineering Earth Sciences	3-0-0	3
5	CV203	Planning and Functional Design of Buildings	3-0-0	3
6	CV204	Fluid Mechanics Lab	0-0-3	2
7	CV205	Material Testing Lab-I	0-0-3	2
8	CV206	Geology Lab	0-0-3	2
9	VE200	Value Education	1-0-0	1
		Tota	l Credits	21+1

Subject Code MA200	Mathematics-III	Credits: 3 (3-0-0) Total hours: 42	
Course Prerequisites	• Mathematics-I &II		
Course Objectives	necessary to understand the other important en courses offered for Engineers and Scientist applied mathematics, namely complex a	es course provides requisite and relevant background erstand the other important engineering mathematics for Engineers and Scientists. Important topics of natics, namely complex analysis, power series er series and transforms and partial differential	

Complex Analysis: Complex Numbers, geometric representation, powers and roots of complex numbers, Functions of a complex variable, Analytic functions, Cauchy-Riemann equations; elementary functions, Conformal mapping (for linear transformation); Contours and contour integration, Cauchy's theorem, Cauchy integral formula; Power Series and properties, Taylor series, Laurent series, Zeros, singularities, poles, essential singularities, Residue theorem, Evaluation of real integrals and improper integrals.

Power Series Solutions: Differential Equations Power Series Method - application to Legendre equation, Legendre Polynomials, Frobenious Method, Bessel equation, Properties of Bessel functions, Sturm- Liouville BVPs, Orthogonal functions.

Partial Differential Equations: Introduction to PDE, basic concepts, second order PDE and classification, D'Alemberts formula and Duhamel's principle for one dimensional wave equation, Laplace's and Poisson's equations, Laplace, Wave, and Heat equations using separation of variables. Vibration of a circular membrane. Heat equation in the half space.

Text/Reference	1. E. Kreyszig, Advanced engineering mathematics (8th Edition),
Books	John Wiley (1999).
	2. W. E. Boyce and R. Di Prima, Elementary Differential Equations
	(8thEdition), John Wiley (2005).
	3. R. V. Churchill and J. W. Brown, Complex variables and
	applications (7th Edition), McGraw-Hill (2003).

Subject Code CV200	Mechanics of Solids	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To understand behavior of solids subjected to forces and stresses. To idealize real life structure problems into signalysis. To understand various important relationships properties. 	mple structures for

Stress: Types of forces, Definition of stress, Stress tensor, plane stress, differential equations of stress equilibrium, Principal stresses, maximum shear stress, Mohr's Circle, stress invariants, Stresses due to impact.

Strain: Definition of strain, strain tensor, Plane strain, Saint Venant's equation of compatibility, Principal strains, strain invariants, Poisson's ratio, volumetric strain, thermal strain and deformation, strain rosettes.

Stress-Strain Relationships: Hooke's Law, constitutive relations, deformation of axially loaded bars, elastic constants, generalized Hook's law for isotropic materials, Navier's Equations, Elastic strain energy, introduction to Tresca and Von-Mises theory of failure, Octahedral shear stress.

Torsion: Torsion of circular elastic bars, torsion equation, introduction to warping of non-circular bars, power transmitted by shaft and hollow circular sections.

Bending Moment and Shear force: Beams and support conditions, Types of supports and loads, shear force and bending moment, their diagrams for simply supported beams, cantilevers and overhanging beams.

Bending Stress and Shear Stress: Theory of simple bending–Stress distribution at a cross section due to Bending Moment and Shear Force, Curved bars, Unsymmetrical bending, Product moment of inertia, shear centre, thin and introduction to thick walled cylinder.

Deflection of beams: Moment curvature relation of beam, differential equation of beam. Slope and deflection for determinate structures using integration, moment area and conjugate beam method.

Elastic Stability of Columns: Short and Long Column, stability of a long column, Euler's Theory of Columns, differential equations of beam- columns, Derivation of Buckling Load for different end conditions, Rankine's Formula.

Text/Reference	1. Timoshenko, S.P., and Young, D.H., " Elements of Strength of	
Books	Materials", Affiliated East-West Press Pvt. Ltd.	
	2. Srinath, L.S, Desai. P., "Strength of Materials", Tata McGraw-Hill.	
	3. Popov, E.P., "Engineering Mechanics of Solids", PHI.	
	4. Kazimi, S. M.A, "Solid Mechanics", Tata McGraw-Hill.	
	5. Shames, H, "Introduction to Solid Mechanics", PHI.	
	6. Shaneloy, F.R, "Strength of Materials", McGraw Hill.	
	7. Timoshenko, S, "Strength of Materials Vol. I", McGraw Hill.	
	8. Srinath, L.S., "Advanced Mechanics of Solids", TataMcGraw-Hill.	
	9. R C Hibbeler, "Mechanics of Materials", Pearson.	
	10. Singer, F.L. Strength of Materials, 3rd Edition, Harper and Row	
	Publishers, New York, 1980.	

Subject Code CV201	Mechanics of Fluids	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To understand the properties of fluids and fluid s To solve kinematic problems such as finding par streamlines. To use important concepts of continuity equation equation and turbulence, and apply the same to p 	ticle paths and n, Bernoulli's

Properties of Fluid: Surface tension, viscosity–Ideal and real fluids, Newtonian and non-Newtonian fluids, Incompressible and compressible fluids.

Fluid pressure and Hydrostatics: Pressure at a point, Pascal's law etc., Introduction to Pressure measuring devices (Manometers & Mechanical Gauge), Total pressure and centre of pressure on plane and curved submerged bodies.

Buoyancy: Centre of buoyancy, Metacentric height, Equilibrium analysis.

Kinematics of fluid flow: Lagrangian and Eulerian approaches, Types of fluid flow, Continuity equation, Velocity potential function and Stream Function.

Dynamics of fluid flow: Euler's Equation of motion, momentum equation, Bernoulli's equation, Applications of Bernoulli's equation, Flow through Orifice, Mouth piece, Notches and weirs.

Introduction of open channel flow: Critical depth, Concepts of specific energy and specific force, application of specific energy.

Uniform Flow: Chezy's and Manning's equations for uniform flow in open channel, Velocity distribution, most efficient channel section.

Hydraulic Jump: Classical hydraulic jump, Evaluation of the jump elements in rectangular and non-rectangular channels on horizontal and sloping beds.

Dimensional Analysis and Hydraulic Similitude: Dimensional Analysis, Buckingham's theorem, important dimensionless numbers and their significance. Flow through pipes, friction and losses.

Text/Reference	1. Modi, P.N and Seth, S.M., Hydraulics and Fluid Mechanics,
Books	Standard Book House, Delhi,2010.
	2. Streete. V.L and Wylie. E.B., Fluid Mechanics, McGraw Hill Book
	Company, New York, 1997.
	3. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York1959.
	4. Nagaratnam, S., Fluid Mechanics, Khanna Publishers, 1995.
	5. Natarajan, M.K. Principles of Fluid Mechanics, Oxford & IBH
	Publishing Co, 1994.
	6. R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi
	Publication Pvt. Ltd., 2005
	7. Jagdish Lal, Hydraulics and Fluid Mechanics, Tata McGraw Hill,2001.
	8. Streeter V.L., Fluid mechanics, Tata McGraw Hill, 1998.
	9. Garde, R. J. and A G Mirajgoaker, "Engineering Fluid Mechanics", Nem
	Chand & Bros Roorkee, 1983.
	10. Garde, R.J, "Fluid Mechanics through Problems", Wiley Eastern
	Limited New Delhi,1989.

Subject Code CV202	Engineering Earth Sciences	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To identify and classify minerals based on physicand chemical properties To identify and classify rocks based on igneous and metamorphic. To study the geology of earth, causes and effect To study different types of maps and their crosses 	s, sedimentary ts of earthquake.

Introduction to Geology: Relevance of geology in Civil Engineering, Introduction to formation of Rocks, Exploration and testing of Rock, Rock Quality Designation (RQD), Borehole problems. Elementary concepts of mineralogy, petrology, structural geology with special emphasis on structures in igneous, metamorphic and sedimentary rocks.

Engineering Geological/ geotechnical problems and particular relevance of geology to civil engineering projects, Geotechnical properties of rock. Geotechnical considerations of ground water, environment, natural resources and Energy.

Hydrogeology: Aquifers, geophysical exploration, selection of dam sites, tunnels, land slide control measures, environmental geology. Geology of Dam and reservoir sites, tunnels, hill slope. Weathering and erosion of rocks including rapid mass wasting movements.

Fundamentals of Geophysical Prospecting, Importance of Seismic method and electrical resistivity method to civil engineering projects, Brief description of Seismic and Electrical resistivity prospecting for civil engineering purposes.

Engineering seismology: Causes of earthquakes; seismic waves; magnitude, intensity and energy release; characteristics of strong earthquake ground motions, Earthquake occurrence in the world, Plate tectonics, Faults, Related Hazards, Volcanoes, Landslides.

Structural geology: Discontinuities and Defects in rock mass, Strike and Dip, Study of folds, faults, Joints, unconformities.

Text/Reference	1. Parbin Singh, Engineering and General Geology, Katson Pub., Delhi, Sixth
Books	edition 2001.
	2. Blyth. F.G.H & De Freitas M. H., Engineering Geology, ELBS, 7th edition,1984
	3. D.V.Reddy, Engineering Geology for Civil Engineers, Oxford IBH Publishers, 1995, 1997.
	4. N. Chennakesavulu, A text book of Engineering Geology.
	5. A.E. Kehew., General Geology For Engineers.
	6. Perry H. Rahu. "Engineering Geology An Environmental Approach",
	7. P.K. Mukherjee, "A text Book of Geology",
	8. Blyth. F.G.H & De Freitas M. H, "Engineering Geology", ELBS D.V.
	Reddy, "Engineering Geology for Civil Engineering", Oxford IBH
	Publishers
	9. William D. Thornbury, "Principles of Goomorphology", Wiley Eastern

Subject Code CV203	Planning and Functional Design of BuildingsCredits: 3 (3-0-0 Total hours: 42
Course Objectives	 To understand principles of building planning, importance of by- laws in construction and concept of energy efficient buildings. To understand the acoustical design concepts and noise control techniques. To impart the fundamental concepts of natural and artificial lightin designs. To provide principles of climatic conscious design of buildings wit special emphasis on tropical climates. To understand the thermo physical properties of building materials and design of shading devices.
Energy efficient build	ing planning and by-laws, conceptual and functional planning, Introduction to dings
Acoustics: Physics of	f sound- Behavior of sound- Sound insulation and reverberation control
Lighting: Principles,	Day lighting and artificial lighting, design methods
radiation calculations Thermo physical p	buildings : Climatic elements, classification- thermal comfort and indices-solates and design of shading devices. roperties of building materials and thermal control : passive and active dy and periodic heat flow through building envelope. Concept of green building
Text/Reference Books	 National Building Code 2016, Bureau of Indian Standards Ajitha Simha.D, Building Environment, Tata McGraw Hill Publishing

Subject Code VE200	Value Education	Credits: 1 (1-0-0) Total hours: 14	
Course Prerequisite	General Awareness of the Society/ Environm	ent we live in	
Course Objectives		at Holistic Development, such that towards the end of the the students should be a complete human being in every	

Ethics in Engineering: Concepts of Values and Ethics, History and Purposes, Utilitarianism, Duties, Rights, Responsibility, Virtue, Honesty, Moral Autonomy, Obligations of Engineering Profession and moral Propriety

Engineer's Moral responsibility: Engineer's Moral responsibility for Safety and Human Rights, Risk Assessment and Communication, Product Liability, Engineers-Employers Liaison, Whistle-Blowing and Its Moral Justification.

Computer Ethics: Social Impact of Computer, Gender-Issues and Privacy, Cyber Crime, Ethical use of Software

Intellectual property: Definition, Types, Rights and Functions, Patents, Trademark, Grant of Patent in India, Surrender and Revocation of Patents, Compulsory Licensing, Acquisition of Inventions by the Government, Contents of draft application of Patents, WTO

Text/Reference Books	 Vinod V. Sople, Managing Intellectual Property: The Strategic Imperative, PHI,2006
	2. Govindarajan, Natarajan & Senthil Kumar, Engineering Ethics, PHI
	 Robin Attfield, A Theory of Value and Obligation, London: Croomhelm,1987
	4. Jones and Barlett, "Cyber Ethics: Morality and Law in Cyber Space",
	Case Studies from Newspapers

Subject Code CV204	Fluid Mechanics Lab	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	 To understand flow measurement in a pipe flow. To determine the energy loss in pipe flow To study the characteristics of pumps 	
• Calibration of V	notch: To determine the coefficient of discharge of a V network.	otch.
• Venturi meter: 7	To determine the coefficient of discharge of a Venturi meter	er.
• Orifice meter: T	o determine the coefficient of discharge of an Orifice meter	er.
• Water meter: To	determine total flow of water in a pipeline using water m	eter.
• Friction factor of	f pipes: To determine coefficient of friction for pipes.	
momentum of a flui	vanes: To investigate the reaction forces produced by the d flow when a jet of water strikes a flat plate or a curved so from this experiment with the computed forces by applyin	urface, and to
• Bernoulli's theo	rem: To verify Bernoulli's theorem experimentally.	
• Losses in pipes:	To determine different types of losses (connections and fr	iction)
• Metacentric height buoyancy apparatus	ght: To determine experimentally the metacenter height us	ing metacentric
<u> </u>	P.N and Seth, S.M., Hydraulics and Fluid Mechanics, Star	ndard Book House

Subject Code CV205	Material Testing Lab-I	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	 Determine different type of stresses in materials Understand behavior of materials under different types of Conduct investigations and apply proper tools measurements Collect and record data in an appropriate way Know about the safety measurements while conducting the Conduct the experiments with a team work 	to make

• Stress-strain characteristics of (a) Mild Steel and (b) Tor steel (c) Copper (d) Aluminium (e) G.I. wire and sheet

- Compressive strength tests on building materials like (a) wood (b) brick (c) rocks (d)concrete
- Hardness tests of metals (a) Steel (b) Brass (c) Aluminium (d)Copper
- Modulus of rigidity and Torsion test on (a) Solid shafts (b) Hollow shaft.
- Determination of Young's modulus on material by conducting deflection tests on

(a) Simply supported beam. (b) Propped Cantilever beam. (c) Continuous beam

- Ductility test for steel.
- Shear test on steel.

Reference
BooksTimoshenko and Gere, Mechanics of Materials, CBS Publishers, New Delhi, 1996

Subject Code CV206	Geology Lab	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	 To identify different types of minerals and rocks To draw cross section of geological maps To understand dip and strike To identify different types of rocks 	
• RQD, s	tudy of bore-log data.	
• Petrolo	gy: Identification and description of Igneous, Sedimentary, Metam	orphic rocks.
	Tral Geology : Interpretation of geological and Structural geological problems.	l maps, Solving Dip
Reference Books	 K.M. Gurappa, Structural geology Manual B.S. Sathya Narayanaswamy, Engineering Geology Laboratory pub. 	y Manual, Eurasia

IV Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	MA250	Mathematics-IV	3-0-0	3
		(Computational Methods for Civil Engineering)		
2	CV250	Structural Analysis-I	3-0-0	3
3	CV251	Surveying	3-0-0	3
4	CV252	Building Material and Construction Technology	3-0-0	3
5	CV253	Environmental Engineering-I	3-0-0	3
6	CV254	Geotechnical Engineering-I	3-0-0	3
7	CV255	Surveying Lab	0-0-3	2
8	CV256	Material Testing Lab-II	0-0-3	2
9	CV257	Geotechnical Engineering Lab	0-0-3	2
Total Credits			24	

Subject Code MA250	Mathematics-IV (Computational Methods in Civil Engineering)	Credits: 3 (3-0-0) Total hours: 42
Course	To get familiarized with the numerical solution of linear and non-linear system	
Objectives	Numerical solution of ordinary differential equations and partial differential equations; probability and statistics.	

Numerical solution of linear and nonlinear: Gauss elimination method and Gauss-Seidel iterative method, sufficient conditions for convergence, power method to find the dominant Eigen value and eigenvector. Bisection method, Fixed point method, Newton- Raphson method-order of convergence, interpolation and curve fitting, method of least squares.

Numerical solution of ordinary differential: Numerical differentiation and integration. Euler's method, Euler's modified method, Taylor's method and Runge-Kutta method for simultaneous equations and second order equations, multistep methods, Milne's and Adams' methods.

Numerical solution of partial differential equations: Liebmann's method, solution of onedimensional heat flow equation, Bender- Schmidt recurrence relation, Crank-Nicolson method, solution of one-dimensional wave equation.

Probability and Statistics: Introduction to Probability, Conditional Probabilities; Independence; Bayes' Theorem and application. Concept of Random Variables; Distribution and Density Function; Joint Distributed Random of Variables; Conditional and Joint Density Distribution function; Function of Random Variables; Expected Value: Mean and Variance; conditional expectation; covariance and correlation; Some special distributions: Uniform, Gaussian, Binomial and Poisson distributions.

Statistics: Elements of estimation theory: linear minimum mean-square error and Orthogonality principle in estimation; Parameter Estimation

Text/Reference Books	1. M. K. Jain, S.R. K Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering Computation," New Age Publishers,6 th
	Edition,2012.
	2. E.Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley
	India Pvt. Ltd., 2010.
	3. R. L. Burden and J. D. Faires, "Numerical Analysis", 9thEdition,
	Brooks/Cole, 2012.
	4. S. C. Gupta, and V.K. Kapoor, "Fundamentals of Mathematical
	Statistics", 7th Edition, Sultan Chand and Sons, 1980.
	5. Papoulis, and P. Unnikrishnan, "Probability, Random Variable and
	Stochastic Process", 4th Edition, Tata McGraw-Hill,2002
	6. G.D Smith, "Numerical solution of Partial Differential Equations,"
	Oxford University Press.
	7. Peter V.O Neil, "Advanced Engineering Mathematics," 5th Edition,
	Thomson, Book/Cole.(2003).
	8. B.S.Grewal, "Higher Engineering Mathematics," 42nd Edition, Khanna
	Publications, 2013

Subject Code CV250	Structural Analysis-I	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To analyze 2D pin jointed and rigid frames to find defler rotations. To find the influence line diagrams of various beams. To analyze arches and curved beams using energy and emethods. 	

Introduction: General introduction on concept of analysis of determinate structures. Concept of Force, Method of Analysis Classification of Structures, Stress resultants, Degrees of freedom per node, Static and Kinematic Indeterminacy.

Analysis of Plane Trusses: Classification of Pin jointed Determinate Trusses, Analysis of determinate plane Trusses by Method of Joints and Sections and tension coefficient method.

Strain Energy: Strain energy due to axial load, bending and shear, theorem of minimum potential energy, principle of virtual work, law of conservation of energy, Castiglino's Theorems, Betti's & Maxwell's reciprocal theorem, Deflection of Beams, pin jointed truss and frames using Strain Energy Method and Unit load method

Rolling Loads and Influence Lines: Rolling loads, influence lines for beams and trusses, Absolute maximum bending moment.

Analysis of Arches: Analysis of Arches, Linear Arch, Eddy's theorem, three hinged parabolic arch, moving loads & influence lines.

Analysis of Cables and Suspension bridges: Analysis of Cables under point loads and UDL, Analysis of Suspension bridges.

Analysis of Beams: Analysis of Fixed beam, Continuous beam and simple frames with and without translation of joints by Method of Consistent Deformation and Three moments Theorem. Analysis of Propped Cantilever beam, Two-hinged Arches, ILD for Continuous beam.

Curved Beams: Introduction, Bending of Curved bars in plane of bending, stresses in bars of small and large initial curvatures, combined bending and torsion.

Text/Reference	1. Bhavikatti S.S., "Basic Structural Analysis (Vol. I & II", Vikas Publishing
Books	2. B.C. Punmia, "Theory of Structures", Laxmi Publication
	3. Jain, O.P. and Jain B.K., "Theory & Analysis of Structures (Vol., I & II)", Nem
	Chand
	4. R.C. Hibber, "Structural Analysis", Pearson Publication
	5. Willbur and Norris, "Elementary Structural Analysis", Tata McGraw Hill
	6. Negi L.S. & Jangid R.S., "Structural Analysis", Tata McGraw Hill
	7. Ramamurtham S. & Narayan R, "Theory of Structures", Dhanpat Rai Publications
	8. Norris and Wilbur, "Elementary Structural Analysis", Tata McGraw Hill
	9. Wang, C. K Indeterminate Structural Analysis, McGraw Hill
	10. Kinney, J.S. Indeterminate Structural Analysis McGraw Hill

Subject Code CV251	Surveying	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	0 1	 To understand principals of surveying. To get acquainted with the use of various surveying instruments. To understand various types of surveying for different terrain types. 	
Introduction and	Principles of surveying: Introduction, classification of surv	veying, Principles.	
	ing: Principles, Prismatic compass, Bearings, Magnetic compass surveying.	e declination, Local	
0	action, definition basic terms, instruments, Method of a lon for Curvature and refraction, Contouring.	Levelling, Reciprocal	
Plane Table Surv	eying: Principle, instruments, Methods, Two- and Three-poi	nt problems.	
	nes: Area from field measurements, Area from plans, Planiment of volumes, Mass diagram.	meter. Area of cross-	
adjustments, Meas	eying: Introduction, Types of Theodolite, Definitions of urement of various angels, Fundamental lines and desire relat Tachometric surveying, Traversing, Balancing of traverse, C	ions, Sources of Error	
Introduction to A	dvanced Surveying equipment: Total station - Remote Ser	nsing- GPS.	
Application of sun Types.	veying: Setting out of buildings, culverts, tunnels, road and	bridges, Curve setting	
Text/Reference Books	 Duggal, S.K. Surveying Vol. I and II, Tata McGraw H. Punmia, B.C. Surveying Vol.I and II, Standard Publish Arora, K. R. Surveying Vol. I and II, Standard Book H. Satheesh Gopi. Advanced Surveying, Pearson Education Satheesh Gopi. The Global Positioning System and Su Tata McGraw,2005 Agor, R. Surveying Vol. I & II Khanna publications Bannister, Solving Problems in Surveying Longman Solvanets Kanetkar, T.P., "Surveying I, II, Pune Vidyarthi Griha 	ers,1994. ouse,1996. on,2007. rveying using GPS,	

Subject Code CV252	Building Materials and Construction Technology	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To introduce various types of building materials use Study of different types of foundations, foundation measures Identify the construction materials required for the Provide procedural knowledge of the simple testing lime and concrete etc. 	failures and remedial assigned work.	
	 Study of materials and methods of sound proof con 	struction.	

Building Materials: Bricks, Stone, Timber, Plywood, Steel: Classification, Properties and selection criteria. Cement, Aggregate, Admixture: Types, Properties and selection criteria and tests. Concrete: Preparation and properties. Mortar: Types, classification and strength, I.S. specifications.

Foundations: Brief study of different types of foundations, nature of soil (expansive or nonexpansive, alluvial or residual, sandy or clayey for settlement etc.), approximate values of bearing capacities, breadth and depth of foundation, typical cross sections for foundations under walls and R.C.C. Columns. Foundations in black cotton soils, under reamed pile foundations, foundation failures and remedial measures.

Masonry: Technical terms in masonry, classification and brief specifications of stone masonry, bonds in brick masonry, general principles to be observed in stone and Brick Masonry Construction.

Walls: Different types (load bearing, cavity-walls and partition walls), thickness considerations. Doors, Windows and Lintels: Different types based on materials and methods of construction, technical terms, size and locations.

Floors: Ground and upper floors, various types, their suitability, construction details of concrete and terrazzo floors, Floor tiles. Roofs: Technical terms and different types of pitched and flat roofs. Various roof coverings for pitched and flat roofs.

Formwork: Different types of formwork, stripping times.

Damp Proofing: Causes and effect of Dampness, parts of a building likely to be affected most, methods of damp proofing in different locations including roofs. Plastering And

Plastering and Pointing: Types and considerations during plastering and pointing.

Stairs: Types based on geometry and material, suitability, proportioning of stairs, lifts and escalators.

Sound Proofing: Materials and Methods of sound proof construction.

Text/Referen	1. Building Construction, B.C. Punmia (Laxmi Publication Pvt. Ltd.)
ce Books	2. Building Construction, Sushil Kumar (Standard Publication Distributors)
	3. Building Construction, S. C. Rangwala (Charotar Publishing House, Anand,
	Gujarat)
	4. Building Construction, Gurucharan Singh (Standard Publication Distributors)
	5. Arora, S.P. A text book of Building Construction, Dhanpat Rai and Sons
	6. Jha, J and Sinha, S.K. Building Construction. Khanna Publishers, Delhi
	7. Kulkarni, C.J. A text Book of Engineering Materials. Ahmedabad Book Depot
	8. Kulkarni, C.J. A text Book of Engineering Construction. Ahmedabad Book
	Depot
	9. Kumar Sushil, "Building Construction", Distributors Delhi Standard Publishers
	10. McKay W.B. Building Construction Distributors, Delhi Vol. 1 to 4, Orient
	Longman Ltd., Hyderabad

CV253

Course

Objectives

Environmental Engineering-I

Total hours: 42

To understand importance and necessity of water supply scheme.Outlining the process of water supply from source to the end user.

Introduction: Necessity and importance of water supply schemes.

Water demand: Classification of water demands, Estimation of quantity of water required by a town, per capita demand, factors affecting per capita demand, design period and population forecasting, variation in water demand.

Sources of water supply: Surface sources and underground sources, Intake works, site selection, type of intake works.

Quality of Water: Common impurities, physical, chemical and biological characteristics of water, water quality standards for municipal and domestic supplies.

Water Processing: Object of water processing, flow diagrams of typical ground water system and surface water systems.

Sedimentation: Theory of sedimentation, sedimentation tanks and its types, design parameters related with sedimentation tanks, sedimentation with coagulations, coagulants and coagulant aids, Jar test for determining coagulant dosage.

Filtration: Theory of filtration, slow sand and rapid sand filters, Construction and operation.

Disinfection: Methods of disinfection, Chlorination, Types of chlorination, Break Point chlorination.

Softening: Methods of Softening, Iron Removal, Fluoridation.

Distribution System: Methods of distribution, layout of distribution system, methods of analysis, pressure in the distribution system, distribution reservoirs, functions and its types, storage capacity of distribution reservoir.

Plumbing: Plumbing designs for a typical building.

Text/Reference	1. S.K. Garg, Water Supply Engineering, Khanna Publication	
Books	2. B.C. Punmia, Water Supply Engineering, Laxmi Publication, New Delhi	
	3. Peavy & Rowe, Environmental Engineering, Tata McGraw Hill, New Delhi	
	4. Henry and Heinke, C P H E E O Manual on Water Supply and Treatment	
	Environmental Science and Engineering, Pearson Education	

Subject Code

CV254

Geotechnical Engineering-I

Total hours: 42

Course	 To understand the fundamentals of Soil Mechanics
Objectives	• To acquire proper knowledge about the basic, index and engineering
	properties of soils.

Introduction: Introduction to Geotechnical Engineering; Unique nature of soil; Soil formation and Soil types.

Soil Properties: Basic Definitions; Phase relations; Index properties of soil-soil grain and soil aggregate properties of coarse grained and fine-grained soils.

Soil Classification: Indian Standard Soil Classification System, AASHTO, Unified Soil Classification.

Permeability: One dimensional flow; Permeability of soils-Darcy's law; Permeability as a function of soil type, void ratio, soil fabric, and effective stress; Two dimensional flow problems- steady flow, confined flow and unconfined flow; Flow nets and their characteristics; Uplift pressure; Exit gradient; Failure due to piping; Criteria for design of filters; Quick Sand; Liquefaction.

Compaction Behavior: Clay minerals (basic concepts) and soil structure; Theory of compaction and compaction control.

Compressibility and Consolidation Behavior: Compressibility-Effects of soil type, stress history and effective stress on compressibility; Consolidation-Factors affecting consolidation and compressibility parameters; Different forms of primary consolidation equation; Transient flow condition; Terzaghi's theory of one-dimensional consolidation and time-rate of consolidation; Evaluation of compressibility and consolidation parameters from consolidation.

Principle of Effective Stress and related Phenomena: Principle of effective stress; Capillarity; seepage force and quick sand condition; Total pressure and elevation heads.

Stress Due to Applied Load: Introduction; Stress-Strain parameters; Geo-static Stresses; Vertical stress due to concentrated loads; Isobar diagram; Vertical Stress distribution on a horizontal plane; Influence Diagram; Vertical stress distribution due to line load, strip load, circular area, rectangular area; Newmark's Influence charts.

Shear Strength Behavior: Introduction; Stress at a point and Mohr's stress circle; Mohr-Coulomb failure criterion; Laboratory tests for shear strength determination; Effective stress and total stress shear strength parameters; UU, CU and CD tests and their relevance to field problems; Shear strength characteristics of normally consolidated and pre-consolidated clays; Shear strength characteristics of sands.

Text/Reference	1. Gopal Ranjan and Rao, Basic and Applied Soil Mechanics, A.S.R New Age
Books	International, New Delhi
	2. Terzaghi, K, and Peck, Soil Mechanics in Engineering Practice, R.B John
	Wiley, New York, 1968.
	3. Arora, K.R., Soil Mechanics and Foundation Engineering, Standard
	Publishers & Distributors, New Delhi.

Subject Code CV255	Surveying Lab	Credits: 2 (0-0-3) Total hours: 42	
Course Objectives	 To understand and study different types of instru Traversing and ranging different terrains. Plotting the cross section of a terrain. 		
 Plane table surv problems. Levelling: Fly I Subtense Bar Theodolite surv o Single a Determine Tangent 	 Compass surveying Plane table surveying; Radiation, intersection-Traverse-Resection, Two point and Three-point problems. Levelling: Fly levelling and contouring Subtense Bar Theodolite surveying: Single and two plane observation of trigonometric levelling Determination of Tacheometric Constants 		
 Total station- Demonstration and simple exercises-calculation of area, heights and distances. Reference books Punmia, B.C., Surveying (Vol. I & II), Laxmi Publications, New Delhi,1996 Kanetkar T.P., Surveying (Vol. I & II), Pune Vidyarthi Griha Prakashan, Pune 			

Subject Code CV256	Material Testing Lab-II	Credits: 2 (0-0-3) Total hours: 42	
Course Objectives	 To study the different tests on cement, its phy properties. The students will be able to conduct the tests The students will be able to conduct tests on constituents 	able to conduct the tests on tiles.	
	• To study mix design.		
	 Studies on Cement- physical and chemical properties Tests on Concrete and Concrete making materials: Green and hardened concrete 		
 Mix Design Tests on Tiles 			
Reference1. TimosBooks1.	henko and Gere, Mechanics of Materials, CBS Publish	ers, New Delhi, 1996.	

Subject Code CV257	Geotechnical Engineering Lab	Credits: 2 (0-0-3) Total hours: 42	
Course Objectives	 physical, index and engineering properties of Classify soil based on test results and interprebased on test result. Evaluate the permeability and shear strength Evaluate settlement characteristics of soils. Evaluate compaction characteristics required 	 Physical, index and engineering properties of soils. Classify soil based on test results and interpret Engineering behavior based on test result. Evaluate the permeability and shear strength of soil. 	
 Grain Size analy Specific Gravity Grain size analy Field Density of Atterberg Limits Permeability tes Consolidation T 	sis of Soil by Hydrometer. Soil (Two Methods) of Soil (Two methods) t of Soil. est of Soil. f moisture content by rapid moisture meter.		
 Direct Shear Te Triaxial Test fo Standard Penet 	r Different Drainage Condition. ration test of Soil and Static Cone Penetration Test. Penetration test.		
	am Singh, Soil Testing and Instrumentation, New Age Inte 998. (Revised Edition),	ernational, New Delhi,	

V Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV300	Structural Design-I (RCC)	3-0-0	3
2	CV301	Structural Analysis-II	3-0-0	3
3	CV302	Transportation Engineering-I	3-0-0	3
4	CV303	Geotechnical Engineering-II	3-0-0	3
5	ES301	Environmental Studies	1-0-0	1
6	HU300	Professional Communication-II and Language Lab	2-0-3	3
7	HS300	Economics	3-0-0	3
8	CV304	Transportation Engineering Lab	0-0-3	2
9	CV305	Building Design and Drawing Lab	0-0-3	2
	Total Credits			19+4

Subject Code CV300	Structural Design-I (RCC)	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	 To introduce to students the theory and application of analy reinforced concrete structures using Limit state method. To understand the designing concepts of various components 	sis and design of	

Introduction: Structures and structural systems–Internal forces in different types of structural systems such as Trusses, Cables, Arches, Beams and Slabs, Frames, stability criteria, design considerations, Different loadings, loading standards Design philosophy: Working Stress Method, Ultimate load method, probabilistic analysis and Limit State method - Limit state of collapse, Limit state of serviceability.

Limit state of collapse: Flexure Assumptions, moment capacity of rectangular and flanged sections - singly and doubly reinforced sections - design tables and charts, critical sections for bending in important structural elements such as slabs, beams, retaining wall, footings, staircase etc.

Limit state of Serviceability: Deflection, short term and long term deflection- cracking.

Limit State of Collapse: Shear Nominal shear stress- design shear strength of concrete, design of shear reinforcement, critical sections for shear in important structural elements such as beams, retaining walls, footings etc. Design of slabs, beams, retaining walls, footings and stair case. Limit State of Collapse: Torsion General, critical section, equivalent shear and bending moment– reinforcement for torsion.

Design of columns: Compression Analysis and design of columns of rectangular and circular cross sections - axially loaded columns - columns with uniaxial and biaxial eccentricity using SP 16 design charts - short and slender columns.

Introduction to EQ design and detailing: Concept of Seismic design - Approach to earthquake resistant design, General principles of a seismic design, Review of IS 1893:2002, Guide lines for earthquake resistant design, Ductile detailing for seismic design.

Text/Reference	1. Dayaratnam, P, Sarah P, Design of Reinforced Concrete Structures:, Medtech
Books	Publishers,2018
	 Sinha & Roy, Fundamentals of Reinforced Concrete:, S. Chand and Co. Ltd., 2007
	3. V. L. Shah and S. R. Karve, Illustrated Reinforced Concrete Design: Structure Publications, Pune.
	4. Ferguson, P. M., Breen, J. E., and Jirsa, J. O., Reinforced Concrete
	Fundamentals:, John Wiley & Sons (1988) 5thEdition.
	5. Pillai, S.U. and Devdas Menon, Reinforced Concrete Design: Tata Mc-Graw
	Hill Publishing House,2017
	6. S.N. Sinha, Reinforced Concrete Design, Tata Mc-Graw Hill Publishing House,
	New Delhi.
	7. N. Subramanian, Theory of Reinforced concrete structures, Oxford University
	Press.
	8. Punmia, B. C., Jain, A. K., and Jain, Arun, K., RCC Design (WSM and LSM): Laxmi Publications.
	9. Relevant IS codes

Subject Code CV301	Structural Analysis-II	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	• To impart the principles of elastic structural analysis and be indeterminate structures	id behaviour of	
	• Formulate Equilibrium and compatibility equations for structure	ctural members	
	• To understand the structural behavior before and after appli	cation of loads.	
	Method: Development of slope-deflection equations and analysis and simple frame without and with translation of joints.	of fixed beam,	
	Pution Method: Definition of terms-Distribution factor, Carry over f lysis of fixed beam, continuous beam and simple frame without and	-	
Kani's method - analogy method	- Application to continuous beams and portal frames (Single bay two	storey; column	
•	od of structural Analysis: Flexibility Coefficient, Analysis of truss flexibility method.	, beams and portal	

Stiffness methods of structural Analysis: Stiffness Coefficient, Analysis of truss, beams and portal frames by using stiffness method.

Plastic Analysis: Basics of Plastic Analysis, Application of Static and Kinematic theorem for plastic analysis of beams and plane frames.

Text/Reference	1. S.S Bhavikatti, Structural Analysis II, Vikas Publishing House; Fourth edition,
Books	2013
	2. S Ramamrutham, Theory of Structures, Dhanpat Rai Publishers, Ninth edition,
	2014
	3. Nirris and Wilbur, Elementary Structural Analysis, Tata McGrawHill
	4. Ghali A and Neville M, Structural Analysis, , Chapman and Hall
	5. RC Hibber, Structural Analysis, , Pearsons Publication
	6. Reddy CS ,Basic Structural Analysis, , Tata McGraw Hill
	7. Wang CK, Indeterminate Structural Analysis, Mcgraw Hill
	8. Kinney J S, Indeterminate Structural Analysis, McGraw Hill
	9. Weaver W and Gere JM Weaver, Matrix Analysis of Framed Structures, CBS
	Publishers Delhi
	10. Neal BG, Plastic Method of Structural Analysis, Chapman and Hall

Subject Code CV302	Transportation Engineering-I	Credits: 3 (3-0-0) Total hours: 42
Course	Plan and design highway geometrics	-
Objectives	• Analyze and design flexible and pavements	
	• To understand the concepts of design, construction and r	naintenance of roads

Highway Development and Planning: Importance of Transportation, Classification of roads, Road patterns, Highway Planning; Necessity of highway planning, Need for Highway alignment; Factors controlling alignment, Planning surveys, Preparation of plans, Interpretation of planning surveys, Preparation of master plan, Highway planning and Development in India, Preparation of detailed project reports, Environment impact assessment.

Highway Cross Section Elements: Carriageway, Shoulders, Formation, Road Margins, Width of roadway, Right of way; Kerbs, Foot paths, Medians service ducts - Design specifications; Pavement Surface characteristics; Skid resistance, Factors affecting skid resistance, Measurement of skid resistance; Road roughness, Measurement of road roughness; Camber, Objectives of camber, Design standards. Typical cross section of road –cuttings, Embankment, Hilly areas, 6 lane expressway, Divided highway.

Geometric Design of Road: Factors influencing geometric design elements, Types of sight distances and Significance, Analysis of sight distances, Horizontal Alignment: Requirements, Super elevation, Methods of attainment of super elevation, Extra widening of curves, Transition curves, Types, Length of transition curve. Vertical Alignment: Types of gradients, Grade compensation on curves, Vertical curves Intersections: Types, At-grade Intersections, Channelization, Objectives; Traffic islands.

Design, Construction and Maintenance: Types of pavements and its components, Factors influencing the design of pavements, Wheel load applications, pavement design traffic, Subgrade strength and Characteristics. Construction of Roads: Bituminous concrete, Cement concrete, Cement stabilized roads, Brief study of types and Uses of failures in flexible and Rigid pavements and Maintenance, Strengthening of existing pavements, Modern methods of road construction. And recent innovations

Design of Flexible Pavements: Methods, IRC guidelines, CBR method of design, Group index method.

Design of Rigid Pavements: Factors affecting design, Stresses in rigid pavements, IRC method of design, Joints in Rigid pavements, Design of joints,

Failures in pavements: Brief study of failures in flexible and Rigid pavements and Maintenance, strengthening of existing pavements, Overlays, Worked out problems.

Text/Reference	1.C. E. G. Justo and S. K. Khanna, Veeraraghvan; Highway Engineering; Nem Chand
Books	and Brothers.10 th edition,2018
	2.L. R. Kadiyali; Highway Engineering; Khanna Publishers, New Delhi, 2019
	3. Ministry of Road Transport and Highway; Specifications for Roads and Bridges,
	IRC, New Delhi.
	4. IRC 104: Guidelines for Environmental Impact Assessment of Highway.
	5.IRC SP: 63-2004 "Guidelines for Use of Interlocking Concrete Block Pavement",
	Indian Roads Congress.
	6. Subhash C. Saxena; Highway and Traffic Engineering; CBS publishers and
	distributors New Delhi.
	7. James H. Banks; Transportation Engineering; Mc. Graw. Hill Pub. New Delhi.
	8. James H. Banks; Transportation Engineering; Mc. Graw. Hill Pub. New Delhi.

Subject Code CV303	Geotechnical Engineering-II	Credits: 3 (3-0-0) Total hours: 42
Course	• Analyze the stability of finite and infinite slopes	
Objectives	• Understand the concept of bearing capacity of shallow foundations	
	• Analyze the causes and remedial measures of total and dif	ferential settlements
	• Analyze shallow and deep foundations	
	• Understand the basic concepts of caissons and machine for	undations

Stability of Slopes: Concept of limit, Equilibrium method, Stability of slopes; Introduction, Different factors of safety, Types of slope failures, Analysis of finite and Infinite slopes, Wedge failure, Swedish circle method, Friction circle method, Method of slices for c- Φ soil, Stability numbers and Charts, Taylor's Stability number and Stability curves, Bishops method of slices.

Bearing Capacity: Definition, General shear and Local shear failure, Terzaghi bearing capacity equation for shallow foundation, Effect of water table on bearing capacity, Bearing capacity for layered soils, IS Code method of determination of bearing capacity, Factors influencing bearing capacity, Introduction to Meyerhof's bearing capacity theory, Use of plate load test, Pressure-meter test and SPT and CPT in assessing safe bearing capacity. Calculation of bearing capacity using bore log data - a case study.

Settlement Analysis: Definition, Types of settlements, Computations based on theory and Test results, Effect of width and Depth of foundation, Construction time settlement, Components of settlements and their estimation, Allowable settlement values, Effects, Causes and Remedial measures of total and Differential settlements, Permissible settlements as per I.S.

Shallow Foundation: Types of foundations and Choice, Basic requirements, Minimum depth of foundation, Contact pressure distribution, Isolated square and Rectangular footing, Combined rectangular, Trapezoidal and Strap footing and Raft foundation. Pressure distribution below mat foundation

Pile Foundation: Classification and uses, Load carrying capacity calculations of single pile by different methods, Static and Dynamic approach, In-situ penetration tests, Pile load tests, Initial and Routine, Negative skin friction, Under-reamed pile foundations; Pile groups, Necessity, E-Efficiency, Group capacity and Settlements.

Caisson and machine foundations: Introduction, Shapes of wells and Component parts, types of machine foundation, vibration isolation

Text/Reference	1. K. R. Arora Soil mechanics and foundation engineering, Standard Publishers,
Books	2014.
	2. B. C. Punmia; Soil Mechanics Foundations; Laxmi publications, Pvt.Ltd.
	3. Alam Singh; Modern Geotechnical Engineering; CBS Publishers and
	distributors, 3 rd edition,2006
	4. S. P. Brahma; Foundation Engineering; Tata McGraw Hill.
	5. Swami Saran; Design of Sub-Structures; CRC press.
	6. Bowles J. E.; Foundation Analysis and Design; McGraw Hill Pub. Co., New
	York.
	7. Craig R. F.; Soil Mechanics; Chapman and Hall.
	8. Purshottam and Raj; Soil Mechanics and Foundation; Pearson Education.
	 Braja M. Das; Principles of Foundation Engineering, Cengage Learning, 7th edition, 2013.
	10. Relevant IS Codes

Subject Code ES301	Environmental Studies	Credits: 1 (1-0-0) Total hours: 14
Course Objective	• Understanding environment, its constituents, importance for human developmental activities vs environment, climate ch international environment related developments, need for pu	ange, national and

Introduction: Multi-disciplinary nature of environmental studies: Definition, scope and importance, Need for public awareness.

protection and conservation activities.

Renewable and non-renewable Natural resources: Natural resources and associated problems; Forest resources: Use and over-exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forest and tribal people;

Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems; Mineral resources : Use and exploitation, environmental effects of extracting and using mineral resources, case studies; Food resources : World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies; Energy resources : Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, Case studies; Land resources : Land as a resource, land degradation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids, Introduction, types, characteristic features, structure and function of the Following ecosystem, Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Biodiversity and its conservation: Introduction – Definition : genetic, species and ecosystem diversity, Bio geographical classification of India, Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity, Eco-cultural heritage of India-various festivals related to Environment, Tradition of community conserved areas-Sacred forests, sacred tanks, sacred mountains, sacred rivers.

National and International Environment related developments: Environmental ethics : Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear, accidents and holocaust, Environment related Acts, Issues involved in enforcement of environmental legislation, Public awareness, Wasteland reclamation, Consumerism and waste products, UN Frame Convention Climate Change, Kyoto protocol, concept of carbon credits, latest CoP meet Agenda; Filed Work (equal to 5 lecture hours): Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/sacred groves/sacred forests, Visit to a local polluted site- Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems- pond, river, hill slopes etc.

Text/Reference Books	1. Erach Bharucha, Textbook for Environmental Studies For Undergraduate Courses of all Branches of Higher Education (online book -UGC Website), , University Grants Commission ,India.
	 Anil Agarwal, Dying Wisdom, Publisher: Centre for Science and Environment, Edi:1st,1997, ISBN-139788186906200; ISBN- 108186906207
	 R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005.
	 Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill, 2006.
	5. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press,2005.
	 Masters, Gilbert M., Introduction to Environmental Engineering and Sciences, Prentice Hall India, 1991

Subject Code	
HU300	

Professional Communication-II and Languages Lab

	8 8
Course	Knowledge of English
Prerequisite	
Course	• This course aims at Personality Development. Towards the end of the course,
Objectives	the students should possess a Saleable Image with employability skills.

Principles of Soft Skills and Practice: Definition of Soft Skills and Personality, Attitude, Dress Code, Body Language, Individual and Group Behavior, Personality Test, C.V Writing and the difference between CV & Resume

Group Discussion, Extempore, JAM and Survey: Topics: Is Cloning Ethical, Shopping Mall vs Retailer, Should Animals be used for Drug-Test, Effects of Advertisement on Youth, Google vs Social Networking Sites, Newspaper is the thing of Past, Diversity in Indian Culture, Gender Discrimination, Who is Smarter: Human Beings or Computer and so on

Interview: Types of Interview, Interview Ethics, Questions and Mock-Interview Sessions

Business Presentation and Seminars: Business Presentation and Students' Seminar

1. W.B. Martin, Ethics in Engineering Tata McGraw Hill, India
 Patnaik, Priyadarshi, Group Discussion and Interview Skills, New Delhi: CUP, (Video CD)
 Downes, Colm, Cambridge English for Job Hunting, 2009, New Delhi, CUP (2 Audio CDs)
 TV News (Headlines Today, ND TV and BBC), Chat-Shows on TV, Magazines like India Today, Outlook, The Week and English Dailies. Reader's Digest for Expressive Skill, English Films & English Comics

Subject Code HS300	Economics	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	• Basic concept of macroeconomic & Indian Economy.	
Course Objectives	• To develop the ability to understand and analyze the broad scenario and its dynamism	d macroeconomic

Introduction to Economics: Constructing a Model, Optimization and Equilibrium in market demand and supply, Comparative statistics and asset allocation.

Budget Constraint and Consumer Preference: Budget constraint in case of two goods, Shifting of budget line and impact of Taxes, Subsidies, and Rationing. Indifference curve, Marginal Rate of Substitution, Cardinal utility and utility function, Indifference curve from utility functions, Marginal Utility vs MRS.

Choice and Demand: Optimal Choice, Consumer demand, Implication of MRS conditions, Normal and Inferior Goods, Income Offer Curves and Engel Curves, The Price Offer Curve

Technology: From Individual to Market Demand, The Inverse Demand Function, The Extensive and the Intensive Margin, Elasticity, Elasticity and Demand, Market Supply, Market equilibrium, Inverse Demand and Supply Curves

Profit Maximization: Profits, The Organization of Firms, The Organization of Firms, Short-Run Profit Maximization, Profit Maximization in the Long Run, Profit Maximization and Returns to Scale.

Cost Function: Cost Minimization, Revealed Cost Minimization, Returns to Scale and the Cost Function, Average Costs, Marginal Costs, Marginal Costs and Variable Costs.

Markets: Monopoly, Maximizing Profits, Linear Demand Curve and Monopoly, Markup Pricing, Oligopoly and Choosing a Strategy, Price Leadership, Comparing Price Leadership and Quantity Leadership.

National Income Accounting: National Income and Related concepts, Nominal or real GDP, Methods of measuring NI.

Determinants of Equilibrium Output: Aggregate demand and Equilibrium output, Consumption function and aggregate demand, Multiplier, Govt. sector, Budget and Full employment

Money, Interest and Income: The goods market and is curve, The Asset market and LM Curve, Equilibrium in Goods band asset market and Adjustment towards equilibrium.

Monetary and Fiscal Policy: Monetary policy, Fiscal Policy, crowding out, Composition of output and policy mix and implementation

1. Varian, Hal R.: Intermediate Microeconomics, W.W. Norton & Co., New work (ISBN:0393978303)	
lgrave	
0	

Subject Code CV304	Transportation Engineering Lab	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	Characterize the pavement materials	I
Objectives	 Perform quality control tests on flexible pavements and fle materials 	exible pavement
List of Experimen	ts: At least 8 experiments should be conducted from the below list	of experiments.
1. To determin	e Grain size analysis of fine and coarse aggregates.	
2. To determin	e flakiness and elongation Index of aggregates.	
3. To determin	e Los Angeles Abrasion value.	
4. To determin	ne Impact value for aggregates.	
5. To determin	e Crushing value for aggregates.	
6. To determin	he the softening point of bitumen.	
7. To determin	ne ductility value of bitumen.	
8. To determin	e Penetration test for bitumen.	
9. To determin	e Bitumen content in the given mix.	
10. To determin	he the Marshall stability value of the given mix.	
Reference Books	 L.R. Kadiyali, Principles and Practices of Highway Engine Publishers, 2009 MoRTH (2013) Specification for Road and bridge works (3. MS-2 manual (2015) Seventh edition, Asphalt Institute. S. K. Khanna, C. E. G. Justo, A Veeraragavan, Highway E Publishers, 10th edition 	(5 th revision)

Subject Code CV305	Building Design and Drawing Lab	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	• To Visualize, sketch and accurately draw the components communicate information to specific audiences.	in order to
	 To know various rules and regulations of planning pertain Buildings. 	ing to Public
	• To learn usage of softwares like Auto-CAD in drafting.	
commercial Planning an 	 Planning and drawing of residential buildings-site plans using bye laws (National building codes) 	
-	 Computer aided drawing, use of AutoCAD for building planning, preparation of site plan, Plumbing and Electrical drawings 	
Reference Books	 M.G. Shah, C.M. Kale and Patki, Building Drawing, Publishers, Delhi Chakraborty M, Monojit Chakraborty, Civil Eng Publication, Kolkata B.T.S. Prabhu, K.V. Paul and C. Vijayan, Building SPADES Publications, Calicut, Kerala Y.S. Sane, Planning Designing Buildings, Modern Public 	ineering Drawing: Drawing Detailing,

VI Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV350	Structural Design-II (Steel)	3-0-0	3
2	CV351	Water Resource Engineering	3-0-0	3
3	CV352	Transportation Engineering-II	3-0-0	3
4	CV353	Environmental Engineering-II	3-0-0	3
5	CV5**	Elective-I	3-0-0	3
6	HS350	Management	3-0-0	3
7	CV354	Minor Project	0-0-3	2
8	CV355	Structural Design and Drawing Lab	0-0-3	2
9	CV356	Environmental Engineering Lab	0-0-3	2
		Tota	al Credits	24

Subject Code CV350	Structural Design-II (Steel)	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Learn the basic elements of a steel structure and the fundar steel fasteners Able to design basic elements of steel structure like tensio compression members, beams and beam-columns Able to design column splices and bases. 	

Introduction to Steel Structure: Introduction to type of steel, mechanical properties of Structural steel, advantages of steel as structural material, design philosophies of Working Stress Method (WSM), Limit state Method, limit state of strength serviceability (deflection, vibration, durability, fatigue, fire) characteristics, partial safety factor design loads, partial safety factor for material. Structural steel section. Classification of cross section-plastic, compact, semi-compact slender, limiting width to thickness ratio.

Simple Connection Bolted & Welded: Introduction to bolted welded connection by working stress method and limit state method, Type of bolts, advantage of bolts & welds, simple connection for bolted and welded connection.

Tension Members: Design of tension members with welded and bolted end connection using single angle section & double angle section by Limit State Method, design strength due to yielding of gross section, rupture of critical sections and block shear.

Compression Members - Struts: Design of compression members as struts with welded /bolted end connection using single angle sections & double angle section by Limit State Method. Effective length of compression members, buckling class of various cross sections, limiting values of effective slenderness ratio.

Compression Members -Column: Design of column with single built-up section, design of lacing batten plates with bolted & welded connection using Limit State Method, column buckling curves, effective length of compression members, buckling class of various cross sections, limiting values of effective slenderness ratio.

Bracket Connection Beam to Column Connection: Bolted welded connection by Limit State Method, beam to beam, beam to column connection (simple frame connection, unstiffened and stiffened seat connections.

Column Bases: Design of slab bases & gusseted base using bolted /welded connection

Text/Reference	1. William T. Segui, LRFD Steel Design: PWS Publishing
Books	2. Edwin H. Gaylord, Charles N. Gaylord James, Stallmeyer, Design of Steel Structures:, Mc-Graw-Hill
	3. Dayaratnam P, Design of Steel Structures, S Chand, 1 st edition,2012.
	4. Punmia, A. K. Jain and Arun Kumar Jain, Comprehensive Design of Steel
	Structures:, Laxmi Publication, 2 nd edition, 2015
	5. Kazimi S. M. and Jindal R. S , Design of Steel Structures, Prentice Hall India.
	6. Breslar, Lin Scalzi, Design of Steel Structures, John Willey, NewYork.
	7. Arya and Ajmani, Design of Steel Structures: Nem Chand and Bros., Roorkee
	8. Sarwar Alam Raz, Structural Design in Steel:; New Age International Publisher
	9. Relevant Indian Specifications, Bureau of Indian Specifications, New Delhi

Subject Code CV351	Water Resources Engineering	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To gain basic knowledge of Hydrology. To understand the design parameters of reservoir and damand sedimentation, failure and control. 	s, operation
	 To understand various irrigation techniques and requireme To get an insight of Distribution systems for canal irrigation and lined irrigation canals design sediment problems associated as a sediment problem. 	on, design of unlined

Introduction: Necessity, Planning, C-B ratio, Inter and Intra basin transfer, Different methods of irrigation, Irrigation from ground water deep and Shallow wells, Tube wells. Water Requirement of Crops; Duty and Delta, Base period of crops, Factors affecting duty, Methods of improving duty, Crop seasons in India

Basic Hydrology: Hydrological cycle, Precipitation, Analysis of data, Supplementing missing data, Consistency of record, Hyetograph, Mass curve analysis, Measurements of rainfall, evaporation and Evapotranspiration, Infiltration and Soil moisture, Stream flow measurement; Runoff, Factors affecting runoff, Catchment classification, Flood estimation, Hydrograph, Unit hydrograph Synthetic unit hydrograph, S-curve, Unit hydrograph of varied durations, Instantaneous unit hydrograph, Conceptual models. Computation of peak flow, Flood Routing

Storage Reservoirs: Physical characteristics of reservoirs, Reservoir capacity for a given yield, Mass curve, Reservoir reliability, Sedimentation control, Reservoir leakage, Ideal site for reservoir.

Dams: Types of Dams, Suitability of a type of dam. Forces acting on dams, Failure of dams and criteria for structural stability, Principal and Shear stress, Stability analysis, Elementary profiles, Design criteria, Causes of failures, Control of Seepage, Stability of slopes, Design considerations, for Gravity, Earth dams. High and Low gravity dams, Openings in dams, Functions and Effects of opening, Joints, Keys and Water stops in gravity dams, Foundation treatment for various dams.

Spillways and Energy Dissipaters: Introduction, Essential requirements of a spillway, Spillway capacity, Components, Types of spillways, Design of Ogee spillway, Energy dissipation below spillways.

Text/Reference	1. P. N. Modi; Irrigation Water Resources and Water Power Engineering;
Books	Standard Book House, 11 th edition (2020)
	 Punmia, Pande, Lal, A. K. Jain; Irrigation and water power Engineering; Laxmi Publications (P) Ltd, 16thedition,2019
	3. K Subramania, Engineering hydrology, Tata Mcgraw Hill, 2017
	4. V T Chow, D R Maidment and LW Mays, Applied hydrology 2017, McGraw hill
	5. R. K. Sharma and T. K. Sharma; Irrigation Engineering; S Chand Publications Pvt. Ltd.
	6. R. S. Varshney, Hydropower Structures; Nem Chand and Bros.
	7. Basak, Irrigation Engineering; Tata McGraw Hill Publishing Ltd.(1999)
	8. S. K. Garg; Irrigation Engineering and Hydraulic Structures; Khanna Publishers, Vol. 2, 1976
	9. Larry W. Mayas; Water Resources Engineering; John Wiley and sons.
	10. K. R. Arora; Irrigation, Water Power and Water Resources Engineering;
	Standard Publishers, New Delhi.

Subject Code CV352	Transportation Engineering-II	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To impart in-depth knowledge about the aircraft characteristics, planning and airport components. To know the basics and design of various components of To impart knowledge about methods of tunneling To study the types and components of docks and harbours 	

Airport Engineering: Airport Planning and design, Layout of an airport with component parts and Functions, Site selection for airport, Aircraft characteristics affecting the design and Planning of airport, Airport classification, Runway orientation using wind rose with examples, Basic runway length, Corrections and Examples, Runway geometrics and Design, Runway safety. Taxiway Design, Factors affecting the layout, Geometrics of taxiway, Visual aids, Airport marking, Lighting, Air traffic control, Instrumental landing system.

Railway Engineering: Importance of railways in national development, Factors controlling alignment, Engineering surveys for track alignment, Typical cross sections for single- and Double-line tracks, Gauges, Coning of wheels and Tilting of rails, Rails, Functions and requirements of component parts of railway track, Creep of rails. Sleepers; Functions and Types, Ballast; Properties, Subgrade and Formation, Geometrical design of railway track, Horizontal curves, Super elevation, Points and Crossings, Track junctions and Simple track layouts, Transition curves, Safe speed on curves, Different types gradients, Grade compensation. Modern welded railway track, Signalling and Interlocking, Railway stations and Yards, Modernization of railways, High speed trains, Ballast-less tracks.

Railway Construction and Maintenance: Construction of railway track, Earthwork, Plate laying and Packing, Maintenance of track alignment, Gauge, Renewal of component parts and Drainage, Modern methods of track maintenance.

Docks and Harbours: Classification of harbours, Components, Site selection, Construction and Maintenance of wet and dry docks, Breakwaters, Lock gates, Quays, Jetties, Landing piers, Fenders, Dolphins, Slipways, Aprons, Transit sheds, Ware houses, Navigational aids such as light house, Buoys, Beacons, Study of important harbours, Objectives of dredging, Dredging equipment, Types of dredging in different soil conditions.

Introduction to Traffic Engineering: Traffic Characteristics, Speed, Journey time and Delays, Vehicle volume counts, Origin and Destination, Analysis and Interpretation of survey data, Traffic operations, Traffic signals, Parking space, Highway lighting, Planning and Administration, Road accidents and Safety measures, Road signage, Road safety audit.

Text/Reference	1. Khanna, Arora and Jain, Airport Planning and Design, Nem Chand Bros, Roorkee,
Books	6^{h} Edition (2017)
	2. R. Srinivasan; Harbour, Dock and Tunnel Engineering, Charotar Publishing
	House (2015)
	3. Horenjeff and McKelvey, Planning and Design of Airports; McGraw Hill
	Company, New York.,5 th Edition (2010)
	4. Satish Chandra, M. M. Agarwal, Railway Engineering;
	Oxford University Press, New Delhi. (2007)
	5. M. M. Agarwal, Indian Railway Track, Jaico Publications, Bombay.
	6. J. S. Mundrey, Railway Track Engineering, Tata McGraw Hill, New Delhi.
	7. M. M. Agrawal, Railway Engineering, Prabha and Co., Delhi.
	8. Saxena and Arora, Railway Engineering, Dhanpat Rai and Sons, New Delhi.
	9. H. P. Oza and G. H. Oza, Docks and Harbour Engineering, Charaotar Publishing
	House.

Subject Code CV353	Environmental Engineering-II	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To impart knowledge on basic concepts about sewerage system of severage to make the student understand conveyance system of severage to impart knowledge on primary, secondary and tertiary to the severage of the se	wage.

Introduction: Definitions, Aim and Objective of sewage disposal. Methods of collection–conservancy system and Water carriage system. Sewerage Systems; Separate, Combined and Partially separate systems.

Quantity of Sanitary Sewage: Source, Factors affecting sanitary sewage, Variation in quantity of sanitary sewage, Peak flow and Minimum flow, Determination of flow velocity using empirical formulae.

Quantity of Storm Sewage: Factors affecting storm sewage, Quantity of storm water-rational method, Empirical formulae, Rainfall intensity curves.

Characteristics of Sewage: Physical, Chemical and Biological characteristics of sewage, sampling methods, Decomposition of sewage, Dissolved oxygen, Bio chemical oxygen demand, Expression for B.O.D and C.O.D.

Treatment of Sewage: Classification of treatment processes, Layout of treatment plants, Factors to be considered while designing a sewage treatment plant.

Physical Unit Operation: Design and Description of Screens, Grit chambers, Skimming tanks, Grease traps, Sedimentation tanks.

Biological Unit Process: Activated sludge process, its concepts, Design and Operation of aeration tanks, Types of aerators. Trickling filters, their classification, Geometry, Design and Operation, their operational difficulties and Remedies, Oxidation ponds, their classification, and Geometry \ Aerobic ponds. Lagoons, Oxidation ditches, SBR.

On- Site Sanitation: Septic tank, Imhoff tanks.

Sewage Disposal: Reuse of treated effluent, Disposal by dilution, Disposal on land, Water.

Sewer Appurtenances: Manholes, Drop manholes, Street inlets, Flushing tanks, Catch basin, Sand traps.

Solid and hazardous waste management Sources: Types, composition, Physical biological properties of solid wastes, sources types of hazardous infectious wastes in municipal solid wastes Solid waste generation collection, storage, handling, transportation, processing Treatment disposal methods Material separation recycle, physical-chemical biological stabilization solidification thermal methods, of disposal, site remediation, leachate & its control. Effects of hazardous waste on environment & its disposal.

Peavy and Rowe, Environmental engineering McGraw Hill, 2017
Kiely, Environmental engineering, Prentice hall, 2015
CPHEEO manual on sewage and sewage treatment
Metcalf and Eddy, Waste water Engineering; McGraw-Hill Education.
Wentz, Solid and hazardous waste management, McGraw-Hill Education (ISE
Editions); International 2 Revised edition1995)
S. K. Garg, Sewage and Waste Disposal Engineering, Khanna Publishers.
Ernest W. Steel, Water supply and Sewage, McGraw-Hill Education.
B. S. Raju, Water supply and Waste Water Engineering, Tata McGraw-Hill

Subject Code HS350	Management	Credits: 3 (3-0-0) Total hours: 42
Course Prerequisites	• Basic concept of monetary economic, financial concepts and Basic statistics.	
Course Outcome	• Develops the ability to understand and analyze the broad of management and its financial dynamism	aspect
Journal, Cash Book Account, Balance S		int, P & L
	nt Analysis: Balance sheet, Profit and Loss Account, Economic v Financial Position, Funds flow and cash flow statement.	s Accounting
•	ture of Ratio Analysis, Liquidity Ratio, Leverage Ratio, Activity lysis, Comparative statement and Trend Analysis, Inter-firm Anal	· · ·
e i	Concept of working Capital, Operating and Cash conversion Cyclapital, Balance working capital position and Issues.	le, Permanent and
	ney: Time preference for money, Future value, Annuity, Perpetui value, Annuity, Perpetuity, capital recovery factor, Multiple peri-	
Capital Budgeting	: Nature and type of Investment decision, Net Present value, (Nack period, Profitability Index, Nature and Behavior of Cost, Bread nd decision points.	
Financial System:	Introduction to Indian Financial System, Financial Institutions an	d Financial Markets.
Industrial Enginee Management (PER'	ering & Project Management: Work Study, Time Study, Industr Γ, CPM)	ial Psychology, Projec
Text/Reference Books	 I.M Pandey, Financial Management, 10thedition, Vik Brealey Y Myers, Principles of Corporate Finance, M Rajiv and Anil, Financial Management, 2ndEdition, C L.M Bhole, Financial Institutions and Markets, Tata 1 	IcGraw-Hill exford UniversityPress

Subject Code CV355	Structural Design and Drawing Lab	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	 To study about bolted and welded connection. To learn about the detailing of slab base structure, plate gin columns, footings and slabs To make students understand about the beam column conn 	
• Detailing of	different types of bolts and welds.	
• Bolted and	welded connection detailing.	
• Detailing of	a truss structure.	
• Detailing of	slab base connected with primary and secondary beams, resting on	columns.
• Detailing of	plate girder.	
• Detailing of	beams, columns, footings and slab, stairs for RCC Beam column c	onnections
Reference Books	 N. Subramanian, Design of steel structures, Oxford higher Relevant IS Codes 	education, (2008)

Subject Code CV356	Environment Engineering Lab	Credits: 2 (0-0-3) Total Hours: 42	
Course Objectives	• To conduct experiments and determine the physical, chemical and biological characteristics of water and wastewater.		
	 Compare the experimental results with standards and the purpose of analysis. Determine type & degree of treatment, for water and 	Determine type & degree of treatment, for water and wastewater. Relate the significance of experimental results in environmental	
List of Experiments (At least 8 experiments to be performed)	 Determination of solids (total, dissolved, suspended, organic, inorganic, settleable) in water. Determination of pH Determination of fluoride, Determination of iron, Determination of turbidity Determination of Acidity and Alkalinity Determination of Chlorides Determination of Dissolved oxygen content in water Determination of Biochemical Oxygen demand Determination of sludge volume index of sewage sample. Microbiological studies 		
Reference Books	 Lab Manual, ISO 14001 Environmental Manag Standards for Drinking Water and Sewage disposal. Clair Sawyer and Perry McCarty and Gene Park Environmental Engineering and Science", McGraw- and Environmental Engineering. Guide manual: Water & wastewater analysis, Centra Board, Govt. of India. APHA standard methods for the examination of war 20th edition. Water supply engineering, S.K. Garg- 30th Edition. 	in, "Chemistry for Hill Series in Civil Il Pollution Control	

VII Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV400	Profession Practice (Construction Planning and Management)	3-0-0	3
2	CV401	Estimation, Costing & Specifications	3-0-0	3
3	CV5**	Elective-II	3-0-0	3
4	CV5**	Elective-III	3-0-0	3
5	CV402	Mini Project/Industrial training	0-0-3	1
6	CV449	Major Project-I	0-0-4	4
7	CV450	Seminar	0-0-3	2
		Tota	al Credits	19

Subject Code CV400	Professional Practice	Credits: 3 (3-0-0) Total Hours: 42
	(Construction Planning and Management)	
Course	• Analyze methods, materials, and equipment used to con	nstruct projects.
Objectives	• Understand construction risk management.	
	• Understand construction accounting and cost control.	
	• Understand construction quality assurance and control.	
	• Understand construction project control processes.	
	• Understand the basic principles of sustainable construct	tion.

Fundamentals of Construction Management: Fundamental components, Construction industry, Construction projects, Principles of management (Henri Fayol), Modern scientific management, Agencies associated with the construction industries in national development Main causes of project failure, project life cycle. Importance of planning, Scheduling and Controlling projects.

Project Planning Scope: Project clearance procedures and Necessary documentation for major works like dams, Multistoried structures, Ports and Tunnels, Functions and Role of Chief planner and Project management consultants.

Project Scheduling Scope: Guidelines for drawing project network, Work breakdown structure, Scheduling of bar chart and Preparing construction schedule by bar chart for small projects, Advantages and Limitations of bar chart. Time estimation in CPM, PERT, RPM (Repetitive Project Modeling) techniques and Analysis, Critical path method calculation. Factors affecting work scheduling, LOB techniques, Precedence network analysis.

Project Management Software: Hands on software in construction scheduling (MSP or Primavera). **Planning Construction Resources: Manpower:** Necessity, Establishing workers productivity standards, Scheduling construction site workers, Project manpower grouping and Designing workers financial incentive scheme, Important Acts and Labour laws related to construction activity.

Materials: ABC Classification of construction materials, Materials Usage/wastage standards, Materials provisioning process, Planning materials inventory.

Project Construction Equipment: Selecting construction equipment, Classification of major equipment, Earth factor in earthwork, Earth excavating equipment, Earth cutting and Hauling equipment, Earth compacting and Grading equipment, Concreting plant and Equipment, Cranes for materials hoisting, Equipment for dredging, Trenching, Tunneling and Pile driving.

Planning Construction Costs and Construction Budgets: Classification of construction costs, Elements and Classification of cost accounting, Breakeven point, Standard 'S' curve forecasting tool, Fund flow v/s cash flow. Structuring responsibility centres, Costs inflation, Escalation and Contingencies, Types of budget, Techniques for budgeting, Budgetary forecasts, Project master budget.

Project Control: Control system framework, Monitoring performance, Resource productivity control, Project time and Cost control basics, Disputes and claims management, Concepts of quality control and its importance for construction work.

Text/Reference	1.	K. K. Chitkara, Construction Project Management; Tata Mc GrawHill.
Books	2.	B. C. Punmia, Project Planning and Control with PERT and
		CPM; Laxmi Publications, NewDelhi.
	3.	Gautam V. Desai, Erik W. Larson, Clifford F. Grey, Project
		Management the Managerial Process; Tata Mc GrawHill.
	4.	Vazirani and Chavdale, Construction management and accounts;

	Khanna publications – New Delhi.
5.	Patrick Charles, Construction Project planning and scheduling; Pearson.
6.	V. K. Raiva; Construction Management Practice; Tata Mac-hill
	publication, New Delhi.
7.	Robert L. Peurifoy, Construction Planning, Equipment and Method; Tata
	McGraw Hill Publishing Ltd.
8.	G. D. Oberlender, Project Management for Engineering and Construction;
	Tata Mc Graw Hill Publishing Ltd.

Subject Code CV401	Estimation, Costing and Specifications	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 To read, understand and interpret plans, sections, det specifications for a construction project. To study the various methods of detailed and approxim To emphasize the importance of relevant IS: 1200-1964 Indian Standard specifications, taking out quantitie requirements of the work and drafting specifications. To conduct a material and labour survey to understand rates for the various materials required for construction categories of labour required. To perform the rate analysis for various items: standar and the use of DSR in this process. To study the process of tendering and its various stage contracts, its suitability and validity as per the Indian C and draft various clauses and conditions of a contract 	ate estimates. A codes and relevant es from the given the current market on and the different d and non-standard es, various types of

Introduction: Definition of estimating and Costing, Purpose, Data required for preparing an estimate, Qualities of an ideal quantity surveyor.

Types of Estimates: Approximate or preliminary estimate, Detailed, Supplementary and Revised estimate with brief description of each. Purpose of approximate estimate and Methods of approximate estimation of a building and highway, Administrative approval, Expenditure sanction and Technical sanction.

Mode of Measurement: Standard unit of measurements, Modes of measurements for different items of work for buildings and Road work, Provision for lump sum, Spot item, and Provisional sums. Degree of accuracy in estimating; General rules for measurement of work as per IS 1200. Significance of provision for contingencies, Work charged establishment, Percentage provision for Water supply, Sanitation.

Specification: Definition, purpose of specification, Types and principles of writing specification. Writing detailed specification for some common items of civil engineering works.

Detailed Estimate and Abstracting: Types of forms used for detailed measurement and Abstracting. Methods of taking out quantities; Centre line methods and Long wall and Short wall method. Case studies with different items for a single storied residential building including working out the percentage cost for different stages of construction.

Road Earth Work: Computation of earth work with no transverse slope using mean area and Mean depth formula including soling area for pitching/turfing. Estimate of a road with WBM and Bituminous road surface involving all basic items including computation of earth work, Quantities of carious items with abstract.

Bar Bending Schedule: Detail bar bending schedule with quantity of steel for slabs, Beams, Footings, Columns, Retaining wall.

Rate Analysis: Factors considered for rate analysis, Schedule of rates and Market rates for common materials and Capacity, Preparation of material estimate for common items of work. Rate analysis for common items of work (as specified in the term-work only).

Valuation: Definition, Importance and Necessity of valuation, Factors affecting valuation, Methods of valuation, Book value, Market value, Single and Dual rates year's purchase, Depreciation, Sinking fund, Rent fixation, Valuation for various purposes.

Tenders and Contracts: Definition and Purpose of tender; Salient features of processing tender. Definition of contract. Type of contracts; Salient features, Obligation of the parties to a contract.

Earnest money deposit, Security deposit, Running account bill and Final bill.		
Text/Reference	1. B. N. Datta, Estimation and Costing, S. Dutta and co, Lucknow.	
Books	2. M. Chakraborti, Estimation and Costing; M. Chakraborty Publications	
	3. S. C. Rangawala, Elements of Estimation and Costing; Charotar	
	Publishing House.	
	4. J. R. Mule, Valuation, Estimation and Costing; Charotar Publishing	
	House.	
	5. G. S. Birdi, Text Book of Estimating; Dhanpatrai and Sons, Delhi.	
	6. B. S. Patil, Civil Engineering Contracts and Costing; Orient Blackswan	
	Pvt. Ltd.	
	C.P.W.D. Manual, Goa Schedule of rates	

VIII Semester

Sl. No.	Course Code	Course Name	L-T-P	Credits
1	CV5**	Elective-IV	3-0-0	3
2	CV5**	Elective-V	3-0-0	3
3	CV5**	Elective-VI	3-0-0	3
4	CV499	Major Project–II	0-0-6	6
		Tota	l Credits	15

Detailed Syllabus of Electives

Subject Code CV501	Concrete Technology	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 To identify quality control tests on constituents of cond To understand the behavior of fresh and hardened cond Design concrete mixes. Understand the durability requirement of concrete. Understand the need for special concrete. 	

Cement: Types of Portland cement, hydration, setting and hardening process, special hydraulic cements

Admixtures: Admixtures, accelerators, and retarders, air-entraining agents, plasticizer and super-plasticizers.

Aggregates: Shape and texture, bond, strength, specific gravity, bulk-density and moisture content of aggregates, bulking of sand, deleterious substances in aggregates, alkali-aggregate reaction, sieve-analysis and grading curves, fineness modulus, practical grading, gap grades aggregates.

Fresh Concrete: Rheological aspects such as workability-flow ability, compatibility and mobility of concrete, factors affecting workability and lab determination, segregation, bleeding & laitance, mass concreting

Hardened Concrete: Compressive strength and factors affecting the strength of concrete, behavior of concrete under various stress states, testing of hardened concrete, cube and cylinder test, Platen effect, flexure test, non-destructive testing such as rebound hammer test, USPV test, core-cutting, stress-strain relation and modulus of elasticity, shrinkage, creep of concrete and its effect.

Durability of Concrete: Corrosion of reinforcing bars, sulphate attack, frost action, deterioration by fire, concrete in seawater, acid attack and carbonation.

Concrete Mix Design: Basic consideration–cost, workability, strength and durability, grading, method of mix design, acceptance criteria for concrete.

Advances in concrete: High strength concrete, fibre-reinforced concrete, concrete containing polymers, heavy weight and light weight concrete, blended concrete, Ferro-cements and its applications.

Text/Reference Books	1. A M Nevelli , Properties of Concrete, 5th Ed, Prentice Hall Publishers, 2012.
	2. M. S. Shetty, Concrete Technology, S Chand Co., Publishers, 2006.
	3. M. L. Gambhir, Concrete Technology, Tata McGraw Hill Publishers, 2012.

Subject Code CV502	Composite Materials	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 Understanding the modelling of composite material by analysis. Fabrication techniques of various composites. Understand different types of composites and their test 	

Introduction: Classifications of Engineering Materials, Concept of composite materials, Matrix materials, Functions of a Matrix, Desired Properties of a Matrix, Polymer Matrix (Thermosets and Thermoplastics), Metal matrix, Ceramic matrix, Carbon Matrix, Glass Matrix etc. Types of Reinforcements/Fibers: Role and Selection or reinforcement materials, Types of fibres, Glass fibers, Carbon fibers, Aramid fibers , Metal fibers, Alumina fibers, Boron Fibers, Silicon carbide fibers, Quartz and Silica fibers, Multiphase fibers, Whiskers, Flakes etc., Mechanical properties of fibres. Material properties that can be improved by forming a composite material and its engineering potential

Various types of composites: Classification based on Matrix Material: Organic Matrix composites, Polymer matrix composites (PMC), Carbon matrix Composites or Carbon-Carbon Composites, Metal matrix composites (MMC), Ceramic matrix composites (CMC); Classification based on reinforcements: Fiber Reinforced Composites, Fiber Reinforced Polymer (FRP) Composites, Laminar Composites, Particulate Composites, Comparison with Metals, Advantages & limitations of Composites

Fabrication methods: Processing of Composite Materials: Overall considerations, Autoclave curing, Other Manufacturing Processes like filament welding, compression molding, resin-transplant method, pultrusion, pre-peg layer, Fiber-only performs, Combined Fiber-Matrix performs, Manufacturing Techniques: Tooling and Specialty materials, Release agents, Peel plies, release films and fabrics, Bleeder and breather plies, bagging films

Testing of Composites: Mechanical testing of composites, tensile testing, Compressive testing, Intralaminar shear testing, Inter-laminar shear testing, Fracture testing etc.

Text/Reference	1. Materials characterization, Vol. 10, ASM hand book, 2014
Books	2. G. Dieter, Mechanical Metallurgy, Mc-Graw Hill, 3 rd edition
	3. R.F. Speyer, Thermal Analysis of Materials, Marcel Decker
	4. A.K Bhargava, Engineering Materials: Polymers, Ceramics and
	Composites Prentice Hall India.

Subject Code CV503	Advanced Fluid Mechanics	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 Derive the governing equations of transients in pipes and channels Apply method of characteristics and finite difference methods to solve unsteady flow problems in pipes and channels Analyze transients in pumping and hydropower systems 	nethods to solve
	Analyze dam break problem	

Basic concept and Governing Equations of Fluid Motion: Definition and Properties of Fluids, Langragian and Eulerian description, Velocity and stress field, Fluid statics, Fluid Kinematics, Reynolds transport theorem, Integral and differential forms of governing equations: mass, momentum and energy conservation equations, Navier-Stokes equations, Euler's equation, Bernoulli's Equation.

Exact solutions of Navier-Stokes Equations: Couette flows, Poiseuille flows, Fully developed flows in non-circular cross-sections, Unsteady flows, Creeping flows.

Potential Flows: Stream and Velocity potential function, Circulation, Irrotational vortex, Source and Sink, Vortex flow, Doublet, Flow past a circular cylinder, Magnus effect; Kutta-Joukowski lift theorem; Concept of lift and drag.

Laminar Boundary Layers and Elements of Stability Theory: Boundary layer equations, Boundary layer parameters, Boundary layer on a flat plate, Integral form of boundary layer equations, Approximate Methods, Flow separation and control Concept of small-disturbance stability, Orr-Sommerfeld equation, Inviscid stability theory, Boundary layer stability, Thermal instability, Transition to turbulence.

Compressible Flows: Speed of sound and Mach number, Basic equations for one dimensional flows, Isentropic relations, Normal shock wave, Rankine-Hugoniot relations, Fanno and Rayleigh curve, Mach waves, Oblique shock wave, Prandtl Meyer expansion waves, Quasi-one dimensional flows, Compressible viscous flows, Compressible boundary layers.

Text/Reference	1. Abbot, M.A. and Vervey, Computational Hydraulics, Elsevier
Books	Publications,1996.
	2. Hoffman, J.D., Numerical Methods for Engineers and Scientists, CRC
	Press, Special Indian Edition, 2011.
	3. M.H. Choudhary, Applied Hydraulic Transients, Van Nostrand
	Reinhold, New York, 2013.

Subject Code CV504	Structural Design of Foundations	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 To impart knowledge about the design principles of va To perform soil and structural design of various types of Evaluate design parameters for dynamic loading. 	• •

Introduction: Soil exploration, Analysis and Interpretation of soil exploration data, Estimation of soil parameters for foundation design. Methods for bearing capacity estimation, Total and Differential settlements of footing and raft, Codal provisions.

Shallow Foundations: Design of individual footings, Strip footing, Combined footing, rigid and Flexible mat, Buoyancy raft, Basement raft.

Machine Foundations: Basic definitions in vibration, Free and Forced vibrations, Determination of natural frequency, Types of machine foundations, General criteria for design of machine foundation, Vibration analysis of a machine foundation, Degrees of freedom of a block foundation, Vibration isolation and Control.

Pile Foundations: Estimation load carrying capacity of single and Pile group under various loading conditions. Pile load testing (static, dynamic methods and data interpretation), Settlement of pile foundation, Code provisions, Design of single pile and Pile groups, and Pile caps.

Well Foundations: Types, Components, Construction methods, Design methods (Terzaghi, IS and IRC approaches), Check for stability, Base pressure, Side pressure and Deflection.

Retaining Walls: Types (Types of flexible and Rigid earth retention systems; Counterfort, Gravity, Diaphragm walls, Sheet pile walls, Soldier piles and Lagging). Support systems for flexible retaining walls (struts, anchoring), Construction methods, Stability calculations, Design of flexible and Rigid retaining walls, Design of cantilever and Anchored sheet pile walls.

Soil-Foundation Interaction: Idealized soil, Foundation and Interface behaviour. Elastic models of soil behavior; Elastic, Plastic and Time dependent behaviour of soil. Beams and Plates on elastic foundation; Numerical analysis of beams and Plates resting on elastic foundation.

Text/Reference	1. Murthy V.N.S Soil Mechanics and Foundation Engineering – CBS	
Books	publications, Delhi, 2007.	
	2. Das, BM: Geotechnical engineering – Cengage learning, New Delhi, 2009.	
	3. Gopal Ranjan, Rao ASR, Basic and applied soil mechanics – New age	
	publication, Delhi,2000.	
	4. Srinivasulu, P. And Vaidyanathan, C. V., "Handbook of Machine	
	Foundations" Tata McGraw-Hill, New Delhi,2001	
	5. Prakash Shamsher and Puri Vijay K, "Foundations for Machines, Analysis	
	and Design" John Wiley and Sons, USA, 1988.	

Subject Code	Disaster Management and	Credits: 3 (3-0-0)
CV505	Mitigation	Total Hours: 42
Course Objectives	 To describe the basic types of hazards and their potenti To understand the strengths and weaknesses of disaster approaches Understand how to react effectively to natural, man-mathreats. 	r management

Introduction to Disasters, Classification, Causes, Impacts: Concept and Definitions of different terms of disaster. Approaches to understand disaster phenomena (natural science, applied, science, progressive and holistic approaches). Parameters of disaster risk levels of disaster as per national guideline.

Classification of Hazards (Natural and Manmade): General characteristics and Problem areas of different natural and Man-made hazards (e.g. Flood, Erosion, Earthquake, Landslide, Lightning, Tropical Cyclone, Drought, Civil Unrest etc.).

Disaster Trends (Global, National and Regional): Response time, Frequency Forewarning, Exposure time of different hazards. Common approaches to study natural and manmade hazards; Vulnerability and Disasters. Differential impacts- in terms of Caste, Class, Gender, Age, Location, Disability.

Disaster Risk Mitigation: Disaster risk assessment (Hazard-Vulnerability-Capacity analysis), Hazard mapping and Forecasting. Principles and Aspects of Disaster prevention, Disaster mitigation. Preparedness for damage mitigation and coping with disasters. Capacity building for disaster/damage mitigation (structural and non-structural measures). Contingency planning for damage mitigation of different hazards. Relevance of indigenous knowledge, appropriate technology and local resources in disaster risk mitigation. Community based disaster risk reduction mechanism. Counter disaster resources and their roles. Selected models for understanding the causes of disaster and disaster risk mitigation.

Environment and Disasters: Environment, Ecosystem and Disasters. Climate change-issues and Concerns. Industrial hazards and Safety measures. Post disaster impact on environment. Impact of developmental projects on disaster risk. Aspects of environmental management for disaster risk reduction. Environmental Impact Assessment (EIA).

Planning for Disaster Management: Community; Hazard profile in India. Different phases of Disaster Management (DM cycle). Relief mechanism (needs assessment, relief administration and distribution, management of relief centres, external support etc.). Compensation and Insurance. Planning strategies (state and district DM planning); planning needs. Disaster Management Act (2005); Disaster Management Policy (2009); organizational framework for disaster management in India.

Text/Reference Books	 Introduction to Environmental Engineering and Science Gilbert, M. Masters, 3rd edition,2015
	2. Environmental Science, G. Tyler Miller, 13 th edition, 2010.
	3. R. B. Singh (Ed) Disaster Management, Rawat Publication, New Delhi,
	2000

Subject Code CV506	Advanced Surveying	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	• To know about significance of advanced surveying in field measurem in terms of utility and precision of data collection	
	• To learn on the principles of Electronic distance m station and their accuracy	easurements, Total
	• To get introduced to the concept of photogramme identification and mapmaking	etry in preliminary
	• To know in detail the concept of remote sensing in identification of lar features from space and to get introduced to different data acquisition techniques like LIDAR, RADAR	
	• To get introduced to the field of geodesy, coordin projections, GPS, its working principles, data collecti and analysis.	• •

Electromagnetic distance measurement (EDM): Principle of EDM Carrier waves, Types of EDM instruments, Distomat, Total Station, Principle, procedure & surveying using Total Station, precise leveling, micro-optic theodolite.

Photogrammetry: Terrestrial and Aerial Photogrammetry, Horizontal position of a point from photographic measurement, elevation of a point, Determination of focal length of camera, Geometry and scale of vertical photographs, Ground co-ordinates from vertical photographs, Relief displacement, Planimetric mapping from vertical photos, Stereoscopy, Photo interpretation.

Remote sensing: concepts, Idealized remote sensing system, characteristics, Types of remote sensing system, Remote sensing from space, Data interpretation, application of remote sensing, LIDAR, RADAR, SONAR.

Geodesy: Figure of earth, Classification, Earth surface, Geodetic reference surfaces, Coordinate systems, Geodetic datum and elements, Map, Scale of map, projection, UTM, Map projection of India, Space Geodesy, VLBI, SLR, LLR.

GPS Basics, system overview, working principle of GPS, Satellite ranging, calculating position, Ranging errors and its correction, GPS surveying Methods, static, Rapid static, DGPS and Kinematic methods, Real time and post processing DGPS, visibility diagram, GAGAN

Text/Reference	1. Borden D. Dent, Jeffrey Troguson, Thomas W. Hodler, Cartography:
Books	Thematic Map Design, McGraw-Hill Higher Education, 2008.
	2. Gopi, Advanced Surveying: Total Station, GIS and Remote Sensing,
	Pearson Education India,2007.
	3. Hoffman.B, H.Lichtenegga and J.Collins, Global Positioning System -
	Theory and Practice, Springer -Verlag Publishers, 2001.
	4. Punmia B. C, Ashok K. Jain, Arun K. Jain, Higher Surveying, Laxmi
	Publications,2005

Subject Code CV507	Computer Aided Design	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 To acquire knowledge for generating high quality images of massive geometric models in a short time. To learn about the concepts of surface modeling, physically based modeling and surface visualization. 	

Introduction: A typical product cycle, CAD tools for the design process of product cycle, CAD / CAM system evaluation criteria, Input / Output devices; Graphics Displays: Refresh display, DVST, Raster display, pixel value and lookup table, estimation of graphical memory, LCD, LED fundamentals. Concept of Coordinate Systems: Working Coordinate System, Model Coordinate System, Screen Coordinate System. Line and Curve generation algorithm: DDA, Bresenham's algorithms. Graphics exchange standards and Database management systems.

Curves and Surfaces: Parametric representation of lines: Locating a point on a line, parallel lines, perpendicular lines, distance of a point, Intersection of lines. Parametric representation of circle, Ellipse, parabola and hyperbola. Synthetic Curves: Concept of continuity, Cubic Spline: equation, properties and blending. Bezier Curve: equations, properties; Properties and advantages of B-Splines and NURBS. Various types of surfaces along with their typical applications.

Mathematical representation of solids: Geometry and Topology, Comparison of wireframe, surface and solid models, Properties of solid model, properties of representation schemes, Concept of Half-spaces, Boolean operations. Schemes: B-rep, CSG, Sweep representation, ASM, Primitive instancing, Cell Decomposition and Octree encoding.

Geometric Transformations: Homogeneous representation; Translation, Scaling, Reflection, Rotation, Shearing in 2D and 3D; Orthographic and perspective projections. Window to View-port transformation.

Text/Reference	1. Ibrahim Zied, CAD / CAM: Theory and Practice, McGraw-Hill, 2 nd edition
Books	2009
	2. Hearn E J and Baker M P, Computer Graphics, Pearson, 2 nd edition2002.
	3. Chandrupatla T and Belegundu A D, Introduction to Finite Elements in
	Engineering, Pearson Education India, 4 ^{th E} dition2015.

Subject Code CV508	Smart Materials and Structures	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 Overview of smart materials, Piezoelectric Ceramics, I Magnetostrictive Materials Electroactive Polymers, Shape Memory Alloys, Electro Rheological Fluids. Modelling of smart materials, introduction to composite Mechanics of smart composite materials Smart sensors based on high bandwidth low strain smar bandwidth high strain smart actuators Micro-electro mechanical Smart Systems, Intelligent d materials, Applications of Smart Actuators: Active and Hybrid V Active Shape Control, Distributed Sensing and Contro 	o and Magneto te smart materials, art materials, Low- levices based on smart 'ibration Control,

Overview of Smart Materials: Introduction to Smart Materials, Principles of Piezoelectricty, Perovskite Piezoceramic Materials, Single Crystals vs Polycrystalline Systems, Piezoelectric Polymers, Principles of Magnetostriction, Rare earth Magneto strictive materials, Giant Magnetostriction and Magnetoresistance Effect, Introduction to Electro-active Materials, Electronic Materials, Electro-active Polymers, Ionic Polymer Matrix Composite (IPMC), Shape Memory Effect, Shape Memory Alloys, Shape Memory Polymers, Electro-rheological Fluids, Magneto Rheological Fluids

High-Band Width, Low Strain Smart Sensors: Piezoelectric Strain Sensors, In-plane and Out - of Plane Sensing, Shear Sensing, Accelerometers, Effect of Electrode Pattern, Active Fibre Sensing, Magnetostrictive Sensing, Villari Effect, Matteuci Effect and Nagoka-Honda Effect, Magnetic Delay Line Sensing, Application of Smart Sensors for Structural Health Monitoring (SHM), System Identification using Smart Sensors

Smart Actuators: Modelling Piezoelectric Actuators, Amplified Piezo Actuation, Internal and External Amplifications, Magnetostrictive Actuation, Joule Effect, Wiedemann Effect, Magneto-volume Effect, Magnetostrictive Mini Actuators, IPMC and Polymeric Actuators, Shape Memory Actuators, Active Vibration Control, Active Shape Control, Passive Vibration Control, Hybrid Vibration Control

Smart Composites: Review of Composite Materials, Micro and Macro-mechanics, Modelling Laminated Composites based on Classical Laminated Plate Theory, Effect of Shear Deformation, Dynamics of Smart Composite Beam, Governing Equation of Motion, Finite Element Modelling of Smart Composite Beams

Advances in Smart Structures & Materials Self-Sensing Piezoelectric Transducers, Energy Harvesting Materials, Autophagous Materials, Self-Healing Polymers.

Text/Reference	1. Brian Culshaw, Smart Structures and Materials, Artech House, 2000
I CAU MEICI CIICE	1. Dhan Cuisnaw, Smart Structures and Waternars, Arteen House, 2000
Books	2. Gauenzi, P., Smart Structures, Wiley, 2009
	3. Cady, W. G., Piezoelectricity, Dover Publication.

Subject Code CV509	Advanced RCC Structures	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To impart knowledge on the behavior and design on various structural elements. The students will be able to understand the design of portal f 	

Yield line theory: Ultimate Load Analysis of RC slabs using Yield line theory (Virtual work and equilibrium method); Application for the analysis and design to orthotropically reinforced square/rectangular slabs with various boundary conditions under uniformly distributed loads.

Flat slab: Design of flat plates and flat slabs, Behavior of flat slab, Method of analysis (Direct design method, Equivalent frame method, Transfer of moments of column), Shear in flat plates and flat slabs, Design of flat plate and flat slab.

Design of Portal Frames: Introduction, Types of portal frames, design of portal frames using LSM.

Curved beams: Introduction, loaded perpendicular to their plane, Fixed and continuous curved beams, Design of beams curved in plan.

Silos and Bunkers: Lateral pressure as per Janssen's and Airy's theory, Design consideration for square, rectangular and circular shapes, Design of Hopper and Support structures.

Design of miscellaneous structures: Corbells, Deep beams, RC structural wall including introduction to shear walls; and design of nibs.

1. B.C. Punimia, Ahok Kumar Jain and Arun Kumar Jain: Reinforced Cement Concrete Designs'; Laxmi Publishers, New Delhi -2015
2. Dr. H. J. Shah, "Reinforced Concrete", Vol-1 and Vol-2, Charotar, 8th Edition –
2009 and 6th Edition,20123. S.S. Bhavikatti: 'Advanced RCC Design (Vol. II)'; New Age Publishers, New
Delhi-2010 4. N. Krishna Raju "Advanced Reinforced Concrete Design", 2nd edition, CBS
Publishers and Distributors, 2009.5. P.C Varghese "Advanced Reinforced Concrete Design" Prentice Hall of India
– 2004. 6. IS456, SP16, SP34

Subject Code CV510	Earth Retaining Structures	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 The overall objective of this course is to provide students the fundamentals and working tools needed for the design and analysis of earth retention systems. Selection, design, and performance of earth retaining structures used for support of fills and excavations. 	

Earthen Dam: Introduction to Earthen dams, types of dams, selection of type of dam based on material availability, foundation conditions and topography, Design details, crest, free board, upstream and downstream slopes, upstream and downstream slope protection, central and inclined cores, types and design of filters, Seepage analysis and control, seepage through dam and foundations, control of seepage in earth dam and foundation

Stability analysis: Critical stability conditions, evaluation of stability by Bishop's and sliding wedge methods under critical conditions, Construction techniques, methods of construction, quality control Instrumentation, measurement of pore pressures

Earth pressure: Earth pressure theories, Rankine's and Coulomb's earth pressure theories for cohesion less and cohesive backfills, computation of earth pressures for various cases, inclined, with surcharge, submerged and partly submerged, stratified backfills

Rigid Structures: Rigid retaining structures, active and passive earth pressures against gravity retaining walls, computation of earth pressures by Trial wedge method, a mathematical approach for completely submerged and partly submerged backfills, Perched water table, importance of capability tension in earth pressure.

Graphical methods of earth pressure computation: trial wedge method for Coulomb's and Rankine's conditions, for regular and irregular ground and wall conditions, Rebhan's construction for active pressure, friction circle method, logarithmic spiral method. Design of gravity retaining wall, cantilever retaining walls

Flexible retaining structure: type and methods of construction, design strength parameters, safety factor for sheet pile walls, computation of earth pressures against cantilever sheet piles in cohesion less and cohesive soils, anchored sheet piles, free earth method, fixed earth method, Rowe's moment reduction method, stability of sheet piling.

 Huntington, Earth pressure on retaining walls, Literary Licensing, LLC -2013 Swami Saran, Analysis & Design of Foundation & Retaining Structures subjected to seismic loads, 2012 Bowles, Foundation Analysis and Design, McGraw Hill, 2001 Colin JFP Jones, Earth Reinforcements & Soil structures, Elsevier, 2013 Prakash, Ranjan & Sasan, Analysis & Design of Foundation & Retaining Structures, Meerut: Sarita Prakashan Publications 	Text/Reference Books	 Swami Saran, Analysis & Design of Foundation & Retaining Structures subjected to seismic loads, 2012 Bowles, Foundation Analysis and Design, McGraw Hill, 2001 Colin JFP Jones, Earth Reinforcements & Soil structures, Elsevier, 2013 Prakash, Ranjan & Sasan, Analysis & Design of Foundation & Retaining
--	-------------------------	--

Subject Code CV511	Advanced Solid Mechanics	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To analyze the transformation of stresses and strains in3D. To study engineering properties of materials, force-deformation, and stress-strain relationship. To understand the plastic behavior of deformable bodies 	

Kinematics: Motion field, Displacement field, Deformation gradient, Transformation of curves, surfaces and volumes, strain measures, linearized strain measures, Principal strains and principal directions, Transformation of strain components with changes in coordinate basis, Compatibility conditions for linearized strain

Traction and stresses: Concept of traction, Cauchy's stress theorem, Postulate of Cauchy stress tensor, Traction on arbitrary planes, Extreme normal and shear traction, Octahedral shear stress, Other stress measure - Engineering stress

Equilibrium equations: Derive equilibrium equations in Cartesian and cylindrical polar coordinates, Constitutive relations: Restrictions on constitutive relations, General relationship between Cauchy stress and Cauchy Green strain for isotropic materials, General Hooke's law and its reduction for isotropic and orthotropic materials

Boundary value problems: Displacement method, Stress method, Airy's stress functions for plane stress and strain problems, Uniaxial Tension, Thick-walled annular cylinder subjected to uniform boundary pressure, Infinite medium with a stress-free hole under far field tension loading.

Bending of prismatic straight beams: Pure bending, bending due to uniform transverse loading and bending due to transverse sinusoidal loading of a beam, Asymmetrical bending of straight beams, Shear stresses in thin walled open sections

End torsion of prismatic beams: Formulation of the BVP for torsion of beams with solid cross section - warping function and Prandtl stress function approach, Torsion of circular, elliptic, rectangular and triangular cross sections, Membrane analogy, Torsion of thin walled tubes, thin rectangular sections, rolled sections and multiply connected sections

Beam on elastic foundation: Derivation of the basic governing equation, Solution to beam on an elastic foundation subjected to a point load at the center, moment at the center, uniformly distributed load over some length 'a' symmetrically about the center

Text/Reference	1. S.P. Timoshenko and J. N. Goodier, 'Theory of Elasticity', 3rd ed., McGraw-Hill
Books	Education,2010.
	2. M. Filonenko-Borodich, 'Theory of Elasticity", University Press of the Pacific,
	2003
	3. L.S.Srinath,"Advanced Mechanics of Solids" Tata McGraw Hill,2007.
	4. M.H.Sadd,"Elasticity: Theory, Applications and Numerics", Academic Press,
	2006.

Subject Code CV512	Advanced Irrigation Engineering	Credits: 3 (3-0-0) Total hours: 42
Course	• To understand the fundamental design concepts of hydraulic s	structures.
Objectives	• To get a quiet enough amount of knowledge about the types, functions and importance of hydraulic structures.	
	• To read the contour and topo maps which are required for dest analyzing the forces on structures required to be considered in	

Diversion Headworks: Introduction, Types of diversion works, Location and Components, Weir and Barrage, Effect of construction of weir on the river regime, Causes of failures of Weirs on permeable foundations, their remedies, Exit gradient, Principles of weir design on permeable formations, Bligh's creep theory and Khosla's theory.

Distribution Systems: Classification of canals, Design of irrigation canals by Kennedy's and Lacey's theories, Canal FSL, Losses of canal water, Silting and Scouring of canals, Method of design of unlined section of irrigation canal, Lined canals, IS standard for Design of canal lining, Satellite automated canals, Problem of water logging and Environmental concerns

Regulation Works: Introduction, Definition of falls, Necessity and Location of falls, Comparative study of the main types of falls, Cross regulator and Distributary regulator. Hydraulic Gates Control equipment's for out-lets, Spillway gates, Types, Design criteria for radial gates, Air vents, Canal escapes.

Cross Drainage Works: Introduction, Types, Suitability, Design of various types of C-D Works, Aqueduct, Syphon aqueduct, Super Passage, Syphon, Level crossing, Inlets and Outlets, Site selection.

Hydropower Engineering: Introduction, Components of hydropower, Classification of hydropower plants, Run-of-river plants, Valley dam plants, High head diversion plants, Diversion canal plants, Pumped storage plants, Tidal power plants, Environmental considerations, Estimation of hydropower potential, General load curve, Load factor, Capacity factor, Utilization factor, Diversity factor, Water conveyance system; Power canals, Alignment, Design of power canals, Flumes, Covered conduits and tunnels, Drainage and Ventilation in tunnels. Penstocks; Design considerations.

Text/Reference	1. Punmia, Pande, Lal, A. K. Jain; Irrigation Engineering; Laxmi Publications (P)
Books	Ltd.
	2. P. N. Modi; Irrigation and Water Power Resources Engineering; Standard
	Book House.
	3. R. K. Sharma and T. K. Sharma; Irrigation Engineering; S Chand Publications
	Pvt. Ltd.
	4. R. S. Varshney, Hydropower Structures; Nem Chand and Bros.
	5. S. K. Garg; Irrigation Engineering and Hydraulic Structures; Khanna Publishers,
	Delhi.
	6. K. R. Arora; Irrigation, Water Power and Water Resources Engineering;
	Standard Publishers, New Delhi.
	7. K Subramania, Engineering Hydrology, 2017, Tata Mcgraw hill
	8. V T Chow, D R Maidment and LW Mays Applied hydrology, 2017, Mc Graw hill

Subject (Code
-----------	------

CV513

Industrial Waste Treatment

Course	• To study about the sampling and analysis of industrial wastes
Objectives	• To understand the general treatment of industrial wastes
	• Learn about the provision of various acts pertaining to industrial wastes.

General: Liquid wastes from industries, their volumes and characteristics, Effect of disposal into natural water courses, Municipal sewers and on land, stream standards and effluent standards.

Sampling and analysis of industrial wastes, Treatability study, good housekeeping, bioassay test, population equivalence.

Stream sanitation: Effects of industrial wastes on self-purification of streams and fish life, Statement and significance of the parameters of Streeter and Phelps's equation and BOD equations, Deoxygenating and reaeration, Oxygen sag and numerical based on this.

General treatment of industrial wastes: Neutralization, Equalization, segregation. Modification of conventional aerobic and anaerobic biological treatment methods. Dewatering and disposal of sludges, unit operation floatation, Vacuum filtration, Centrifugation, Filter press and membrane filters, Advanced treatment.

Detailed consideration of wastes produced from following industries: Manufacturing processes normally followed, Volume and effects of raw and treated effluent on streams, Sewers, Characteristics of effluents and land Treatment methods, reuse-recovery 1) Sugar-sugarcane 2) Distilleries 3) Pulp & paper: Sulphate process

4) Textiles: Cotton 5) Dairy 6) Tanneries 7) Electroplating.

Provision of various acts pertaining to industrial wastes / effluents, introduction to environmental impact assessment and environmental audit. Common Effluent Treatment Plants (CETPs): Location, Need, Design, Operation & Maintenance Problems and Economical aspects.

Text/Reference	1. Waste Water Treatment: Rao & Datta, Oxford & IBH Publishing Co.3 rd revised
Books	edition (2020)
	2. Environmental Pollution and control in chemical process industries: S.C.
	Bhatia, Khanna Publication. (2001)
	3. Industrial Water Pollution Control: W W Eckenfelder Jr, McGraw Hill. (1999)
	4. Industrial Water Pollution Management: E F Gurnham, John Wiley.
	5. Biological Waste Treatment: Eckenfelder & Connor Pergamon Press.
	6. Theories and Practices of Industrial Waste Treatment: Addison Wesley.
	7. Pollution Control in Process Industries: S P Mahajan, Tata McGraw Hill.

Subject Code CV514	Advanced Highway Engineering	Credits: 3 (3-0-0) Total hours: 42
Course	• The students will be able to classify the different ro	ad making aggregates
Objectives	• To learn about highway construction.	
	• To study the different highway construction equipm	nent's.

Highway Planning: Highway development and planning in India, rural & urban road classification, planning surveys, highway alignment, computer aided planning.

Road making aggregates, classification, properties of aggregates, design of aggregate gradation; Bituminous road binders, penetration grade, emulsions, cut backs and modified binders; rheology of bituminous binders, modified binders; mix design, Marshall method and Superpave procedure; design of emulsified mixes, visco-elastic and fatigue properties of bituminous mixtures, resilient modulus of pavement materials; requirements of paving concrete, design of mixes for recycling of bituminous and concrete pavement surfaces; soil stabilization techniques.

Highway Construction: Earthwork & embankment construction; construction of stabilized sub-bases & base courses, drainage, surface / subsurface, sub-base & base construction techniques, WBM base, wet mix macadam, bituminous macadam, low cost road construction, construction of shoulder, footpath, paver block areas.

Highway Construction Equipment: Excavating, earth moving & compacting equipment, hot mix plant, pavers, and concrete mixers.

Text/Reference	1. L.R.Kadiyali, Highway Engineering, Khanna Publishing, 1 st Edition(2019)
Books	2. Daniel JFindley, Batian S., Christopher C, Tom B, Highway Engineering,
	Planning, design and operation, Butterworth-Heinemann 1 st edition(2015)
	3. Highway Materials, Soils, and Concrete, Atkins Harold N, Principles and
	Applications, Marcel Dekker, Inc.,2000.
	4. Relevant IRC codes

Subject Code CV515	Ground Improvement Techniques	Credits: 3 (0-0-0) Total hours: 42
Course Objectives	 To study engineering properties of soft, weak and con To learn about emerging trends in ground improveme To understand principles and methods of ground impr 	nt.

Introduction: Different types of problematic soils and their geological formation principles of treatment, Loading, Classification of ground modification techniques, Emerging trends in ground improvement.

Treatment of Loose Sands: Mechanical Stabilization- Shallow and Deep compaction requirements, Principles and methods of soil compaction, Shallow compaction and methods. Properties of compacted soil and Compaction control, Deep compaction and vibratory methods dynamic compaction. Compaction piles, deep compaction, Dynamic compaction, Vibroflot technique, Controlled blasting for compaction.

Hydraulic Modification - Ground improvement by drainage, Dewatering methods, Design of dewatering systems, Preloading, Vertical drains, Vacuum consolidation, Electro-kinetic dewatering, Heating and Freezing methods, Microbial geotechnology.

Treatment by Admixtures: Cement stabilization and Cement columns, Lime stabilization and Lime columns. Stabilization using bitumen and Emulsions, Stabilization using industrial wastes, Construction techniques and Applications.

Grouting Techniques: Permeation grouting, Compaction technique, Jet grouting, Different varieties of grout materials, Grouting in difficult conditions.

Treatment of Expansive Soils: Lime treatment for expansive soils, Injection method, Lime-columns, Chemical analysis.

Accelerated Consolidation Methods for Soft Clay Soils: Preloading and the techniques of preloading, Band drains, Consolidation by sand drains, Radial consolidation, Effect of smear zone on radial consolidation, Pre-fabricated drains. Vacuum consolidation, Vibro compaction, Stabilization of soil by vitrification, Ground freezing, Dewatering and Electro kinetics, Accelerated pre-consolidation of soft clay using geosynthetics.

Insitu Ground Treatment for Slopes: Different types of in situ soil stabilization like soil nails, Rock anchoring, Pre-stressed anchors, etc. Optimum design of nailed slopes, Design methods and Construction techniques. Evaluation of zone of liquefaction in field, Ground improvement techniques for improving liquefaction resistance of soils, Nano-technologies in ground improvement and Site remediation.

Text/Reference	1. Manfred R. Haussmann, Engineering principles of ground modification, Pearson	
Books	Education Inc. New Delhi, 2008.	
	2. Bell, F.G., Engineering Treatment of Soils, E& FN Spon, New York, 2006.	
	3. Purushothama Raj, P, Ground Improvement Techniques, Laxmi Publications	
	(P) Limited, 2006.	
	4. Patel, Geotechnical Investigations and Improvement of Ground Conditions	
	Elsevier, 1st Ed.,2019	
	5. Gulati and Datta, Geotechnical Enginnering, Tata McGraw Hill. (2005)	
	6. M. P. Mooseley and K. Kirsch, Ground Improvement; 2nd Edition, Spon	
	Press, Taylor and Francis Group, London, United Kingdom. (2004)	

Subject Code CV516	Pavement Design	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To study about the types, design aspects and components To introduce highway pavements, design concepts and m To understand and enable students to carry out design of analyze and design flexible and rigid highway paveme To introduce the concepts of pavement evaluation and ref 	aterial properties bituminous mixes, ents

Fundamental Principles: Pavement types, Wheel loads and Design factors, Stresses inflexible and Rigid pavements, Determining ESWL for highways and Airports, ESWL factors, Effects on pavements due to climate and Environment, Pavement costs, Economic analysis, Properties of pavement components and Material characterization; Soil classification and Application, Types of tests; Plate load test, Triaxial Test, CBR Test, Stabilometer and Cohesiometer tests; Tests for bituminous mixtures and Concrete, Resilient modulus test.

Pavement Design: Design of flexible pavements for airports, CBR Method, FAA method; Design of flexible pavements for highways; CBR Method, IRC method, Limiting shear failure method, Limiting deflection method, Regression method based on pavement performance, Mechanistic method for bituminous pavement design, AASHO design method.

Design of Rigid Airport and Highway Pavements: Modulus of subgrade reaction, Design charts, Westergaard's equations for load and Temperature stresses; Examples; Design of slab thickness only as per IRC: 58-2002, Factors affecting design and Performance, AASHTO method, PCA method; Joint and Reinforcement requirements.

Pavement Design and Construction: WBM Roads, WMM roads, Bituminous and Cement concrete roads, Design of bituminous and Cement concrete mixes.

Soil and Base Stabilization: Mechanics of stabilization, Types of stabilization, Construction and Field control, General properties of soil aggregate mixture.

Types of Bases and Sub-Bases: Macadam base courses, Cement treated bases, Asphalt treated bases, Base and Sub base drainage.

Pavement Evaluation and Rehabilitation: Pavement distress, Types and Causes, Condition and Evaluation surveys; Methods of measuring condition, Skid resistance.

Strengthening Existing Pavements: Principles of maintenance, Typical maintenance procedures, Deflection measurement as an evaluation tool, Benkelman beam, Static load deflection test procedure, Creep load deflection test procedure, Correction for temperature and Seasonal variations; Maintenance of shoulders.

Structural Evaluation of Rigid Pavements: Direct load test method, Indirect reverse design method, Determination of pavement structural strength. **Overlays**: Overlays for airport and Highway pavements, Types of overlays

Text/Reference	1. Rajib B. Mallick and Tahar El-Korchi, Pavement Engineering: Principles and
Books	Practice, Second Edition, CRC Press, London, 2013
	2. Papagiannakis, A.T. and E.A. Masad, Pavement Design and Materials, John
	Wiley and Sons, New Jersey, USA, 2008
	3. IRC: 37-2012, Tentative Guidelines for the Design of Flexible Pavements
	4. IRC: 58-2011, Guidelines for Design of Plain Jointed Rigid Pavements for
	Highways.
	5. E. J. Yoder, M. W. Witczak, Principles of Pavement Design; Wiley Publication,
	2008
	6. Partha Chakroborty and Animesh Das, Principles of Transportation
	Engineering, Prentice Hall of India, NewDelhi2004

Subject Code CV517	Finite Element Method	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Understand the basic concepts of finite element method Analyze 1D stress deformation problems Develop shape functions and stiffness matrices for different f Develop global stiffness matrices and global load vectors Analyze planar structural systems using finite element model 	
	 Develop element mass matrix for bar and beam elements 	

Introduction to Finite Element method (FEM): General description of the method, Steps involved, Advantages, Range of applications. Basic Equations from linear theory of elasticity; Equilibrium equations, Compatibility equations, Strain displacement equations. Generalized Hooke's law; Constitutive laws for plane stress and Plane strain problems, Potential energy approach, Rayleigh-Ritz method, Galerkin's method. Matrix algebra and Solution of simultaneous using equations Gauss elimination, Crouts reduction and Cholesky's decomposition methods.

Types of Elements, Discrete Systems: Analysis of one-dimensional stress deformation problems; Generation of matrix displacement equations for spring element, 1-D bar element using direct and energy approach. Assembly of global stiffness matrix and Load vector, Treatment of boundary conditions and Solutions.

Co-ordinate System: Global, Local and Natural co-ordinate. Convergence requirement on displacement field. Shape functions for linear, Quadratic and Cubic 1-D element.

Analysis of Plane Trusses: Plane trusses, Formulation of problem, Generation of element stiffness matrix, Assembly of global stiffness matrix and Load vector, Boundary conditions and Solution. Band width of a matrix.

Shape functions for Constant Strain Triangle (CST), Linear Strain Triangle (LST) and 4-noded rectangular element. 2-D stress deformation, Finite element formulation, Derivation of element equation, Problem solution for two-dimensional stress deformation problems using CST.

Introduction to Isoparametric element and its formulation; Jacobian matrix. Numerical integration; Gauss Legendre quadrature technique.

Stiffness matrix for a beam element. Hermite shape function. Applications to determinate and Indeterminate beams; Finite element formulation, Load vector, Boundary conditions, Shear force and Bending moment, Problem solution.

Dynamic Considerations in FEM: Introduction, Formulation of element mass matrix; for bar and beam element, Evaluation of Eigenvalues and Eigenvectors.

Text/Reference	1. S.S Bhavikatti, Finite Element Analysis, New Age International Publishers, Third
Books	Edition,2015
	2. J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill.
	3. T. R. Chandraputla, A. D. Belegundu, Introduction to Finite Elements
	in Engineering; Pearson, 2015
	4. K. J. Bathe, Finite Element Procedure, Prentice-Hall of India.
	5. C. S. Krishnamoorthy, Finite Element Analysis-Theory and Programming; Tata
	McGraw-Hill.
	6. Desai and Abel, Introduction to the Finite Element Method; CBS Publishers.
	7. Singiresu and Rao, The Finite Element Method in Engineering; Butterworth-
	Heinemann.

Subject Code CV518	Advanced Steel Structures	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Design members subject to tension and compression Understand the different types of welded and bolted connect: Analyze and design different types of trusses and industrial b Understand the behavior of compression and flexural member Design light gauge steel structures 	ouildings

Design of members subjected to combined forces: design of purlins, louver rails, gable column and gable wind girder, design of simple bases, gusseted bases and moment resisting base plates.

Design of connections: types of connections, welded and bolted, throat and root stresses in fillet welds, seated connections, unstiffened and stiffened seated connections, moment resistant connections, clip angle connections, split beam connections, framed connections, hsfg bolted connections.

Analysis and design of industrial buildings: analysis and design of different types of trusses, analysis and design of industrial buildings, sway and non-sway frames, aseismic design of steel buildings.

Plastic analysis of structures: introduction, shape factor, moment redistribution, combined mechanisms, analysis of portal frames, effect of axial force - effect of shear force on plastic moment, connections, requirements, moment resisting connections. Design of straight corner connections, haunched connections, design of continuous beams.

Design of light gauge steel structures: introduction to direct strength method, behaviour of compression elements, effective width for load and deflection determination, Behaviour of Unstiffened and Stiffened Elements, Design of webs of beams, Flexural members, Lateral buckling of beams, Shear Lag, Flange Curling, Design of Compression Members, Wall Studs.

Text/Reference	1. IS 800:2007 General constructions in steel
Books	2. Lynn S. Beedle, Plastic Design of Steel Frames, John Wiley and Sons, 1990.
	3. Narayanan.R.et.al., Teaching Resource on Structural steel Design, INSDAG,
	Ministry of Steel Publishing,2000.
	4. Subramanian. N, Design of Steel Structures, Oxford University Press, 2014.
	5. Wie Wen Yu, Design of Cold Formed Steel Structures, McGraw Hill Book
	Company, 199
	6. Chen, W. F., & Kim, S. E. (1997). LRFD steel design using advanced analysis (Vol.
	13). CRC press.

Subject Code	Non-Destructive Testing and	Credits: 3 (3-0-0)
CV519	Evaluation	Total hours: 42
Course Objectives	 Understand the differences between NDT and mechanical test Assess the concept of liquid penetrant testing and its applicati Understand the theory of magnetic particle testing Assess the principles and inspection methods involved in ther 	ion

NDT versus Mechanical testing: Overview of the Non-Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT, Visual inspection, Unaided and aided, Fundamentals and introduction to destructive and non-destructive testing. Scope and limitations of NDT, Visual examination methods. Different visual examination aids

Liquid Penetrant Testing: Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results.

Magnetic Particle Testing: Theory of magnetism, inspection materials Magnetization methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

Thermography: Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation, infrared radiation and infrared detectors, Instrumentations and methods, applications, Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

Text/Reference	1. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control",
Books	American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
	2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley,
	2 nd Edition New Jersey,2005
	3. Charles, J. Hellier, "Handbook of Nondestructive evaluation", McGraw Hill, New
	York2001.
	4. ASNT, American Society for Non-Destructive Testing, Columbus, Ohio, NDT
	Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared
	and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing,
	Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing

Subject Code CV520	Experimental Stress Analysis	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Apply principles of elasticity theory to determine stresses and Apply theory of elasticity and formulate plane stress and plan Understand the types and working of static and dynamic record Understand the concept of three-dimensional photo elasticity 	e strain problems rding systems

Introduction: Theory of Elasticity, Plane stress and plane strain conditions, compatibility conditions, problem using plane stress and plane strain conditions, three-dimensional stress strain relations. Strain measurement methods: various types of strain gauges, electrical resistance strain gauges, semiconductor strain gauge circuits.

Recording Instruments: Introduction, static recording and data logging, dynamic recording at very low frequencies, dynamic recording at intermediate frequencies, dynamic recording at high frequencies, dynamic recording at very high frequencies, telemetry systems.

Brittle Coatings: Introduction, coating stresses, failure theories, brittle coating crack patterns, crack detection, ceramic based brittle coatings, resin based brittle coatings, test procedures for brittle coatings analysis, calibration procedures, analysis of brittle coating data.

Moire Methods: Introduction, mechanism of formation of Moire fringes, the geometrical approach to moiréfringe analysis, the displacement field approach to Moire-fringe analysis, out of plane displacement measurements, out of plane slope measurements, sharpening and multiplication of moiré-fringes, experimental procedure and techniques.

Photo Elasticity: Photo elasticity, polariscope, plane and circularly polarized light, bright and dark filed setup, photo elasticity materials, Isochromatic fringes – Isoclinics.

Three Dimensional Photo Elasticity: introduction, locking in model deformation, materials for three dimensional photo elasticity, machining cementing and slicing three dimensional models, slicing the model and interpretation of the resulting fringe patterns, effective stresses, the shear-difference method in three dimensions, applications of the Frozen-stress method, the scattered light method Bi refringent coating: Introduction, coating stress and stains, coating sensitivity, coating materials, application of coatings, effective of coating thickness, fringe-order determinations in coatings, stress separation methods.

Text/Reference	1. Timoshenko and Goodier, Theory of Elasticity, 3rd Ed., McGraw Hill2010
Books	2. J.W. Dally and W.F.Riley, Experimental Stress Analysis, 3rd Edition, McGraw
	Hill 1991
	3. A treatise on Mathematical theory of elasticity / LOVE A.H./ Dover Publications
	4. Frocht, M.M., Photoelasticity. J. Wiley and Sons, London, 3 rd Edition
	5. Sadhu Singh, Experimental Stress Analysis, Khanna Publications.

Subject Code CV521	City and Urban Planning	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Identify the different stages involved in urban planning Understand various types and principles of planning Examine the urban planning agencies and their functions Understand the town and country planning act and building 	byelaws

Changing Cities & Neighborhoods: Broad Knowledge of the Concepts and Theories Relevant to the Study of Urban development; Spatial Planning and Urban Policy (together with an understanding of the main trends in urban development in developing countries today)

Policy Analysis for Urban development: Introduction of Different Ways of Thinking about what Policy is and how it is formulated: The Actors, Institutions, Ideologies, Information (Evidence), Popular Opinion, The Media and Other Factors that Influence Urban Policy Making and Policy Outcomes with Respect to Urban Renewal and Regeneration

Regenerating Cities-Strategies & Evaluation: An Overview of the Development, Delivery and Impact of Regeneration Strategies; The Challenges of Achieving Effective Regeneration in Indian Cities in the Context of Global Change and Competition and Experiences in South East Asian and East Asian Countries

The Role of Public Sector Agencies: Area Based development Initiatives; Property-Led Development Policies; Investment and Funding of Urban Development Schemes 25

Role of private sector in development: Nature of In-fill; Development Potential and Pricing; Land locking and stagnation; Plot reconstitution

Renewal through Housing and Mixed-Use Development: Community Participation in Renewal Schemes; Sustainable Development through Urban Renewal; Brownfield Development with Respect to Urban Renewal in Cities

Integrated Urban Conservation: Principles, Economic, Legal and Tourism Aspects; Planning Procedures, Inspection and Surveys; Investigation Techniques; Methods for Inventories and Documentation; Identification and Reporting on Heritage Zones; Grading and Enlisting

Programs and Techniques for Adaptive Reuse, Restoration, Rehabilitation: New Buildings in Historic Settings, Aspects and Design Methods

Implementation of Plans and Urban Management: Phasing, Resource Mobilization, Incentives; Acts, latest advancements.

Text/Reference	1. Hutchinson, B.G., Principles of Urban Transport Systems Planning,
Books	Scripta, McGraw-Hill, New York, 1974.
	2. Claire, Hand Book of Urban Planning, Van Nostrand Book Company, 1974.
	3. Gallian, B. Arthur and Simon Eisner, The Urban Pattern - City Planning and
	Design, Affiliated Press Pvt. Ltd., New Delhi, 1985.
	4. Margaret Roberts, An Introduction to Town Planning Techniques,
	Hutchinson, London, 1980.
	5. Hiraskar, G.K., Fundamentals of Town Planning, Dhanpat Rai Publications,
	1992.

Subject Code CV522	Remote Sensing and GIS	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Understand the basics of Geographic Information System ar components Introduce the process of map preparation and projections Identify the systems of data representation and analysis in G Understand the basic concepts of remote sensing and its integral 	HS

Introduction to Geographic Information System: Definitions and related terminology, evolution of GIS, components of GIS, approaches to the study of GIS.

Maps and GIS: Introduction, Map scale and classes of maps, the mapping process, plane coordinate systems and transformations, geographic coordinate system of earth, map projection, geo-referencing and topographic mapping.

Digital Representation of Geographic Date: Introduction, database and database management systems, raster geographic date representation, vector data representation, data representation and data analysis in GIS.

Raster Basic GIS Data Processing: Introduction, acquiring and handling raster geographic data, rasterbased GIS data analysis, cartographic modeling.

Vector Based GIS Data Processing: Introduction, Characteristics of vector-based GIS data processing, topological and non-topological functions.

Remote Sensing and GIS: Introduction, Principles of electromagnetic remote sensing, remote sensing system classifications, imaging characteristics, extraction of metric information from remotely sensed images, integration of remote sensing and GIS.

	-	
Text/Reference	1. M Anji Reddy, A Textbook of Remote Sensing and Geographical Information	
Books	Systems, Fourth Edition, BS Publications, 2012	
	2. Lo C P and Young K W, "Concepts and Techniques of Geographic Information	
	Systems" PHI Pvt. Ltd, New Delhi, 2002.	
	3. Campbell J B, "Introduction to remote sensing" CBS Publishers &	
	Distributors, New Delhi, 2003.	
	4. Burrough P A, "Principles of Geographic Information Systems for Land	
	Resources Assessment" Oxford University Press, 2003.	
	5. Duggal S K, "Surveying Volume 2" Tata McGraw Hill, 4 th Edition, 2013.	
	6. Donnay JP, "Remote Sensing and Urban Analysis" CBS Publishers &	
	Distributors, New Delhi, 2003.	

Subject Code CV523	Environmental Pollution and Control	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Analyze the effects of pollutants on the environment Distinguish air pollution control methods Assess treatment technologies for wastewater Identify treatment technologies for solid waste Select treatment methodologies for hazardous and E-waste 	

Introduction: Biosphere, Hydrological cycle, Nutrient cycle, Consequences of population growth, Pollution of air, Water and soil.

Air pollution sources & effects: Classification and properties of air pollutants, Emission sources, Behavior and fate of air pollutants, Effect of air pollution.

Meteorological aspects of air pollutant dispersion: Temperature lapse rates and stability, Wind velocity and turbulence, Plume behavior, Dispersion of air pollutants, Estimation of plume rise.

Air pollution sampling and measurement: Types of pollutant sampling and measurement, ambient air sampling, Stack sampling, Analysis of air pollutants.

Air pollution control methods & equipment: Control methods, Source correction methods, Cleaning of gaseous effluents, Particulate emission control, Selection of a particulate collector, Control of gaseous emissions, Design methods for control equipment. Control of specific gaseous pollutants: Control of NOx emissions, Control of hydrocarbons and mobile sources.

Water pollution: Water resources, Origin of wastewater, types of water pollutants and their effects.

Waste water sampling, analysis and treatment: Sampling, Methods of analysis, Determination of organic matter, Determination of inorganic substances, Physical characteristics, Bacteriological measurement, Basic processes of water treatment, Primary treatment, Secondary treatment, advanced wastewater treatment, Recovery of materials from process effluents.

Solid waste management: Sources and classification, Public health aspects, Methods of collection, Disposal Methods, Potential methods of disposal.

Hazardous waste management: Definition and sources, Hazardous waste classification, Treatment methods, Disposal methods.

E-waste: Sources, environmental and social issues, management practices

Text/Reference	1. Rao and Rao, Air Pollution; Tata McGraw-Hill Education, 1 st edition,2013
Books	2. Muralikrishna KVSG, Air Pollution and Control, Laxmi Publications, 2015
	3. H.C Perkins; Air Pollution; Mcgraw-Hill.
	4. H S Peavy, D.R Rowe, G. Tchobanoglous, Environmental Engineering;
	McGraw-Hill, 1 st edition,2017
	5. Crawford and Martin, Air Pollution Control Theory; McGraw-Hill Inc.

Subject Code CV524	Geo-Environmental Engineering	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Create awareness in the field of Geo-Environmental Engineering Impart knowledge on Geotechnical aspects in the disposal of waste materials and the remediation of contaminated site Familiarize the design of landfill and know the effect of change in environment on soil properties. 	

Introduction and Soil-water-environment interaction: Introduction to geo-environmental Engineering, Soil-water-environment interaction relating to geotechnical problems, Sources of waste, classification and management of waste, Physical, chemical and geotechnical characterization of municipal solid waste, Impact of waste dump and its remediation

Geotechnical application of waste and disposal: Geotechnical use of different types such as Thermal power plant waste, MSW, mine waste, industrial waste, waste disposal facilities, Parameters controlling the selection of site for sanitary and industrial landfill. Site characterization. MoEF guidelines

Landfill Components: Landfill layout and capacity, components of landfill and its functions. Types and functions of liner and cover systems, Compacted clay liner, selection of soil for liner, methodology of construction

Leachate, Gas Management and Geosynthetics: Management of Leachate and gas. Various components of leachate collection and removal system and its design., gas disposal/utilization. Closure and post closure monitoring system, Geosynthetics- Geo membranes - geosynthetics clay liners -testing and design aspects.

Soil remediation: Investigation of contaminated soil, sampling, assessment, Transport of contaminants in saturated soil. Remediation of contaminated soil- in-situ / exit remediation, bio remediation, thermal remediation, pump and treat method, phyto-remediation and electro-kinetic remediation.

1. Daniel, D.E. (1993). Geotechnical Practice for Waste Disposal. Chapman, and Hall, London.
2. Koerner, R.M. (2012). Designing with Geosynthetics. Sixth Edition. Prentice
Hall, New Jersey.
3. Reddi L.N and Inyang HI (2000) Geo-environmental Engineering: Principles
and Applications, Marcel Dekker Inc Publication
4. R. N. Yong (2000) Geo-environmental Engineering: Contaminated Soils,
Pollutant Fate, Mitigation Lewis Publication.
5. G V Rao and R S Sasidhar (2009) Solid waste Management and Engineered
Landfills, Saimaster Geo-environmental Services Pvt. Ltd. Publication.
6. Ayyar TSR (2000) Soil engineering in relation to environment, LBS centre for
Science and Technology, Trivandrum.
7. Hari D. Sharma, Krishna R. Reddy (2004) Geo-environmental Engineering: Site
Remediation, Waste Containment, and Emerging Waste Management
Technologies, Publisher: John Wiley & Sons Inc.

Subject Code	Advanced Pre-Stressed Composite	Credits: 3 (3-0-0)
CV525	Materials	Total hours: 42
Course Objectives	 To perform analysis and design of prestressed concrete members To identify and interpret the appropriate relevant industry designed and contemporary issues fabrication of prestressed concrete members To understand the basic concepts of composite materials and the applications in structural engineering. 	ign codes. s in the design and

Principles of Prestressing: Introduction, History of Prestressed Concrete, Classification and Types of Prestressed Concrete Structures, Prestressed Concrete Analysis, Prestressed Concrete Design, Prestressed Concrete versus Reinforced Concrete.

Constituent Materials and Code Provisions: reinforcing Steel, Prestressing Steel, Concrete

The Philosophy of Design: Strength Reduction Factors, Overload Factors.

Flexure-Working Stress Analysis and Design: Loading Stages, Useful Section Properties and Notations, Sign Conventions, Flexural Analysis - Mathematical Basis, Use of Stress-Inequality Conditions for the Design of Section Properties, Limiting the Eccentricity along the Span, Some Preliminary Design Hints, Cracking Moment.

Flexure-Ultimate Strength Analysis and Design: Load-Deflection Response, Flexural Types of Failure, Analysis of the Section at Ultimate, Concept of Reinforcement Index, Limiting Values of the Reinforcement Index, Satisfying Ultimate Strength Requirements, Design for Ultimate Strength, Indeterminate Structures and Composite Elements, Ultimate Strength

Deflections: Background Information, Short-Term Deflections, Long-Term Deflections (Simplified Method), Long-Term Deflections (Incremental Time-Step Method), Deflection Limitations, Deflection Control

Prestress Losses: Total Losses in Pretensioned Members, Total Losses in Post-Tensioned Members, Methods for Estimating Prestress Losses, Elastic Shortening, Relaxation, Shrinkage, Creep, Friction, Anchorage Set.

Analysis and design of composite beam: Methods of achieving continuity in continuous beams, Analysis for secondary moments, Concordant cable and linear transformation, Calculation of stresses, Principles of design.

Text/Reference	1. SS Bhavikatti, Design of Prestressed Concrete, Medtec, 2019
Books	2. Dayaratnam P, Prestressed Concrete Structures, Oxford & IBH Publishing Co
	Pvt Ltd, 2018
	3. Louis A Pilato and Michael J. Michno, Advanced Composite Materials, Springer;
	Softcover reprint of hardcover 1st ed. 1994 edition (1 December 2010)
	4. Krishna Raju, Prestressed Concrete Problems & Solutions, CBS Publishers &
	Distributors, 2017
	5. Mehdi Setareh and Robert Darvas Concrete Structures, Springer Nature; 2nd ed.
	2017 edition (25 August2016)

Subject Code CV526	Earthquake Resistant Structures	Credits: 3 (3-0-0) Total hours: 42
Course	• To provide a coherent development to the students for the cou	rses in sector of
Objectives	earthquake engineering	
	• To present the foundations of many basic engineering concept Engineering	ts related earthquake
	• To give an experience in the implementation of engineering complied in field of earthquake engineering	oncepts which are
	• To involve the application of scientific and technological prin analysis, design of buildings according to earthquake design p	1 1 0

Engineering Geology of Earthquakes: Theory of tectonic plates, Faults, Seismic waves. Wave measuring instruments, Strong ground motions, Determination of epicentre, magnitude, epicentral distances and focal depth of earthquake, Micro zonation, Concept of seismic hazard analysis. Importance of architectural features in earthquake resistant design, Indian seismic codes, behaviour of masonry structures during earthquakes.

Methods of Analysis: Linear static analysis, Linear dynamic analysis, non-linear analysis, Modal analysis, Response spectrum method. Construction of response spectra. Equations of motion for SDOF and MDOF systems. Mode shapes and Frequencies of MDOF system, Response of multi storied building subjected to earthquake forces by Equivalent Static Load Method, Response of multi storied building subjected to earthquake forces by Response Spectrum Method.

Seismic Design and detailing: Design of flexural members and compression members for earthquake load cases. Design of shear wall, Seismic repair, rehabilitation and retrofitting, detailing of beams, columns, footings, beam-column junction as per IS 13920. Techniques used to reduce effect of earthquake on structures, Base isolation and Various types of dampers. P-Delta effects, Soil structure interaction.

Text/Reference	1. A.K. Chopra, Dynamics of Structures, 3rd Edition, Pearson, 2007.
Books	2. I.S. 1893-2002, Code of Practice for Earthquake Resistant Construction of
	Buildings, BIS, New Delhi, 2002.
	3. Pankaj Agarwal and Manish Shrikhande, Earthquake Resistant Design of
	Structures, Prentice Hall India, 2006.
	4. R. L. Wiegel; Earthquake Engineering; Prentice Hall, Inc.
	5. James L. Stratta; Manual of Seismic Design; Pearson education Publication.
	6. S. K. Duggal; Earthquake Resistant Design of Structures; Oxford Publication.
	7. Farzad Neaim; Handbook on Seismic analysis and Design of Structure; Springer.

Subject Code CV527	Structural Reliability	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Provide a brief review of mathematical tools for quantifying u theories of probability, random variables and random processe To develop the theory of methods of structural reliability base reliability indices. This includes discussions on FORM and SO To introduce methods of reliability analysis using Monte Carl includes discussion of variance reduction techniques and RSM To explain the basics of code calibration. To provide the necessary background to carry out reliability-based sectors. 	es. Id on concept of ORM. o simulations that 1.

Introduction to structural Reliability: basic statistics Theory of Probability Probability Distributions (Continuous & Discrete) Random Variables

Level-2 Reliability Methods: Failure Surface & Definition of Reliability in Std. Normal Space (Cornell's Reliability Index), First Order Reliability Method (FORM) Hasofer-Lind's Definition of Reliability Rackwitz-Fiessler Algorithm Asymptotic Integral, Second Order Reliability Method (SORM)

Monte-Carlo Methods: Latin Hypercube Sampling, Variance Reduction Technique, Importance Sampling and Adaptive Sampling Subset Simulation, Implicit Performance Function, Polynomial Response Surface Method (RSM) Stochastic Response Surface Method (SRSM)

Stochastic Models of Loads: Code Calibration, Partial Safety Factors, LRFD Format System Reliability, Time Varying Reliability Analysis

Reliability Based Optimization: Introduction to Stochastic FEM

Text/Reference	1. Haldar, A., and Mahadevan, S. (2000). Reliability assessment using stochastic	
Books	finite element analysis. John Wiley and Sons, New York.	
	2. Choi S K, Grandhi R V and Canfield R A. Reliability Based Structural Design,	
	Springer Verlag, London, UK, 2007.	
	3. Ranganathan, R. (1999). Structural reliability analysis and	
	design. Jaico Publishing House, Mumbai.	
	4. H O Madsen, S Krenk and N C Lind, 1986, Methods of structural safety, Prentice	
	Hall, Englewood Cliffs, NJ.	
	5. P Throft-Christensen & Y Murotsu, 1986, Application of structural systems	
	reliability theory, Springer Verlag, Berlin.	
	6. Melchers R E., Structural Reliability: Analysis and Prediction,	
	John Wiley, Chichester, 1999.	
	7. Rackwitz R, Augusti G and Borri A, Reliability and Optimization of Structural	
	Systems, Chapman & Hall, London, UK, 1995.	
	8. Waarts P H.Structural Reliability Using Finite Element Methods, Delft Univ.	
	Press, Netherland, 2000.	

Subject Code CV528	Occupational Safety and Health Act	Credits: 3 (3-0-0) Total hours: 42
Course	• Explain that occupational health and safety is more than accid	ent prevention – that
Objectives	it encompasses all aspects of working conditions	
	• Explain the role of health representatives in occupational health	th
	• Recognize a number of occupational hazards and some of the	types of work
	generally associated with those hazards	

Occupational Health and hazards: Concept of occupational health, Occupational and Work-related diseases, History of occupational health, Characteristics of occupational diseases, Adverse health effects of noise, Vibration, Cold, Heat stress, Improper illumination, Thermal radiation, short term and Long-term effects of exposures; Preventive and Control measures.

Accident and Incident Investigation and analysis: Definition; Incident, Accident, Injury, Unsafe acts, Unsafe conditions, Hazards, Error, Oversight, Mistakes etc., standard classification of factors associated with accident. Accident reporting: Report forms, Writing reports, Essential elements, Factories Act, Workmen's Compensation Act and Rules, ESI Act and Rules, Labour Act (Abolition And Regulation), Right to Know.

Risk Assessment and Hazard Identification: Preliminary hazard analysis, What if analysis, Failure mode effect analysis, Hazard and Operability (HAZOP) studies, Hazard analysis techniques; Fault tree analysis, Event tree analysis, On-site and Off-site emergency preparedness.

Meaning and Scope of Safety in Construction: Basic parameters governing the safety in construction e.g.: Scaffolding, shuttering/form work, Working at Heights, Safe access, Good housekeeping, Safety in the use of construction machinery Safety with regard to storage, Stocking and Handling materials of construction. Safety in demolition operations; Safety precautions to be taken for and during demolition, Employee Participation in Safety- Purpose, Areas of participation, Methods, Role of trade union in Safety Health and Environment Protection.

Personal Protective Equipment: Need for personal protection equipment, selection, Applicable standards, Care and Maintenance of respiratory and Non-respiratory personal protective equipment. Non- respiratory personal protective devices: Head protection, Ear protection, Face and Eye protection. Hand protection, Foot protection, Body protection, Respiratory personal protective devices.

Text/Reference	1. Goetsch, D. L. (2010). Occupational safety and health. Pearson India.
Books	2. Colling, D. A. (1990). Industrial safety: management and technology. Prentice Hall.
	3. H. W. Heinrich; Industrial Accident Prevention; McGraw Hill Publication, New York.
	4. Industrial Safety and Pollution Control Handbook; National Safety Council and Associate (Data) Publishers Pvt. Ltd.
	 R. K. Mishara; Construction Safety; AITBS Publishers, India. Della D. E. and Giustina, Safety and Environmental Management. Van
	Nostrand Reinhold International Thomson Publishing Inc, 1996.

Subject Code	Advanced Geo-Environmental	Credits: 3 (3-0-0)
CV529	Engineering	Total hours: 42
Course Objectives	 To create a awareness in the field of Geo-Environmental I To impart the knowledge on Geotechnical aspects in the d materials and the remediation of contaminated sites To familiarize design of landfill and know the effect of ch on soil properties. 	lisposal of waste

Introduction: Geo-synthetics, Forms of Waste and their Engineering Properties, Selection of Waste Disposal Sites, Landfills for Municipal and Hazardous Waste, Ash Pond and Mine Tailing Impoundments, Site Investigations for detection of Subsurface Contamination, Remediation, Geotechnical reuse of Waste Materials and Fills, Mechanics of Erosion and Erosion Control Methods, Landslides and Their Control.

Environmental cycles and their interaction with Geo-Technology. Particle Energy, Energy theory and its application.

Soil Mineralogy and Technology changes in respect of waste water flow. Thermal and Electrical properties of soil and Rock.

Application of Geo- Environmental Engineering: Load-Environmental factors design, soil structure- soil interaction, Bearing Capacity, Lateral Earth pressures, Pile foundation grouting and injection, Slope Stability of waste material, stability of landfills, Stabilization and remedial works.

Wetlands, Coastal Margins and Soil. Erosion problems and control / management. Arid lands, Desert and Anti-desertification. Special Topics related with Field Problems

1. R. N. Yong (2000) Geo-environmental Engineering: Contaminated Soils, Pollutant
Fate, Mitigation Lewis Publication.
2. Reddi L.N and Inyang HI (2000) Geo-environmental Engineering: Principles and
Applications, Marcel Dekker Inc Publication
3. Hari D. Sharma, Krishna R. Reddy (2004) Geo-environmental Engineering: Site
Remediation, Waste Containment, and Emerging Waste Management
Technologies, Publisher: John Wiley & Sons Inc.
4. Rowe, R.K., Geotechnical and Geo-environmental Engineering Handbook, Kluwer Academic publishers,2001
5. Dr. G V Rao and Dr. R S Sasidhar (2009) Solid waste Management and
Engineered Landfills, Saimaster Geo environmental Services Pvt. Ltd.
Publication.
6. Ayyar TSR (2000) Soil engineering in relation to environment, LBS centre for
Science and Technology, Trivandrum.
7. Donald L. Wise, Debra J. Trantolo, Hilary I. Inyang, Edward J. Cichon (2000)
Remediation Engineering of Contaminated Soils, Publisher: Marcel Dekker Inc.

Subject Code CV530	Multi-Hazard Resistant Design	Credits: 3 (0-0-0) Total hours: 42
Course Objectives	 Learn the causes of earthquake and effects of ground motion of structures. Study the response spectra and structural dynamics of MDOF Discover the different analysis and design approaches like eq lateral force method and inelastic time history analysis. Be trained in the ductile detailing of reinforced concrete struct IS 4326 and IS 13920. Learn the seismic analysis of masonry buildings. 	systems. uivalent

Earthquake Ground Motion: Engineering seismology - Seismic zoning map of India - Strong motion studies in India - Strong motion characteristics - Evaluation of seismic design parameters.

Structural Dynamics: Initiation into structural dynamics - Dynamics of SDOF systems - Theory of seismic pickup - Numerical evaluation of dynamic response - Response spectra - Dynamics of MDOF systems.

Concepts of earthquake resistant design of RCC structures: Basic elements of earthquake resistant design - Identification of seismic damages in RCC buildings - Effect of structural irregularities on performance of RCC buildings during earthquakes - Earthquake resistant building architecture.

Seismic analysis and modeling of RCC structures: Code based procedure for determination of design lateral loads - Infill walls - Seismic analysis procedure as per IS 1893 code - Equivalent static force method - Response spectrum method - Time history analysis - Mathematical modeling of multi-storey RCC buildings.

Earthquake resistant design of RCC structures: Ductility considerations - Earthquake resistant design of multi-storey RCC buildings and shear walls based on IS 13920 code - Capacity based design.

Earthquake resistant design of masonry structures: Identification of damages and non-damages in masonry buildings - Elastic properties of structural masonry - Lateral load analysis of masonry buildings - Seismic analysis and design of one-storey and two-storey masonry buildings

Text/Reference	1. D J Dowrick, Earthquake Resistant Design and Risk Reduction, Willey India,
Books	2011.
	 S.K. Duggal, "Earthquake Resistant Design of Structures", Oxford University Press, New Delhi,2007
	3. Agrawal Pankaj & Shrinkhande Manish, "Earthquake Resistant Design of Structures" 1 st Edition, Prentice Hall of India Pvt Ltd, New Delhi,2004.

Subject Code	Non-Conventional and Renewable	Credits: 3 (3-0-0)
CV531	Energy	Total hours: 42
Course Objectives	 To exploit renewable energy resources and effective technologies Understand the various forms of conventional energy resources. Learn the present energy scenario and the need for energy conservation Outline division aspects and utilization of renewable energy sources for both domestics and industrial application 	

Statistics on conventional energy: Sources and supply in developing countries, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. Classification of NCES, Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources.

Solar Energy: Energy available form Sun, Solar radiation data, Solar energy conversion into heat, Flat plate and Concentrating collectors, Mathematical analysis of Flat plate collectors and collector efficiency, Principle of Natural and Forced convection, Solar engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite.

Wind energy conversion: General formula -Lift and Drag- Basis of wind energy conversion, Effect of density, frequency variances, angle of attack, and wind speed. Windmill rotors Horizontal axis and vertical axis rotors. Determination of torque coefficient, Induction type generators-working principle.

Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India.

Text/Reference	1. B H Khan, "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw
Books	Hill Education Pvt Ltd,2011
	2. S.Hasan Saeed and D.K. Sharma , "Non-Conventional Energy Resources", 3rd
	Edition, S.K. Kataria & Sons,2012
	3. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi,
	2003
	4. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing
	House, New Delhi, 2004
	5. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
	6. G.N.Tiwari and M.K. Ghosal, "Renewable Energy Resource: Basic Principles
	And Applications", Narosa PublishingHouse,2004

 Course To expose the students to vibration theory and problems, earthque hazards and earthquake engineering principles, earthquake disa management. To impart training to graduate students to the latest earthquake resist design philosophies, codal design and design philosophies beyond cod that the students can independently tackle earthquake engineer problems and they can handle the earthquake hazard mitigation project 	Subject Code CV532
 To expose the graduate students to current national and internati scenario on earthquake engineering and to motivate them interdisciplinary involvement in earthquake related problems. To orient the graduate students to high value research on Struct Dynamics and earthquake Engineering so that they get impetus to pu lifelong learning. 	

Engineering Geology of Earthquakes: Theory of tectonic plates, Faults, Seismic waves. Wave measuring instruments, Strong ground motions, Determination of epicenter, magnitude, Epicentral distances and Focal depth of earthquake, Micro-zonation, Concept of seismic hazard analysis. Importance of architectural features in earthquake resistant design, Indian seismic codes, Behavior of masonry structures during earthquakes.

Introduction to Methods of Analysis: Linear static analysis, Linear dynamic analysis, non-linear analysis, Modal analysis, Response spectrum method. Construction of response spectra. Equations of motion for SDOF and MDOF systems. Mode shapes and Frequencies of MDOF system.

Multi storied buildings: Response of multi storied building subjected to earthquake forces by Equivalent Static Load Method and Response Spectrum Method.

Design: Design of flexural members and compression members for earthquake load cases. Design of shear wall, Seismic repair, rehabilitation and retrofitting.

Detailing: Detailing of beams, columns, footings, beam-column junction as per IS 13920. Techniques used to reduce effect of earthquake on structures, Base isolation and Various types of dampers. P-Delta effects, Soil structure interaction.

Text/Reference	1. A. K. Chopra; Dynamics of Structures; Pearson Education, 4th edition,
Books	2012.
	2. R R Craig, Andrew, "Fundamentals of structural dynamics", John Wiley
	and Sons, 2nd edition, 2006
	3. James L. Stratta; Manual of Seismic Design; Pearson education
	Publication.
	4. Mario Paz; Structural Dynamics; CBS publishers.
	5. S. K. Duggal; Earthquake Resistant Design of Structures; Oxford
	Publication.
	6. IS 1893: Part I-IV and IS 13920 and relevant IS Codes

Subject Code CV533	Design of Bridges	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To make the students familiar with the IRC classes of load calculation of loadings and design of various components To design the basic components of bridge structures like longitudinal girders transverse girders, piers and well four 	s. bridge deck slabs

General Types and Classification of Bridges: Arch, Slab, Box Culvert, Beam and Slab, Plate Girder, Composite Bridges, Components of bridges, Investigation and Planning for bridges, Design flood discharge, Linear waterways.

Loads for Bridges: IRC loadings, Dead load, Live load, Impact load, Wind load, Longitudinal and Horizontal forces.

Design of Concrete Bridges: Superstructure, Design of box culvert, Introduction, Design method and Design example.

Design of Beam and Slab Bridges: Design of interior panel of slab. Pigeauds method, design of longitudinal girder, Calculation of longitudinal moment design example.

Design of Reinforced Concrete Solid Slab Bridges: General design features, Effective width method. Simply supported slab bridge analysis and Design.

Stability Analysis of Abutments and Piers: General scour at abutments and Piers, Grip length, Types of abutments and Piers and Stability of abutments and Piers for different loading combinations.

Bridge Foundations: Types of bridge foundations, Stability of different types of foundations, Design of shallow, Pile, Well foundations and Pneumatic caissons.

Text/Reference	1. N. Krishna Raju; Bridge Engineering; 3 rd edition Oxford and IBH Publishing
Books	Co., New Delhi, 2006
	2. Johnson Victor, D, 2008, Essentials of bridge engineering, 6 th Edition, Oxford
	& IBH Publishing Co. Pvt. Ltd, New Delhi.
	3. Victor D.J, Essentials of Bridge Engineering, 6th Edition, Oxford and IBH
	Publishers, 2007.
	4. T. R. Jagadeesh, M. A. Jayaram; Design of Bridge Structures; Phi Learning
	Pvt. Ltd, NewDelhi, 2009.
	5. S. Ponnuswamy; Bridge Engineering; Tata McGraw Hill. 2 nd edition -2015
	6. IRC-6, IRC-22, IRC-37.

Subject Code CV534	Rapid Transport System and Smart Cities	Credits: 3 (3-0-0) Total hours:42
Course	• To study urban transportation planning.	
Objectives	• Learn about transportation economics.	
	• To study about smart cities and infrastructure	

Introduction to Intelligent Transportation Systems (ITS): Definition of ITS and Identification of ITS Objectives, Historical Background, Benefits of ITS, ITS Data collection techniques, Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection.

Urban Transportation Planning: Urban morphology, Urbanization and travel demand, Urban activity systems and travel patterns, Systems approach, Trip based and Activity based approach, Urban Transportation Planning, Goals, Objectives and Constraints.

Transportation Economics: Introductory Concepts in Transportation Decision Making: Overall transportation project development, budgeting, financial planning, the process of transportation project development, models associated with transportation impact evaluation; Transportation costs, Classification of transportation costs, transportation agency costs, transportation user costs, general structure and behavior of cost functions and road pricing.

Smart cities and infrastructure: Defining a smart city, Smart infrastructure-smart buildings, smart mobility, smart energy, smart water, smart waste management, implementing smart infrastructure. The need to localize smart infrastructure, Policy instruments for promoting the localization of smart infrastructure, policy instruments for meeting smart city financial needs, Smart infrastructure design principles and policy approaches

1. AsierP, Unai H., Enrique O., Intelligent transport system: technologies and
applications, Wiley 1 st edition (2015)
2. Smart cities and urban development with special reference to planning and transportation, P. K. Garg, VC, UTU
 Intelligent Transport Systems: Technologies and applications by Ignacio Julio García Zuazola, Enrique Onieva, Unai Hernandez-Jayo, Asier Perallos, Wiley 1st edition-2015
 Transportation Planning Handbook, 4thEdition, Institute of Transportation Engineers, John Wiley Transportation Economics, Herbert Mohring, Ballinger Pub. Co

Subject Code CV535	Structural Stability	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 To determine the buckling loads for simple columns an To have an understanding of the concept of effective le design and apply advanced numerical techniques to buc structures 	ength and its use in

Introduction to potential energy methods for single degree-of-freedom elastic systems: Axioms connecting potential energy to equilibrium and stability. General Theory approach. Determination of bifurcation points and classification of stability of equilibrium for post-buckling responses for geometrically perfect systems. Imperfect systems: determination of imperfectionsensitivity.

Instabilities in struts and columns: direct equilibrium and energy formulations; Euler load and the elastica; effective length concept. Approximate methods of analysis: Rayleigh and Timoshenko methods. Ultimate strength of real columns using the Perry-Robertson formulation and the description of the method for designing steel columns in Eurocode 3.

Multiple degree-of-freedom elastic systems: diagonalized systems; elimination of passive coordinates; non-trivial fundamental paths; introduction to mode interaction.

Instabilities in beams: direct equilibrium and energy formulations, critical moment for lateraltorsional buckling, general loading cases and effective lengths and design of steel beams

Instabilities in rigid framed structures: analysis using stability functions and limitations.

Instabilities in plates: critical and post-buckling of plated structures under compression and shear.

Text/Reference	1. W.F. Chen and E.M. Liu (1987), Structural Stability, Pearson
Books	2. Timoshenko and Gere, Theory of structural stability, McGraw hill
	international book company, 1985.

Subject Code CV536	Rock Mechanics and Engineering	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To give details of Mechanics of rock failure and other asp of underground. 	pects of stability
	2. To determine properties and behavior of various types of different loading conditions for underground and open ex	
	3. To study engineering classification of rocks.	

Introduction: Definition, Development of rock mechanics, Objectives of rock mechanics, Application of rock mechanics, Similarities and difference between soil mechanics and rock mechanics, discontinuities in rocks

Physical Properties: Specific gravity, porosity, void index, unit weight, water absorption, Degree of saturation, slake durability index, rock sampling.

Compressive Strength of Rock: Stress distribution in specimen under compression, Modes of failure in compression, Failure mechanism of specimens in compression, Factors affecting compressive strength, End friction, specimen geometry, rate of loading, moisture and confining pressure.

Elastic Constants: Static and dynamic elastic constants, Significance and application, Determination of static and dynamic elastic constants, Typical stress-strain curves for rocks, Complete stress-strain curve,

Tensile Strength: Significance and application of tensile strength, Laboratory determination of tensile strength, Direct methods, Indirect methods, bending tests, Hydraulic extension tests, Diametral compression tests, other methods, Factors affecting tensile strength of rock.

Shear Strength: Significance and application, Various methods of estimating shear strength, single shear test, double shear test, punch shear test, oblique shear test, rock core direct shear test, Concept of shear strength of jointed rock.

Engineering Classification of Rocks: Necessity, aim, and process of classification, Classification of intact rocks- ISRM and Deere and Miller classification, Engineering Classification of rock mass- RQD, BGD and RMR systems of classifications.

In situ-Tests: Necessity, plate bearing test, pressure tunnel test, pressure meter test and direct shear test and field permeability tests

Text/Reference	1. Dr. BP Verna Engineering geology and rock mechanics,4 th edition (2017)
Books	2. Ramamurthy T., Engineering in Rocks for Slopes, Foundations and Tunnels,
	PHI Learning Pvt. Ltd.2010.
	3. Deb Debasis, Verma Abhiram Kumar. Fundamental and applications of rock
	mechanics (2016)
	4. R.J. Twiss and E.M.Moores, Structural Geology, W.H. Freeman and Co,2007.
	5. Zhang Lianyang. Engineering Properties of Rocks. Elsevier, 2005.
	6. Hand book on rock mechanics (Vol I to IV), Lama and Vutukuri

Subject Code CV537	Ocean Engineering	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	• To give an overview about the waves and its kinematic	CS

Introduction to ocean environment and ocean floor characteristics, waves, tides, currents, seawater properties; Linear wave theory: Governing Equation, Boundary Conditions and solutions, Dispersion relation, Constancy of wave period.

Wave Kinematics: Wave celerity, water particle velocities, accelerations, displacements and pressures. Approximations for deep and shallow water conditions.

Wave Transformations: Shoaling, bottom friction and damping, refraction, reflection and diffraction. Wave Breaking: Type of breaking, Surf similarity parameter.

Non-linear wave theories-Strokes, Cnoidal and Solitary wave theory. Mass transport velocity. Introduction to Random and directional waves.

Wave Loads: Non breaking wave forces on slender structures, Morison equation; Diffraction theory

Instrumentation for ocean applications: pressure sensors, current meters, CTD, depth sounder, buoy systems etc.

Text/Reference	1. Mani, J. S. (2011). Coastal Hydrodynamics. PHI Learning Pvt. Ltd.	
Books	2. Sorenson, R.M., Basic Coastal Engineering, A Wiley-Interscience	
	Publication, New York, 1978.	
	3. Shore Protection Manual Volume I and II, Coastal Engineering Research	
	Centre, Dept, of the Army, US Army Corps of Engineers, Washington DC,	
	1984	
	4. Dean, R.G. and Dalrymple, R.A., Water wave mechanics for Engineers and	
	Scientists, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994	
	5. Ippen, A.T., Estuary and Coastline Hydrodynamics, McGraw-Hill Book	
	Company, Inc., New York, 1978	

Subject Code CV538	Computational Fluid Dynamics	Credits: 3 (3-0-0) Total Hours: 42
Course Objectives	 To learn finite element method in fluid dynamics. Modelling of model and prototype with similar hydrod To understand various numerical methods pertaining to 	

Introduction: Conservation equation; mass; momentum and energy equations; convective forms of the equations and general description.

Classification and Overview of Numerical Methods: Classification into various types of equations, parabolic elliptic and hyperbolic; boundary and initial conditions; over view of numerical methods.

Finite Difference Technique: Finite difference methods; different means for formulating finite difference equation; Taylor series expansion, integration over element, local function method; treatment of boundary conditions; boundary layer treatment; variable property; interface and free surface treatment; accuracy of finite difference method.

Finite Volume Technique: Finite volume methods; different types of finite volume grids; approximation of surface and volume integrals; interpolation methods; central, upwind and hybrid formulations and comparison for convection-diffusion problem.

Finite Element Methods: Finite element methods; Rayleigh-Ritz, Galerkin and Least square methods; interpolation functions; one- and two-dimensional elements; applications.

Methods of Solution: Solution of finite difference equations; iterative methods; matrix inversion methods; ADI method; operator splitting; fast Fourier transform.

Time integration Methods: Single and multilevel methods; predictor corrector methods; stability analysis; Applications to transient conduction and advection diffusion problems.

Numerical Grid Generation: Numerical grid generation; basic ideas; transformation and mapping.

Navier-Stokes Equations: Explicit and implicit methods; SIMPLE type methods; fractional step methods.

Turbulence modelling: Reynolds averaged Navier-Stokes equations, RANS modelling, DNS and LES.

Text/Reference	1. Ferziger, J. H. and Peric, M. (2003). Computational Methods for Fluid
Books	Dynamics. Third Edition, Springer Verlag, Berlin.
	2. JiyuanTu, Guan Yeoh and Chaoqun Liu, "Computational Fluid
	Dynamics", Elsevier, 2 nd edition, 2012
	3. Versteeg, H.K. and Malalasekara, W, "Introduction to Computational
	Fluid Dynamics" The Finite Volume Method. Second Edition (Indian
	Reprint) Pearson Education,2008

Subject Code CV539	Green Building Design	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To create interest among students in green buildings and n to acquire knowledge in this field. To study IGBC rating system. 	
	• To gain basic knowledge of green buildings and related ter	rminology

Introduction: Definition of green buildings, Terminologies, Objectives, Benefits, Rating systems of IGBC, Green concepts in various building types viz., Industrial, Residential, Commercial complexes, Educational institutes, Global trends in green buildings, Tangible and Intangible Benefits.

IGBC Rating System: Introduction to rating systems, IGBC rating systems, Understanding of green building measures in the areas of Site Preservation, Energy Efficiency, Materials, Water conservation and Indoor air quality.

Tools and Resources: Introduction to quantification and Design calculations, Energy simulation basics, Fundamentals of lighting simulation, Economics of building green

Basic Knowledge of Materials, Systems and Technologies: Fundamentals of HVAC, Innovative cooling technologies, Lighting, Building Management Systems, Rain water harvesting, Water treatment and Recycling techniques, Building materials, Paints, Glass and Glazing, Insulation, Interiors, Landscaping.

Incentives and Policies: Carbon trust, Carbon credit, Returns on investments, Savings, Policies towards electrical power in India. Tax credits, Grants

Text/Reference Books	1. Arun Solanki, Anand Nayyar. Green building management and smart automation (2019)
	 Anthony Floyd; Green Buildings: Professional Guide to Concepts, Codes and Innovations; Cenage Learning India Pvt. Ltd., 1stedition New Delhi. (2011) Ross Spiegel and Dru Meadows; Green Building Materials: A Guide to Product Selection and Specification; John Wiley and Sons.3rd Edition (2010) RS Means: Green building: Project planning & cost estimating,3rdedition (2010) IGBC Green Homes, Detailed Reference Guide; IGBC, Hyderabad.

Subject Code CV540	Wind Resistant Designs	Credits: 3 (3-0-0 Total hours: 42
Course Objectives	• To impart the basic principles of wind engineering and estimation of the	
Objectives	 design wind speed. To understand the fundamental concepts of design of struc wind loads. To study behaviour of various structural systems under wi 	5
Importance of K1, Internal and extern Calculation of gust Different structures types of roofs.) Design of beams, c Ductile Detailing o	Id terminologies and wind map of India from IS 875 Part 3, 2015 K2, K3 and K4 factor, Calculation of wind force. al pressure coefficients. wind and cross winds for square and rectangular buildings as per IS s subjected to wind forces (canopy, grand stands, buildings, curved s columns and other structural elements for wind force. f beams and columns. del analysis of high rise building subjected to wind forces.	-
Text/Reference Books	 IS 875 Part 3 (2015), Bureau of Indian Standards. Holmes, J. D., "Wind loading on Structures", Spon Press, J. Dyrbye, C., Hansen, S. O., "Wind loads on structures", Joh York, 1997. Simiu, E., Scanlan, R. H., "Wind Effects on Structures: fur applications to design", 3rd Edition, John Wiley & Sons, N 	nn Wiley, New ndamentals and

Subject Code	Repair and Rehabilitation of	Credits: 3 (3-0-0)
CV541	Structures	Total hours: 42
Course Objectives	 Assess deterioration and deficiency in ageing infrastructure Understand the current repair practices employed in the fiel Suggest materials and techniques for repairing and rehabilit concrete structures Apply cost effective retrofitting strategies for repairs in built 	d ation of deteriorated

Introduction: Cause of deterioration of concrete structures, Overview of current repair practices. Diagnostic methods and Experimental investigations; Concrete strength assessment by Rebound hammer tests, Ultrasonic pulse velocity tests, Penetration resistance tests, Pull out tests and core sampling tests. Corrosion potential assessment by half-cell potentiometer tests and Resistivity measurements.

Influence on Serviceability and Durability: Effects due to temperature, Chemicals, Design and Construction errors, Corrosion mechanism. Effects of cover thickness and Cracking.

Methods of Corrosion Protection: Cathodic protection, Coatings, Corrosion inhibitors.

Selection of Repair Materials: Repair materials for concrete, Essential parameters for repair materials; Strength and Durability aspects, Costs and Suitability aspects.

Rehabilitation techniques: Important factors to be considered while selecting repair and Rehabilitation methods. Rehabilitation Techniques; Guniting, Shotcreting, Mortar repair for cracks, Reinforcement replacement, Resin/ Polymer modified slurry injection, Ferro cement jacketing, RCC jacketing, Plate bonding technique, Fiber wrapping technique. Repair and Strengthening of beams and columns.

Text/Reference	1. Sidney, M. Johnson; Deterioration, Maintenance and Repair of Structures;	
Books	McGraw hill.	
	2. Denison Campbell, Allen, Harold Roper; Concrete Structures, Materials,	
	Maintenance and Repair; Longman Scientific and Technical.	
	3. R. T. Allen, S. C. Edwards; Repair of Concrete Structures; Blakie and Sons.	
	4. R. N. Raiker; Learning for Failure from Deficiencies in Design, Construction	
	and Service; R and D Center (SDCPL).	
	5. CPWD handbook on repair and rehabilitation of RCC buildings, CPWD, New	
	Delhi, 2002.	
	6. Modi and Patel, Repair and Rehabilitation of Concrete Structures, PHI	
	Learning privateltd.,2016	
	7. B Vidivelli, Rehabilitation of Concrete Structures, Standard Publishers	
	Distributors,2009	

Subject Code CV542	Engineering Optimization	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Formulate and solve deterministic optimization models inclu optimization Apply deterministic optimization techniques for resource all inventory control and capacity expansion and transportation Introduction and overview of optimization problems including convergence and convexity 	ocation, scheduling, problems

Introduction to Optimization: Engineering application of Optimization, Statement of an Optimization problem - Optimal Problem formulation - Classification of Optimization problem. Optimum design concepts: Definition of Global and Local optima, Optimality criteria - Review of basic calculus concepts–Global optimality

Linear programming methods for optimum design: Review of Linear programming methods for optimum design, Post optimality analysis - Application of LPP models in design and manufacturing.

Optimization algorithms for solving unconstrained optimization problems: Gradient based method: Cauchy's steepest descent method, Newton's method, Conjugate gradient method.

Optimization algorithms for solving constrained optimization problems: direct methods, penalty function methods, steepest descent method - Engineering applications of constrained and unconstrained algorithms.

Modern methods of Optimization: Genetic Algorithms: Simulated Annealing, Ant colony optimization, Tabu search, Neural-Network based Optimization, Fuzzy optimization techniques, Applications.

Text/Reference	1. K Deb, Optimization for Engineering Design, PHI Learning Pvt. Ltd, 2 nd edition,
Books	2012
	 Optimization concepts and applications in engineering, A. D. Belegundu and T. R. Chandrupatla, Cambridge University Press; 2nd Esdition, 2011 S. Nash and A. Sofer, Linear and Nonlinear programming, Mc Graw Hill,1995

Subject Code CV543	Structural Optimization	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Solve the problems using different optimization methodologies Understand the importance of classical and modern optimization methodology Optimization of the structural systems based on optimality conditions 	

Mathematical Statement of the Structural Optimization Problem: Definition and classification of constraints Solution process Analysis and design formulations

Classical Optimization Using Calculus of Variations: Applications to beams of maximum strength Columns and vibrating structures

Linear Programming: Simplex Method, Duality, Application to limit design of trusses and frames

Nonlinear Optimization: Use of Linear Programming for Solving (Nonlinear) Structural Optimization Problems, Separable programming Stewart and Griffith's method Kelley's cutting plane method

Unconstrained Optimization as a Prelude to Nonlinear Constrained Optimization: Conjugate directions method Gradient methods

Kuhn-Tucker Conditions for Optimality: Computations of Lagrange multipliers

Gradient Projection and Reduced Gradient Methods: Applications to solving structural optimization problems

Method of Feasible Directions: Applications to solving structural optimization problems

Penalty Method - Exterior and Interior Penalty Functions: Quadratic and cubic extended penalty functions Use of SUMT (Fiacco-McCormack's sequential unconstrained minimization technique) for solving structural optimization problems

Introduction to Generalized Optimality Criteria and Dual Methods: Connection between optimality criteria and mathematical programming

Sensitivity Analysis: Direct and adjoint methods for sensitivity derivatives Approximation concepts

Recent Developments in Multilevel and Decomposition Techniques: Shape Optimization

Text/Reference	1. Rao, S.S. (2014), Engineering Optimization: Theory and Practice, New Age
Books	International, New Delhi.
	2. Raphael T. Haftka, Zafer Gürdal, (2012), Elements of Structural Optimization,
	Series in Solid Mechanics and its Applications, Vol. 11, Springer Science &
	Business Media, Netherlands.
	3. Osvaldo M. Querin, Mariano Victoria, Cristina Alonso Gordoa, Rubén Ansola,
	Pascual Martí, (2017), Topology Design Methods for Structural Optimization,
	Butterworth-Heinemann.
	4. Andrej Cherkaev, (2012), Variational Methods for Structural Optimization,
	Vol.140, Applied Mathematical Sciences, Springer Science & Business Media,
	Netherlands.

Subject Code CV544	Failure Forensics	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	of the pertinent legal aspects	• To provide the basics for the investigation of failures and understanding some	

Failure of Structures: Review of the construction theory, performance problems, responsibility and accountability, case studies, learning from failures– causes of distress in structural members, design and material deficiencies, over loading

Diagnosis and Assessment of Distress: Visual inspection, non-destructive tests, ultrasonic pulse velocity method, rebound hammer technique, ASTM classifications, pullout tests, Bremor test, Windsor probe test, crack patterns- crack detection techniques, case studies, single and multi-storey buildings, Fibre optic method for prediction of structural weakness assessments

Environmental Problems and Natural Hazards: Effect of corrosive environments, chemical and marine environments, pollution and carbonation problems– detection and measurement of corrosion durability of RCC structures, damage due to earthquakes and strengthening of buildings, provisions of BIS 1893 and 4326

Modern Techniques of Retrofitting: Structural elements - first aid after a disaster, guniting, jacketing. Use of chemicals in repair, application of polymers– ferrocement, fiber composites and fiber reinforced concrete as rehabilitation materials, strengthening by pre-stressing, case studies, bridges, water tanks, cooling towers, heritage buildings, high rise buildings.

Text/Reference	1. Sidney M Johnson, Deterioration, Maintenance and Repairs of Structures, McGraw		
Books	Hill Book Company, New York		
	2. Dovkaminetzky, Design and Construction Failures, Galgotia Publication., New		
	Delhi		
	3. Jacob Field and Kennenth L Carper, Structural Failures, Wiley Europe.		

Subject Code CV545	Structural Health Monitoring	Credits: 3 (3-0-0) Total hours: 42
Course	• Examines the use of low-cost, long term monitoring syst	ems to keep civil
Objectives	infrastructure under constant surveillance, ensuring struc	tural integrity
	• The concepts of rapid after disaster assessment of civil in	nfrastructure.

Introduction to SHM: An Overview of Structural Health Monitoring, Structural Health Monitoring and Smart Materials, Structural Health Monitoring versus Non Destructive Evaluation, A broad Overview of Smart Materials, Emerging SHM Technologies using Piezo Sensors SHM using Magnetostrictive Sensors, SHM using Optical Fibres and other sensors, Overview of Application Potential of SHM Notable Applications of SHM, Aerospace and Civil Applications, Underground Structures and Other Applications, Understanding Piezoelectric Material, Understanding Magnetostrictive Material, Optical Fibre and Lambwave method, Solution Domain for SHM Other Damage Indices.

Vibration control for SHM: Vibration Control using SHM, introduction to FE formulation, Constitutive Relationship, Element Stiffness Matrix for High Precision Finite Element analysis, Mass Matrix for High Precision Finite Element analysis, Developing Actuator and Sensor Influence Matrix, Estimating Sensor Voltage, Active Control of Damping, SHM of Ribbon Reinforced Composite Laminate

SHM using piezo and magnetostrictive layers: Delamination Sensing using Piezo Sensory Layer, Voltage Response from Piezopatch, Electrical Impedance Method: basic theory, SHM using Magnetostrictive Sensory Layer, Basics of Magnetization and Hysteresis Delamination, Sensing using Magnetostrictive Sensory Layer, Constitutive relationship with composite relationship, MS Layer in symmetric Laminate, MS Layer Away from the Midplane in Asymmetric Laminate, Case Studies related to MS Layer based SHM.

SHM using LDV: Experimental Modal Analysis using LDV - introduction What is LDV? Velocity and Displacement Measurement using LDV Case Study for Symmetric Laminate Case Study for Cross-ply

Text/Reference	1. Gandhi and Thompson, Smart Materials and Structures, Springer Science &
Books	Business Media, 1992
	2. Fu Ko Chang, Structural Health Monitoring: Current Status and Perspectives, CRC
	Press

Subject Code CV546	Tunnel and Underground Structures	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Identify the types of underground excavations Understand the parameters affecting tunnel design Understand the working and application of a tunnel boring n Examine the methodologies for excavation of large tunnels a applications 	

Introduction: Scope and application, historical developments, art of tunnelling, tunnel engineering, future tunnelling considerations.

Types of Underground Excavations: Tunnel, adit, decline, shaft; parameters influencing location, shape and size; geological aspects; planning and site investigations.

Tunnelling Methods: Types and purpose of tunnels; factors affecting choice of excavation technique; Methods - soft ground tunnelling, hard rock tunnelling, shallow tunnelling, deep tunnelling; Shallow tunnels, cut and cover, cover and cut, pipe jacking, jacked box excavation techniques, methods of muck disposal, supporting, problems encountered and remedial measures.

Tunnelling by Drilling and Blasting: Unit operations in conventional tunnelling; Drilling - drilling principles, drilling equipment, drilling tools, drill selection, specific drilling, rock drillability factors; Blasting - explosives, initiators, blasting mechanics, blast holes nomenclature; types of cuts- fan, wedge and others; blast design, tunnel blast performance - powder factor, parameters influencing, models for prediction; mucking and transportation equipment selection.

Tunnelling by Roadheaders and Impact Hammers: Cutting principles, method of excavation, selection, performance, limitations and problems.

Tunnelling by Tunnel Boring Machines: Boring principles, method of excavation, selection, performance, limitations and problems; TBM applications.

Supports in Tunnels: Principal types of supports and applicability.

Ground Treatment in Tunnelling: Adverse ground conditions and its effect on tunnelling; introduction to ground control.

Tunnel Services: Ventilation, drainage and pumping.

Methods of Sinking Shafts: Vertical and inclined, decline; shaft/raise boring machines and their application.

Tunnelling Hazards: Explosion, flooding, chimney formation, squeezing ground.

Text/Reference	1. Bickel, J.O., Kuesel, T.R., and King, E.H., 1996, Tunnel Engineering Handbook
Books	(Second Edition), Chapman & Hall, 544pages.
	2. Bieniawski, Z.T., 1992, Design Methodology in Rock Engineering, A.A.
	Balkema, 196pages.
	3. Whittaker, B. N. and Frith, R. C. (1990): Tunneling: Design, Stability and
	Construction, London: Institution of Mining and Metallurgy
	4. Hoek, E and Brown, E.T. (1980): Underground Excavation in Rock, The
	Institution of Mining and Metallurgy, London
	5. Mahtab, M.A., and Grasso, P., 1992, Geomechanics Principles in the Design of
	Tunnels and Caverns in Rocks, Elsevier Press, 250pages.
	6. Bieniawski, Z. T. (1984): Rock Mechanics Design in Mining and Tunneling,
	Balkema.

Subject Code CV547	Offshore Structures	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 To impart the fundamentals behind all types of fixed offsh To understand the design, construction and risk-based offshore platforms, specifically, the theory and process of 	l maintenance for

Introduction: Different types of ocean structures, Various structural systems deployed for shallow, medium, deep and ultra-deep waters

Structural Systems: Jacket or Tension leg structures, Tower, Caissons, Concrete gravity platforms, Steel, Gravity platforms, FPSO spar platforms, Hybrids, Compliant structures, factors governing selection.

Operational loads: Environmental loads due to wind, wave, current and buoyancy, Morison's Equation, Maximum wave force on offshore structure, Concept of Return waves, Principles of Static and dynamic analyses of fixed platforms, Use of approximate methods, Design of structural elements.

Fixed Platform: Concepts of Fixed Platform, Jacket and Deck Steel Tubular Member, Design Tubular Joint, Design for Static and Cyclic Loads

Offshore construction: Drilling techniques, logging methods, location of drill sites, Completion of walls, Marine survey, Welding, Checks on welding and codes, Corrosion and its prevention measures.

1. Chakrabarti, S.K. 1990. Non-linear Method in Offshore Engineering, Elsevier
Science Publisher, The Netherlands.
2. Chakrabarti, S.K. 1994. Offshore Structure Modeling: World Scientific, Singapore.
3. Chandrasekaran, S. and Bhattacharyya, S.K. 2011. Analysis and Design of Offshore
Structures. HRD Center for Offshore and Plant Engineering (HOPE), Changwon
National University, Republic of Korea,
4. Cowell RG, Dawid AP, Lauritzen, SL, Spiegelhalter, DJ., Probabilistic networks
and expert systems. New York: Springer; 1999.
5. Srinivasan Chandrasekaran. 2014. Advanced Theory on Offshore Plant FEED
Engineering, Changwon National University Press, Republic of South Korea,
6. Srinivasan Chandrasekaran. 2015. Advanced Marine structures, CRC Press, Florida,
7. Srinivasan Chandrasekaran. 2015. Dynamic analysis and design of ocean structures.
Springer.
8. Srinivasan Chandrasekaran. 2016, Offshore structural engineering: Reliability and
Risk Assessment. CRC Press, Florida,
9. API RP 2A, Planning, Designing and Constructing Fixed Offshore Platforms, API

Subject Code CV548	Hazardous Waste Management	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	 Understand the regulations involved in municipal solid Identify the classes and disposal methods of different ty Understand the sources and disposal techniques of radii Assess the physicochemical and biological treatment te wastes 	ypes of hazardous wastes oactive wastes

Relevant Regulations Municipal solid waste: Management and handling rules; hazardous waste (management and handling) rules; biomedical waste handling rules; fly ash rules; recycled plastics usage rules; batteries (management and handling) rules.

Hazardous Waste Management: Fundamentals Characterization of waste; compatibility and flammability of chemicals; fate and transport of chemicals; health effects.

Radioactive Waste Management: Fundamentals Sources, measures and health effects; nuclear power plants and fuel production; waste generation from nuclear power plants; disposal options.

Environmental Risk Assessment: Defining risk and environmental risk; methods of risk assessment; case studies.

Physicochemical Treatment: Physicochemical Treatment of Solid and Hazardous Waste Chemical treatment processes for MSW (combustion, stabilization and solidification of hazardous wastes); physicochemical processes for hazardous wastes (soil vapour extraction, air stripping, chemical oxidation); ground water contamination and remediation.

Biological Treatment: Biological Treatment of Solid and Hazardous Waste Composting; bioreactors; anaerobic decomposition of solid waste; principles of biodegradation of toxic waste; inhibition; cometabolism; oxidative and reductive processes; slurry phase bioreactor; in-situ remediation. Landfill design Landfill design for solid and hazardous wastes; leachate collection and removal; landfill covers; incineration.

Text/Reference	1.	S.C. Bhatia, Solid and hazardous waste management, Atlanticedition, 2008	
Books	2.	John Pichtel, Waste Management Practices CRC Press, Taylor and Francis	
		Group 2005.	
	3.	La Grega, M.D, Buckingham, P. L. and Evans, J.C. Hazardous Waste	
		Management, McGraw Hill International Edition, New York, 2001.	
	4.	Richard J. Watts, Hazardous Wastes - Sources, Pathways, Receptors John	
		Wiley and Sons, New York, 1997.	
	5.	Rao and Sultana, Solid and Hazardous Waste management, B S Pubications,	
		2012	