Academic Handbook

B.Tech. Programme

Academic Affairs

(2013-2014)

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Academic Hand Book

for

I year B.Tech Programme

Department of Humanities and Sciences National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester-wise Credit Distribution

Semester	Total Credits
Ι	24
II	23+1*
Total Credits	47+1*

* Physical Education

FIRST YEAR COURSE DETAILS I Semester Details

<u>Sl.</u>	<u>Sub.</u>	<u>Subjects</u>	<u>L-T- P</u>	<u>Credits</u>
<u>No</u>	<u>Code</u>			
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

<u>Sl.</u>	<u>Sub.</u>	Subjects	<u>L-T- P</u>	Credits
No	Code			
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic electrical science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry- Laboratory	0-0-3	2
8	EE152	Basic electrical scienceLab	0-0-3	2
9	PE150	Physical Education	1-0-0	1
		Total Credits		22

II Semester Details

Detailed Syllabi of Courses

Subject Code	Mathematics-I	Credits: 4 (4-0-0)	
MA 100		Total hours: 56	
Course	10+2 level Mathematics		
Prerequisites			
Course	This course provides requisite and relevant background n	ecessary to understand	
Objectives	the other important engineering mathematics courses offer	ered for Engineers and	
	Scientists. Important topics of applied mathematics, name	ly differential calculus,	
	integral calculus, sequence and series and vector calculus.		
Course	At the end of this course the students are expected to learn	,	
Outcome			
	Importance of Mean value theorems and its app		
	multiple integrals, the powerful language of		
	physical understanding to deal with subjects such	•	
	Electromagnetic fields, convergence of sequence	and series and Fourier	
	series.	-	
Module 1	Differential Calculus	12 hours	
Review of limits, continuity and differentiability; Mean value theorems, Taylor's and Maclaurin's			
	Differentiation, Total Differentiation, Euler's theorem	•	
	ma of functions of several variable, Lagrange's method of	Multipliers; Change of	
variables – Jacobia	ins.		
Module 2	Integral Calculus	10 hours	
Fundamental theor	em of Calculus, Improper integrals, applications to area, vol	ume. Double and	
Triple integrals			
Module 3	Vector Calculus	14	
Scalar and Vector	or fields; Vector Differentiation; directional derivative	- Gradient of scalar	
field; Divergence	and Curl of a vector field - Laplacian - Line and surface i	integrals; Green's	
theorem in plane; (Gauss Divergence theorem; Stokes' theorem.		
Module 4	Sequences and Series	10 hours	
Convergence of se	quences and series, power series.		
Module 5	Fourier series and Fourier Transforms	10 hours	
Fourier series: P	Periodic functions, Euler's formulae, Dirichlet's cond		
functions, Half Range Series, Parseval's identity. Fourier Transform			
Texts/References	 G. B. Thomas and R. L. Finney, <i>Calculus and Analytic Geometry</i> (9th Edition), ISE Reprint, Addison-Wesley, 1998. 		
	2. E. Kreyszig, Advanced engineering mathematics (Wiley (1999).	8th Edition), John	

Subject Code		Credits: 3 (3-0-0)
PH 100	Physics	Total hours: 45
Course	10+2	
Prerequisites		
Course	To refurbish the understanding of fundamental physics and pr	ovide concepts of
Objective s	applied modern and advanced physics for equipping the studen	•
Objective s	of engineering and technology principles.	t for a sound rearning
Course	1. Understanding basic concepts in Physics	
	2. Sound knowledge of the application aspects of	modern physics in
Outcome	technology	moderni physics m
Module 1	Dual nature of particle and waves	8 hours
Representation	of a wave, Phase and Group velocities, Black body radia	tion, Electromagnetic
-	nature of light and photoelectric effect, Properties of photons	-
	npton effect, Matter waves, de-Broglie principles, Davisson ar	
	show the existence of matter waves,	
Module 2	Quantum Mechanics	12 hours
	classical mechanics, The wave equation, State functions, No	
	ödinger equation, Time dependent form, operators and expe	
-	hrödinger equation, Eigenvalues and Eigenfunctions, Applica	-
-	le in a box, Finite potential well, Potential barrier and tunneling	
	nciple, Energy and time form of uncertainty principle, expla-	anation of zero point
energy.		<u> </u>
Module 3	Statistical Mechanics	5 hours
-	sis: Maxwell-Boltzman distribution function, Bose-Einstein dist	ribution function,
	tribution function, Quantum free electrons theory of metals	
Module 4		10 hours
Basics principle	s and action, Types of lasers, Characteristics of laser light. Fiber	optics, Structure of
an optical fiber,	Principle of optical fiber communication. Semiconductor photo	nic devices: LED and
Solar Cells		
Module 5	Modern Energy sources	10 hours
Nuclear reactio	ns, Nuclear fission and fusion; Nuclear reactors, Breeder	and fusion reactors.
Superconductivi	ity, Basic principles, Messiner effect, Magnetic levitation	on, Applications of
superconductivi	ty, Levitating trains. Solar energy, Wind and wave as energy	resource. Elementary
particles and the	ir interaction, Leptons and Hardons, Quraks, History of Univers	e.
Course Code	Physics Laboratory	Credits-2 (0-0-3)
PH101		3 hours for week
List of Experin	ients	<u> </u>
1. Hall Eff		<u> </u>
	ectric Effect	
3. Helmho	ltz Resonator	
4. Newton's Rings Experiment		
	nation of Wavelength of He-Ne Laser	
6. Determine the width of single slit based on Diffraction pattern		
 Determination of dispersive power of prism Determination of Optical absorption coefficient of materials using lasers 		
	nation of Optical absorption coefficient of materials using lasers ination of Numerical aperture of an optical fiber	,
7. Determin	1. Franks S. Crawford, <i>Waves</i> , Tata Mc Graw Hills Publicati	
/Reference	1. Franks 5. Crawford, <i>waves</i> , Fata Mc Oraw fillis Fublicati	011

Books	2. David Halliday, Robert Resnick, Walker Jearl, "Fundamentals Of Physics"
	Wiley India Pvt Ltd
	3. S Rai Choudhury, Shobhit Mahajan, Arthur Beiser, Concepts of Modern
	Physics, 6 th Edition, Tata McGraw - Hill Education (2009)
	4. A. Goel, Wave Mechancs, Discovery Publishing House,
	5. Optoelectronics and Photonics-Principles and Practices, Safa O.Kasap, Pearson
	publications
	6. John W. Jewett, Raymond A. Serrway, "Physics for Scientists and
	Engineers "Brooks/Cole publisher.
	7. Ajoy Ghatak, <i>Optics</i> , 5 th Edition, Mc Graw Hills Publication
	8. David Halliday, Robert Resnick, Walker Jearl PRINCIPLES OF PHYSICS,
	Willey India pvt. Ltd.
	9. Hugh D. Young, Roger A. Freedman, A. Lewis Ford , University Physics with
	Modern Physics, Willey India Pvt. Ltd.
	10. Elements of Solid state physics, M. Ali Omar : Pearson Publication
	11. M. N. Avadhanulu, P. G. Krish Sagar, "Engineering Physics"S. Chand
	Publication.
	12. V. Rajendran, A. Marikani , Materials Science, Publisher Tata McGraw - Hill
	Education Publishers.
L	

Subject	Engineering Mechanics	Credits: 3
Code		Total hours: 44
ME 100		
Course	10+2	
Prerequisites		
Course	To provide the students with a clear and thorough under	standing of the theory
Objectives	and application of engineering mechanics covering both sta	atics and dynamics
Unit 1	Fundamentals of mechanics	6 hours
mechanics, El point, momen vector, momen	of mechanics, vector and scalar quantities, equality and equivale ements of vector algebra.Systems of forces: Position vector, more t of a force about an axis, the couple and couple moment, cou- nt of a couple about a line.Equivalent force systems:Translation ltant of a force system, simplest resultant of special force systems	ment of a force about a uple moment as a free of a force to a parallel
Unit 2	Equations of equilibrium	6 hours
Free body di	agram, free bodies involving interior sections, general equa	ations of equilibrium,
•	quilibrium, static indeterminacy.	
Properties of	surfaces: First moment, centroid, second moments and the pr	roduct of a plane area,
-	ems, rotation of axes and polar moment of area, principal axes	-
order tensor tr		x
Unit 3	Kinematics of a particle	8 hours
Introduction,	general notions, differentiation of a vector with respect t	o time, velocity and
acceleration c	alculations, rectangular components, velocity and acceleration	in terms of cylindrical
coordinates, si	imple kinematical relations and applications.	
Unit 4	Particle Dynamics	8 hours
Introduction,	rectangular coordinates, rectilinear translation, Newton's	law for rectangular
coordinates, re	ectilinear translation, cylindrical coordinates, Newton's law for c	ylindrical coordinates.
Unit 5	Kinetics of Plane Motion of Rigid Bodies	8 hours
Moment of m	omentum equations, Pure rotation of a rigid body of revolution	on about its axis, Pure
rotation of sla	blike bodies. General plane motion of rigid bodies	
Unit 6	Energy and momentum methods for a particle	8 hours
Analysis for	a single particle, conservative force field, conservation o	f mechanical energy,
alternative for	rm of work-energy equation, Linear momentum, impulse and	momentum relations,
moment of mo	omentum, Method of momentum for particles.	
Text Books	1. Irving H. Shames, <i>Engineering Mechanics Sta</i> Pearson,2005.	tics And Dynamics,
Reference	1. Beer & Johnston, Mechanics for Engineers, McGraw -	- Hill, 2009.
Books	2. Timoshenko, S.P., Young, D.H., Rao, J. V. Engineerin	g Mechanics,
	McGraw-Hill, 2006.	
	 Merian, J.L, Kraige, L.G. Engineering Mechanics – Sta Publishers, 2002. 	atics, Wiley

Subject Code:	Computer Programming and Problem	Credits: 2 (2-0- 0)	
Code: CS 100	Solving	0) Total hours: 28	
Course	Basic Mathematical Knowledge and logical thinking	Total Hours. 20	
Prerequisi			
tes			
Course	The course is to make the students learn problem solving by writing	ng algorithms, flow	
Objective	charts and coding the min C language. The course helps the studen	ts to write programs	
S	for solve Mathematical and Engineering problems.		
Course	Enabling Knowledge: Students will develop knowledge and experies	nce with the use of	
Outcome	the standard C programming language, good programming sty	le, standards and	
	practices in programming.		
	Problem Solving and Critical Analysis: Students will further development		
	analyze and solve computing problems; develop suitable algorithmic s	solutions which are	
	the ncoded in the C programming language.		
Module 1		10 hours	
	arted: Problem solving techniques, C standards. What is C, Getting Sta		
	et, Constants, Variables and Keywords, Types of C Constants, Rul	-	
0	and Character Constants. Types of C Variables, Rules for Construction	0	
•	s. The First C Program: Compilation and Execution, Receiving Input. A	•	
charts. C I		-	
	s, Type Conversion in Assignments, Hierarchy of Operations, Associa	ativity of Operators,	
	ructions in C.		
	on Control Structure: Decisions! Decisions! : The if Statement, Th		
	lses, Forms of if. Use of Logical Operators: The else if Clause, T	he ! Operator, the	
Conditional	-	continue statement	
do-while Loop	Control Structure: Loops: while Loop, for Loop, break statement,	continue statement,	
	*	Ladder The goto	
Keyword.	The Case Control Structure: Decisions using switch, switch versus if-else Ladder, The goto		
Module 2		6 hours	
	& Pointers: Basics of Functions, Value Passing, Scope rules of		
	Advanced Features of Functions. Introduction to Pointers, Pointer N	-	
	and Stack, Pointers to Functions, Functions returning pointers, Func		
number of a			
	Re-examine : Integers- long, short, signed, unsigned. Chars-signed,	unsigned. Floats &	
	orage Classes in C.		
	The C Preprocessor: Features of C Preprocessors, Macro Expansion, File Inclusion,		
Conditional Compilation, #if and #elif Directives, The Build Process.			
Module 3		6 hours	
Arrays: Ba	sics of Arrays, Pointers & Arrays, Two Dimensional Arrays, Array	of Pointers, Three	
Dimensiona			
Strings: Basics of Strings, Pointers & Strings, Standard Library String Functions, Dynamic			
Allocation of memory, Two Dimensional Array of Characters, Array of pointers & Strings.			
Structures &	t Unions: Basics, Declaration and Usage.		

Console Input and Output: Formatting output for functions in the printf () family, Formatting input for functions in the scanf () family, Escape sequences.

Module 4	6hours		
File Proces	File Processing: Opening and closing files, reading and writing sequential files, Using argc and argv		
Operations on Bits: Bitwise Operators, Hexadecimal Numbering System, Relation between Binary			
and Hex. N	and Hex. Mixed Features: Enumerated Data type, Typedef, Typecasting, Bit Fields, The volatile		
Qualifier.			
Text	1. Joyce Farrell, A guide to Programming Logic & Design, Course Technology,		
Books	Thomson learning, 2003.		
	2. Brian W. Kernighan & Dennis M. Ritchie, <i>The C Programming Language</i> , Prentice Hall Inc., 2001.		
	3. <i>C Programming: A Modern Approach</i> by K.N. King, 2nd Edition, W. W. Norton		
	& Company		
Reference	1. Byron S. Gottfried, <i>Program with C</i> , Schaum's Outline series.		
Books	2. Yashavanth Kanetkar, Let us C, BPB Publications.		
	3. Balagurusamy, C Programming – TMH, 2002		

Subject Code	Computer Programming and Problem	Credits: 2 (0-0-3)	
CS 101	Solving (Lab)	Total hours: 42	
Course	To enable students in developing programming skills using C	language. To improve	
Objectives	their logical ability and to apply these skills for solving	problems in scientific,	
-	mathematical and business applications.	_	
	List of experiments		
	1. Practice of DOS Commands, Exposure to Windows environment, practice of UNIX commar and vi editor.		
2. Programs	to demonstrate standard I/O functions		
3. Practice o	f writing simple programs like arithmetic operations, simple, cor	npound interests etc.	
4. Programs			
5. Programs	rams involving arrays		
6. Programs	involving pointers.		
7. Programs	involving functions, recursion, use of arrays with subscripts and	pointers.	
8. Programs	using structures in C		
9. Exercise of	9. Exercise on file handling		
Reference	1. Joyce Farrell, "A guide to Programming Logic	& Design, Course	
books	Technology", Thomson learning, 2003.		
	2. Brian W. Kernighan and Dennis M. Ritchie, "The C Pro	ogramming Language",	
Prentice Hall Inc., 2001.			
	3. K.N. King, "C Programming: A Modern Approach"	, 2nd Edition, W. W.	
	Norton & Company		
	4. Byron S. Gottfried, "Schaum's Outline Series on Progra	amming with C"	
	5. YashavanthKanetkar, "Let us C", BPB Publications.	-	

Subject Code: HU 100	Professional Communication-I	Credits: 3 (3-0-2) Total hours: 45
Course	Basic Knowledge of English (10+2 level)	
Prerequisite		
Course	This course aims at developing the four skills of Language Learni	ng: Reading, Writing,
Objectives	Listening and Speaking. Also it inculcates the power of effective c the students.	0 0 0
Course Outcome	At the end of this course, the students are expected to communicate be it written or be it oral.	effectively in English:
Module 1	Principles of Communication	12 hours
Kinesics, Pro Channels, Pr	mmunication: Oral, Written, Visual and Audio-Visual, b. Non-Ve oxemics, Chronemics, Chromatics and Haptics. C. Types of Writte ocess and Network of communication, e. Feedback-Types, f. Noise peaking-Pronunciation, Vocabulary, Stress Pattern i. Compreher	en Communication, d. -Types, g. Listening-
Module 2	Listening and Speaking	8 hours
Pronunciation	n, Word and Sentence Stress and Professional Presentation	
Module 3	Elements of Effective Writing	8 hours
Words, Phras	ses, Sentences, Paragraphs, Reading Comprehension, Precis	
Module 4	Report Writing and Presentation	10 hours
Types of Rep	oort: different topics will be given to students to prepare Business Rep	orts and then they
will be asked	deliver verbal presentation based on the reports followed by question	answer session
Module 5	Business Letters and Correspondences	7 hours
Letter of Pro	Letter of Enquiry, Letter of Order, Letter of Claim Adjustment, Letter omotion, Good News and Bad News Letter, Legal Letter, Applicates, (followed by tutorials)	ation, Notice, Memo,
Text Books	 Kaul, Asha. <i>Effective Business Communication</i>, New Delhi: Prentice Hall Pvt Ltd, 2007 Raman,Meenaakshi and Sangeeta Sharma, <i>Technical Communication</i>, IInd Ed,2012, New Delhi, OUP (with Video CD) Krishna Mohan and Meenakshi Raman,<i>Advanced Communicative English</i>, 2011, New Delhi: TataMcGraw Hill. Wren and Martin. <i>High School English Grammar and Composition</i>, New Delhi: S. Chand, 2011 	
Reference Books	 Rizvi, A.M. <i>Effective Technical Communication</i>, New Delh 2005 English Dailies, <i>Periodicals: India Today</i>, Outlook and Rea 	

Subject	Engineering Drawing	Credits: 3 (1-0-3)
Code	Engineering Drawing	
ME 101		
Course	10+2	
Prerequisites		
Course	• To express the novel ideas through an engineering lan	guage.
Objectives	• To improve the visualization skills.	
-	• Learn basic Auto Cad skills.	
Unit 1	Introduction to Engineering Graphics	4 hours
Drawing instr	uments and their use - Different types of lines - Lettering & din	nensioning. Projection
of points.		
Unit 2	Orthographic Projections	8 hours
Introduction to	o orthographic projections- Horizontal, vertical and profile plane	es – First angle and
third angle pro	ojections.	-
Unit 3	Projection of lines	8 hours
Projections of	lines inclined to one of the reference planes. Projections of line	s inclined to both the
	lengths of the lines and their angles of inclination with the refer	
of lines.		-
Unit 4	Projection of planes	8 hours
Projection of	plane lamina of geometric shapes inclined to one of the referenc	e planes – inclined to
both the plane	s, Traces of planes	
Unit 5	Projection of solids	8 hours
Projection of	solids with axis parallel to one of the planes and parallel or perp	endicular to the other
plane-Projecti	ons with the axis inclined to one of the planes. Projections of so	lids with axis inclined
to both the pla	nes. Isometric projection.	
Unit 6	Sections of Solids	8 hours
Sections of cy	linders, Sections of prisms.	
Unit 7	Computer Aided Drafting.	8 hours
Introduction to	o Auto CAD, Basic 2-D drawing, editing and viewing tools, Dir	nensioning.
	and Isometric Projections.	C
Text Books	1. Bhatt N D., Engineering Drawing, Charotar Publication	on, 2006.
Reference	2. Gopalkrishna K R, Engineering Graphics (Ist angl	
Books	Publication, 2002.	- • *
	3. Engineering Drawing and Design – Cencil Jensen	, Jay D. Helsel, and
	Dennis R. Short, Tata McGraw Hills Publication, 2010	•

Subject Code MA 150	Mathematics-II	Credits: 4 (4-0-0) Total hours: 56	
Course	Mathematics-I	·	
Prerequisites	Prerequisites		
Course	This Mathematics course provides requisite and relevant ba	ackground necessary to	
Objectives	understand the other important engineering mathematics course	es offered for Engineers	
-	and Scientists. Important topics of applied mathematics, namely the linear algebra,		
	ordinary differential equations, laplace transforms and Z transforms.		
Course	At the end of this course the students are expected to learn,		
Outcome	 To acquire necessary background in matrix methods and Eigenvalue problems so as to appreciate their importance to engineering systems. Basic skills in handling ordinary differential equations analytically and an understanding of how such equations are used in modeling. Students shall learn to solve systems of linear ordinary differential equations and using Laplace transforms and some basics of Z-transforms. 		
Module 1	Linear Algebra	22 hours	
Matrices: matrix operations -Addition, Scalar Multiplication, Multiplication, Transpose, Adjoint and their properties; System of linear equations and Gaussian Elimination, Determinants and their properties, Cramer's rule Vector Space: Subspaces, Linear Dependence/Independence, Basis dimension, Standard Basis of R^n,linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem. Inner product spaces, Gram-Schmidt process, and orthonormal bases, Eigenvalues and eigenvectors, characteristic polynomials, eigenvalues of special matrices (orthogonal, unitary, hermitian, symmetric, skewsymmetric, normal). algebraic and geometric multiplicity, diagonalization by similarity transformations, spectral theorem for real symmetric matrices, application to quadratic forms.			
Module 2	Ordinary Differential Equations 1 Motivation to Differential Equations, First Order ODE	20 hours	
	solution, Equations reducible to separable form, Exact Equations		
-	and variation of constant, Orthogonal trajectories, Picard's Th		
-	s on nonuniqueness. Second Order Linear differential equations:	,	
	bel-Liouville formula. Linear ODE's with constant coefficient	-	
	hy-Euler equations. Method of undetermined coefficients. N		
parameters.	ny-Luier equations. Method of undetermined coefficients.	iethod of variation of	
Module 3	Laplace Transformations and Z-Transforms	14 hours	
	m - Inverse Laplace transform - properties of Laplace transform		
-		-	
of unit step function, impulse function and periodic function - convolution theorem - Solution of ordinary differential equations with constant, coefficients, and system of linear differential equations			
ordinary differential equations with constant coefficients and system of linear differential equations with constant coefficients using Laplace transform and basic theory of Z-Transforms.			
Text/Reference	1. E. Kreyszig, <i>Advanced engineering mathematics</i> (8th E		
	 Kicyszig, Advanced engineering manematics (6011) Wiley (1999). W. E. Boyce and R. DiPrima, <i>Elementary Differential L</i> Edition), John Wiley (2005). G. Strang, <i>Linear algebra and its applications</i> (4th Ed 2006). R. K Jain and S.R.K. Iyengar, <i>Advanced Engineering M</i> Narosa publications (2007) 	Equations (8th ition), Thomson(

Subject			Credits: 3 (3-0-0)
Code		Material Science	Total hours: 46
PH150			
Course	I	Physics, Mathematics and Chemistry	
Prerequisite	es		
Course	U	Inderstanding the nature, properties and applications of mat	erials.
Outcome			
Module 1	5	Structure of Materials	6 hours
Atomic stru	ucture	and chemical bonding, Classification of solids, Periodici	ty in crystals, Crystal
structure, H	Bravas	s lattices, Crystal systems, Crystallographic planes and M	-
structure a	nalysi	is, Structure determination by X-ray diffraction, The	Bragg law of X-ray
diffraction,	Cryst	tal defects.	
Module 2		Conductors and Resistors	4 hours
	•	range, The free electron theory, Conduction by free electron	as, Conductor and
	terials	s, Superconducting materials.	
Module 3		Semiconductors and Dielectrics	12 hours
Semicondu	ictors	: Energy gap in solids, Intrinsic semiconductor, Extrinsic se	emiconductors,
Semicondu	ctor n	naterials, Fabrication of integrated circuits, Semiconductor	devices, p-n Junction
	-	polar junction transistor. Dielectrics: Dielectric constant, Po	
		Mossotti equation, ferro-electric materials, Electrostriction,	Piezoelectric effect,
dielectric lo	oss.	-	1
Module 4		Magnetic Materials	6 hours
0		als, Diamagnetic materials, Paramagnetic materials, Ferrom	•
-		aramagnetism, Ferromagnetism, Antiferromagnetism, Ferri	magnetism, Soft &
•	ietic m	naterial and applications.	
Module 5		Superconductivity	6 hours
•		y, Meissner effect, London penetration depth, Isotope effect	•
•	ercono	ductor, Type-II superconductors, Josephson effect and appli	
Module 6		Advanced materials	12 hours
		Conducting Polymers, Meta materials, Fluorescent Mat	1
_		sics-size effect, Quantum confinement, and Coulomb bloc	-
-		effects. Characterization techniques for nano size-SEM, Al	
Text/		William D. Callister, Jr, Materials science and engineering	an introduction, John
Reference		Wiley & Sons, Inc, 2007 V. Baindran, A. Marikani, Matariala Saianaa, Publishar Ta	to MaCrowy Hill
Books		V. Rajendran, A. Marikani , <i>Materials Science</i> , Publisher Ta ducation Publishers.	lla McGraw - Hill
		S.L Kakani, Amit Kakani "Material Science" New age inter	national Limited
		n S. Mitchell "An Introduction to Materials for Engineering	
		rscience.	
		alasubramanian, Materials Science and Engineering, Willey	
		V. Raghavan, "Material Science and Engineering" PHI Pub Edward M Purcell, " <i>Electricity and Magnetism</i> "	Discation.
		is Adams Stratton, " <i>Electromagnetic Theory</i> " Tata McG	raw - Hill Education
		ishers.	
		Ali Omar, "Elements of Solid State Physics" Addition West	ley,2000
	10. 1	Frederick J. Milford, John R. Reitz, Robert W. Chri	sty, "Foundations of
		Electromagnetic Theory" Addison Wesley Longman Publis	
	11. J	John W. Jewett, Raymond A. Serway, "Physics	
		Engineers "Brooks/Cole publishers.	
	12.	T. Pradeep, "A Textbook of Nanoscience and Nanotechne	ology", Tata McGraw

13. <u>Hans-Eckhardt Schaefer</u> , "Nanoscience: The Science of the Small in Physics Engineering, Chemistry, Biology and Medicine" Springer	
---	--

Subject	Charaistary	Credits: 3 (3-0-0)	
Code	Chemistry	Total hours: 42	
COUC CY150			
Course	1. To understand the basic concepts in chemistry in compliance with the		
	1. To understand the basic concepts requirements for undergraduate engine	2 1	
Objectives	2. To get familiarised with analytical in		
	3. To develop awareness on the		
	electrochemical cells	custos and enemistry inverved in	
		oment and characterization of polymers	
Module 1	Organic Chemistry	7 hours	
Substitution 1	reactions- SN1, SN2 reaction mechanisms, Fac	ctors affecting SN1 and SN2 reactions	
	emistry, Elimination reactions- E1, E2 reaction		
	selectivity of E1 and E2 reactions, Competition		
eliminations.			
Module 2	Chemical Bonding	9 hours	
Ionic and co	valent bonds; Valence bond theory (V.B.T) o	f covalency, VSEPR theory, Shapes of	
simple molec	cules, Molecular Orbital Theory (M.O.T), No	n-covalent interactions- van der Waals	
and hydroger	bonding; Co-ordinate bond, Metallic bond, G	Crystal field theory-splitting of d orbital	
	, octahedral, and square planer complexes		
Module 3	Instrumental Methods of	8 hours	
Analysis			
Colorimetry,	UV-visible spectroscopy, Infra-red spectroscopy	opy, Magnetic resonance spectroscopy,	
Qualitative an	nd quantitative analysis, Conductometry and P	otentiometry	
Module 4	Water Technology	4 hours	
Hardness of	water, Boiler troubles, Internal and external tre	eatments, Desalination, Sewage water	
analysis- Dis	solved oxygen (OD), Biological oxygen dema	nd, Chemical oxygen demand and their	
-	h, Sewage water treatment		
Module 5	Electrochemical Cells	8 hours	
	tion, Energetics of cell reaction, Types		
-	n cells, Primary and secondary cells, Fuel cell		
	on potential, Overvoltage, Electroplating and		
preparation	on potential, overvoltage, Electroplating and	Electroless plating of copper – TCD	
	H'-h D-h		
Module 6	High Polymers	6 hours	
	ndensation and Coordination polymerization,		
	erminations, Methods of polymerization, Tg &	I m and factors affecting them, Teflon,	
PMMA and U			
	Ref 1) P. Y. Bruice, <i>Organic Chemistry</i> , 4 th Edition, Prentice Hall, 2003		
ere 2)	· · ·	aw, General Chemistry, 10 th Edition,	
nce	AITBS Publishers, 2000	S Chand & Company I to 2012	
boo $\frac{3}{4}$, 8 ,	- ·	
ks	4) G. Chatwal, S. Anand, <i>Instrumental Methods of Chemical Analysis</i> , S. D. Himalaya Publishing House, 2003		
5)	•	ry Dhannat Rai & Sons 15 th edition	
	1. C. Juni, M. Juni, Litericci ing Chemist	γ , ε manput run ε sons, 15 conton,	

2004 6) V. R. Gowariker, N. V. Viswanathan, J. Sreedhar, *Polymer Science*, New Age International (P) Limited, 2005 7) O. G. Palanna, Engineering Chemistry, Tata McGraw Hill Publishing Co. Ltd., 2012 8) B. R. Puri, L. R. Sharma, M. S. Pathania, *Principles of Physical Chemistry*, Vishal Publishing Co., 41st edition 2004 9) S. Rattan, *Comprehensive Engineering Chemistry*, S.K. Kataria & Sons, Delhi, 2011

Subject	Chemistry Laboratory	Credits: 2 (0-0-3)
Code		
CY151		
1. E	stimation of Iron in hematite	
2. E	stimation of copper in brass	
3. E	Determination of pKa and Ka of weak acid	
4. C	Conductometric titration of strong acids with Strong	base
5. E	stimation of total chromium by colorimetry	
6. V	verification of Nernst Equation	
7. E	Determination of coefficient of viscosity of a liquid	
8. E	Determination of COD in a given water sample	
9. E	stimation of total hardness of water	
	stimation of chloride content in water	
	Determination of percentage of composition by usin	g Abbe's refractometer
12. P	reparation of alkyl chloride from alcohol	
Note: Any 8 experiments have to be done		
Ref	1) A. I. Vogel, Text book of quantitative chemica	al analysis, Prentice Hall, 2000
ere	2) A. I. Vogel, Text book of practical organic of	chemistry, 5th edition, Prentice
nce	Hall ,1996	1
boo	3) S. Rattan, Experiments in applied chemistry	, 3 ^{ra} edition, S. K. Kataria &
ks	Sons, 2011.	

Subject Code	Elements of Mechanical Engineering	Credits: 2(2-0- 0)
		0)
ME150		
Course	10+2	
Prerequisites		
Course	• To be able to use the Laws of Thermodyn	amics to estimate the
Objectives	efficiency of different components of power generating systems	
-	• To teach the basic mechanical	
Unit 1	Introduction to Thermodynamics	8 hours
Thermodynamics: Introduction and Basic Concepts, Application Areas of Thermodynamics,		
Systems and Control Volumes, Properties of a System, State and Equilibrium, Processes and		
Cycles, Temperature and the Zeroth Law of Thermodynamics, Pressure.		

Energy Conversion and General Energy Analysis: Forms of Energy, Energy Transfer by Heat,			
Energy Transfer by Work, the First Law of Thermodynamics.			
Unit 2	Energy Analysis of Closed Systems 8 hours		
Moving Boun	Moving Boundary Work, Energy Balance for Closed Systems, Specific Heats, Internal Energy,		
Enthalpy, and	Specific Heats of Ideal Gases, Solids and Liquids.		
The Second L	aw of Thermodynamics: Thermal Energy Reservoirs, Hea	t Engines, Refrigerators	
and Heat Pum	ps, Perpetual-Motion Machines, Reversible and Irreversible	e Processes, the Carnot	
Cycle.			
Unit 3	Basics of Solid Mechanics	8 hours	
Stress-Strain relationship, Shear force and Bending Moment Diagrams.			
Unit 4	Manufacturing Process	6 hours	
Welding, Brazing and Soldering. Introduction to machine tools lathe and drilling machines.			
Text Books	1. Michael A. Boles, Yunus A. Cengel, Thermodyr	1. Michael A. Boles, Yunus A. Cengel, Thermodynamics: An Engineering	
	Approach, Tata McGraw Hill, 2011.		
	2. P. K. Nag, Engineering Thermodynamics, Tata M	cGraw Hill, 2005.	
Reference	1. Frank P. Incropera and David P. DeWitt, Fund	damentals of Heat and	
Books	Mass Transfer, Wiley Publication, 2006.		
	2. Ferdinand L. Singer, Strength of Materials, Harpe	r and Row.	
	3. Elements of Workshop Technology, S. K. Hajra	Choudhary, S. K. Bose,	
	A. K. Hajra Choudhary, Media promoters and publishers pvt. ltd., 2007		

Subject Code EE151	Basic Electrical Science	Credits: 3 (3-0-0) Total hours: 45
Course	To expose students to basic electric devices and components	characteristics and
Objectives	techniques of analyzing them.	
Module 1	DC circuit Analysis	12 hours
Review of circuit elements, Voltage sources, Current sources, Ohm's Law, Kirchoff's Laws,		
Mesh and Node analysis of DC circuits, Source transformation, Star-Delta Transformation,		
Network theorems, Time domain analysis of RC, RL, RLC with DC excitation.		

Module 2	Magnetic circuit Analysis and AC circuit Analysis	12 hours	
Electromagnetic Induction, Self and mutual inductances, Magnetic circuits. Fundamentals of			
A.C, Avera	ge and RMS values, Form and Peak factor, Concept of Phasors, G	Complex operator,	
Network the	eorems, Basic concepts of three phase circuits.		
Module 3	Semiconductor Devices and Circuits	14 hours	
P-Njunction	diode, Characteristics, Diode approximations, DC load line, AC e	equivalent circuits,	
Zener diode	es Half-wave diode rectifier and Full-wave diode rectifier, Shur	nt capacitor filter,	
Ripple facto	or - Approximate analysis of capacitor filters, Power supply perf	formance, Voltage	
regulators;	Bipolar Junction transistor, Characteristics, DC Load line and Ba	ias Point, Biasing	
circuit design, Amplifiers.			
Module 4	Elements of Digital Electronics	7 hours	
Analog and Digital Signals, Introduction to Digital Electronics, Digital Logic Gates. Introduction			
to memory elements, SRAM, DRAM, ROM, PROM, EPROM, EEPROM.			
Text	1. Del Toro, Electrical Engineering Fundamentals, Pearson	Education, 2002.	
Books	2. R.J. Smith, Circuits, Devices and Systems: A First Co	urse in Electrical	
	Engineering, Wiley-5 th edition		
	3. William H. Hayt Jr., Jack E. Kemmerly, <i>Steven M. Du</i>	rbin, Engineering	
	Circuit Analysis, TMH, 2002.		
Reference	1. A.S. Sedra& K.C Smith, Microelectronic Circuits, Ox	ford Univ Press	
Books	1999.		
Doom			

Subjec t Code EE152	Basic Electrical Science(Lab)	Credits: 2 (0-0-3) Total hours: 45
Course	To have hands on experience on principle of basic electronic p	bassive and active
Object	components and their analysis.	
ives		
List of Experiments		
1.	Verification of KVL and KCL circuit laws.	
2.	Designing and AC, Transient analysis of series and parallel RC,LC and RLC circuits .	
3.	Clipping, Clamping circuits & voltage multipliers with diodes.	
4.	Rectifiers with C, LC & CLC filters - half wave, full wave & B	ridge.

- 5. Network Theorem Superposition, Thevenin, Norton and Maximum Power Transfer
- 6. Phasor Analysis of series and parallel RC,LC and RLC circuits.
- 7. BJT and JFET Characteristics.
- 8. Transistor as an Amplifier.
- 9. Digital Combinational Logic gates.
- 10. Memory Elements.
- 11. Soldering and PCB design practice.

Subject Code	Workshop Practices	Credits: 2(0-0-3)
ME 151		
Course	10+2	
Prerequisite		
S		
Course	To impart knowledge and technical skills on basic manufacturing	methods
Objectives		
Module 1	Mechanical Workshop	36 hours
Carpentry: De	monstration of wood cutting machines, tools, and equipments, plan	ning, chiseling,
marking and s	awing practice, Different joints	
Fitting: Demo	nstration of various tools and equipments used in fitting shop, chipp	oing, filing, cutting,
tapping, male	and female joints, stepped joints	
Welding: Der	nonstration of various welding machines and equipments, Butt j	oint and Lap joint
using electric	arc welding	
Turning: Dem	onstration of lathe, drilling machines, grinding machines, milling m	achines.
Reference	1. Elements of Workshop Technology, S. K. Hajra Choudhary, S. K. Bose, A.	
Books	K. Hajra Choudhary, Media promoters and publishers pvt. ltd., 2007	

Subject Code-PE 150	Physical Education	Credits: 1 (0-0-0) Total Hours: 16
Objective: T	he particular topics will give an idea of minimum physical	fitness required for
maintain mental and physical health to become healthy in society. The contents will give		
relax and stress free from the hectic schedule of studies and job of students. The practical		
session of relaxation techniques will make students very fresh and active in daily life. Based		
on the topics, students will be ready for doing physical activity to maintain their health for		
better life without any kind of hypokinetic disease or lifestyle diseases presently seen in		
society.		

Module 1	FITNESS	4 hours

D	efinition and	I meaning of Physical fitness, Role and scope of physical fitne	ss. Components of			
		ess, Types of physical fitness, Health related physical fit	· •			
-	•	ess, General and specific warming up. (Practical)	,			
Module 2SPORTS FOR TECHNICAL FIELD4 hours						
R	elaxing tec	hniques, Stress management, Sports for relax, Benet	fits of Exercise-			
P	sychologica	and Physiological aspects, Self Confidence and Motivation				
Μ	Iodule 3	ANATOMY AND PHYSIOLOGY	4 hours			
В	asic anatom	y, Exercise physiology, Body type, Sports Injury and pre-	evention and their			
m	anagement					
	Iodule 4	LIFESTYLE DISEASE AND SPORTS	4 hours			
D	iet Heart at	tack, Blood pressure, Cholesterol, Obesity, Stress				
	iet, iieuit u					
	Reference	5:				
1.	Mood, D, N	Musker, F and Rink, J. (1999). Sports and recreational activities. B	oston: McGraw-			
	Hill.					
2.		(1998). Teaching physical education for learning (3rd Ed.). Boston				
3.	• •	n Kumar (2012). A Textbook of Sports and Exercise Physiology,	New Delhi: Jaypee			
	Brothers M	ledical Publications.ISBN: 9789350258736.				
4.	-	er and Helen Marshall. (2013)Exercise Physiology: For Health and	^			
		ce, Harlow/GB: Pearson Education Publication Limited. ISBN 13:	9780273778721			
)273778722.				
5.		McArdle, Frank I. Katch, Victor L. Katch. (2009) Exercise Physic				
		Human Performance. United States: Lippincott Williams and Will 18591.	kins ISBN:			
6.		Robert Weinberg and Daniel (2010) Gould Foundations of Sport and Exercise Psychology. USA: Human Kinetics ISBN: 0736083235.				
7.		oran (2012), Sport and Exercise Psychology A Critical Introductio edge, ISBN: 978041543430.	n, 2nd Edition, New			

Academic Hand Book

for

Bachelor of Technology Programme

in

Computer Science and Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester	Total Credits
Ι	22
II	21+1
III	21
IV	20+1
V	21+3
VI	21
VII	21
VIII	18
Total Credits	170

I Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem Solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

II Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic Electrical Science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry Laboratory	0-0-3	2
8	EE152	Basic Electrical Science Lab	0-0-3	2
9	PE150	Physical Education	1-0-0	1
		Total Credits		22

III Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS200	Principles of Data Communications	3-1-0	4
2	CS201	Data Structures	3-1-0	4
3	CS202	Computer Organization and Architecture	3-1-0	4
4	CS203	Discrete Mathematics	3-1-0	4
5	MA200	Mathematics-III	3-0-0	3
6	CS204	Data Structures Laboratory	0-0-3	2
		Total Credits		21

IV Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS250	Digital Systems Design	3-0-0	3
2	HS250	Economics	3-0-0	3
3	CS251	Systems Programming	3-1-0	4
4	CS252	Object Oriented Programming	3-0-0	3
5	MA250	Mathematics-IV	3-0-0	3
6	CS253	Object Oriented Programming Laboratory	0-0-3	2
7	CS254	Digital Systems Laboratory	0-0-3	2
8	VE200	Value Education	1-0-0	1
		Total Credits		21

V Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS300	Operating Systems	3-1-0	4
2	CS301	Database Systems	3-1-0	4
3	CS302	Microprocessor and Microcontrollers	3-0-0	3
4	CS303	Theory of Computation	3-1-0	4
5	ES300	Environmental Studies	3-0-0	3
6	CS304	Operating Systems Laboratory	0-0-3	2
7	CS305	Database Systems Laboratory	0-0-3	2
8	CS306	Microprocessor and Microcontrollers Laboratory	0-0-3	2
		Total Credits		24

VI Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS350	Compiler Design	3-1-0	4
2	CS351	Design and Analysis of Algorithms	3-0-0	3
3	CS352	Software Engineering	3-0-0	3
4	CS353	Computer Networks	3-0-0	3
5	CS5** /HU501 and HU502	Elective-I	3-0-0	3
6	CS354	Compiler Design Laboratory	0-0-3	2
7	CS355	Networks Laboratory	0-0-3	2
8	CS356	Mini Project/Industrial training	0-0-3	1
		Total Credits		21

VII Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS400	Foundations of cryptography	3-1-0	4
2	CS401	Introduction to Machine Learning	3-0-0	3
3	CS5**	Elective-II	3-0-0	3
4	HS400	Management	3-0-0	3
5	CS402	Seminar	0-0-2	2
6	CS403	Security Laboratory	0-0-3	2
7	CS449	Major Project-I	0-0-4	4
		Total Credits		21

VIII Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	CS5**	Elective-III	3-0-0	3
2	CS5**	Elective- IV	3-0-0	3
3	CS5**	Elective- V	3-0-0	3
4	CS5**	Elective- VI	3-0-0	3
5	CS499	Major Project – II	0-0-6	6
		Total Credits		18

Subject Code	Principles of Data Communication(PDC)	Credits: 4 (3-1-0)
CS 200		Total hours:56
Course Objectives	This course provides an introduction to the field of data communications. The course covers the principles of data communications, transmission fundamentals: Signals, media, encoding and modulation, multiplexing, devices, error detection and correction, data link control and protocols, data transmission over networks - switching techniques and Local Area Network.	
Module 1		12 Hours
communication, F	communication signals, message, data, signal, mathematica ourier series, Fourier transform and signals, information spectr s, Parseval's theorem, basic of analog filters.	
Module 2		12 Hours
frequency domain	nodulation, types of modulation, channel and noise effects and spectra in amplitude, phase and frequency mod rsis of AM/FM/PM demodulation/detection system.	
Module 3		10 Hours
sampling theorem	formation Theory and concepts in Digital data representation a, filtering, pass band need for quantization, aliasing, and a zation, quantizer design and noise.	
Module 4		8 Hours
representation, Se length codebook,	source coding, Shannon's first coding theorem, optimality arch for uniquely decodable code book and the kraft inequalit Huffman coding, some other source coding algorithms - run ler o Ziv–Lempel coding.	y, fixed vs. variable
Module 5		10 Hours
detection and cont distribution for er	sion/storage, need for forward error detection and control, nee rol, field, group and algebra of error control coding, minimum of ror detection and correction, code word design using hamming n - correction using syndrome, CRC and cyclic code.	listance and distance
Module 6		4 Hours
e	on concepts, architectures for receivers, communication network 802.11 standards, resource allocation and performance issue	
Reference books	 William Stallings, "Data and Computer Communications an Edition, TMH, 2002. Behrouz A Forouzan, "Data Communications and Netwo TMH, 2002. Leon, Garcia and Widjaja, "Communication Networks", T 	rking", 2nd edition,

Subject Code	Data Structures (DS)	Credits: 4 (3-1-0)	
CS 201		Total hours:56	
Course	Following this course, students will be able to: 1) Assess ho	w the choice of data	
Objectives	structures and algorithm design methods impacts the performance of programs. 2)		
	Choose the appropriate data structure and algorithm de	10,	
	specified application. 3) Solve problems using data structure	-	
	stacks, queues, hash tables, binary trees, heaps, tournament		
	trees, and graphs and writing programs for these solutions	· •	
	using algorithm design methods such as the greedy method,	-	
	dynamic programming, backtracking, branch and bound and	-	
	these solutions.	writing programs for	
Module 1		6 Hours	
	ata structures and objectives, basic concepts Arrays: one		
	entary Operations.	unnensionai, muiti-	
unnensionai, Lien	lentary Operations.		
Module 2		8 Hours	
	ation, elementary operations and applications such as infix		
-	thesis matching, Queues: Simple queue, circular queue, c		
operations and app		iequeue, elementary	
operations and app	Dications.		
Module 3		10 Hours	
	ar, circular and doubly linked lists, elementary operations and		
polynomial manip		applications such as	
Module 4		12 Hours	
Trees: Binary tree	representation, tree traversal, complete binary tree, heap, binary	search tree, height	
balanced trees like	AVL tree and 2-3 tree and other operations and applications of	trees.	
Module 5		20 Hours	
	tation, adjacency list, graph traversal, path matrix, spanning		
algorithm analysis	s and design techniques, algorithms on sorting: Selection sort	t, bubble sort, quick	
sort, merge sort, h	eap sort, searching, linear and binary search.		
Reference	(1) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman,	"Data structures &	
books	algorithms", Addison Wesley. 2003		
	(2) Ellis Horowitz, Sartaj Sahni and Dinesh Mehta, "Fu	ndamentals of data	
	structures and algorithms using C++", 2 nd edition, Galgotia	publications, 2006	
	(3) Michael T. Goodrich, Roberto Tamassia, "Data Structure	es and algorithms in	
	Java", 4 th Edition, John Wiley & Sons, Inc., 2010		
	(4) Thomas H. Cormen, Charles E. Leiserson, Ronald L.Ri	vest, Clifford Stein,	
	"Introduction to algorithms", 2 nd ed. MIT Press, 2003		

Subject Code	Computer Organization and Architecture	Credits: 4 (3-1-0)
CS 202	(COA)	Total hours:56
Course	The course explores the hardware aspects of a computer syste	m design.
Objectives		
Module 1		8 Hours
Overview of Con	nputer Architecture & Organization, contrast between comp	uter architecture &
	cal organization of computers; basic operational concep	
	essor clock, basic performance equation, clock rate, performance	
Von Neumann mad	chine, instruction format, execution cycle; instruction types and	addressing modes.
Module 2		10 Hours
*	etic: representation of integers and real numbers, fixed point an	
-	design, addition and subtraction of signed numbers, desi	•
	ositive numbers, signed operand multiplication, fast multiplicati	on, integer division,
floating-point num	bers and operations.	
Module 3		8 Hours
Basic Concepts of	Memory System: Semiconductor RAM memories, ROM me	mories, speed, size,
and cost, cache m	emories mapping functions, replacement algorithms, performa	ance considerations,
virtual memories,	secondary storage.	
Module 4		15 Hours
	gn: Instruction sequencing, instruction interpretation, control	-
	grammed control and micro programmed computers. I/O organ	
	of asynchronous and synchronous modes, USART & VART), p	
-	d: asynchronous, synchronous & interrupt driven modes, DN	MA mode, interrupt
controller and DM	A controller.	
Module 5		15 Hours
0	PU: Single vs. multiple data path, ISA, control unit, instruction	pipelining, trends in
-	ure, CISC, RISC, VLIW, introduction to ILP, pipeline hazards:	structural, data and
control, reducing t	he effects of hazards.	
control, reducing t Reference	he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp	
control, reducing t Reference books	he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comj 5 th Edition, Tata McGraw Hill, 2002.	puter organization",
control, reducing t Reference books	 he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp 5th Edition, Tata McGraw Hill, 2002. (2) J. P. Hayes, "Computer architecture and organization", 3th 	puter organization",
control, reducing t Reference books	 he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp 5th Edition, Tata McGraw Hill, 2002. (2) J. P. Hayes, "Computer architecture and organization", 3 Hill, 1998. 	puter organization", rd Edition, McGraw
control, reducing t Reference books	 he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp 5th Edition, Tata McGraw Hill, 2002. (2) J. P. Hayes, "Computer architecture and organization", 3th 	puter organization", rd Edition, McGraw
control, reducing t Reference books	 he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp 5th Edition, Tata McGraw Hill, 2002. (2) J. P. Hayes, "Computer architecture and organization", 3 Hill, 1998. (3) Patterson and Hennessy, "Computer architecture: A quar Morgan Kaufmann, 2000. (4) Hwang and Briggs, "Computer architecture and parallel pr 	puter organization", rd Edition, McGraw ntitative approach",
control, reducing t Reference books	 he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp 5th Edition, Tata McGraw Hill, 2002. (2) J. P. Hayes, "Computer architecture and organization", 3 Hill, 1998. (3) Patterson and Hennessy, "Computer architecture: A quar Morgan Kaufmann, 2000. (4) Hwang and Briggs, "Computer architecture and parallel pr Hill, 1985. 	puter organization", rd Edition, McGraw ntitative approach", rocessing", McGraw
control, reducing t Reference books	 he effects of hazards. (1) Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Comp 5th Edition, Tata McGraw Hill, 2002. (2) J. P. Hayes, "Computer architecture and organization", 3 Hill, 1998. (3) Patterson and Hennessy, "Computer architecture: A quar Morgan Kaufmann, 2000. (4) Hwang and Briggs, "Computer architecture and parallel pr 	puter organization", rd Edition, McGraw ntitative approach", rocessing", McGraw

Subject Code	Discrete Mathematics (DM)	Credits: 4 (3-1-0)
CS 203		Total hours:56
Course	This course introduces basic concepts of combinatory, notio	n of proofs, concept
Objectives	of generating functions, recurrence relations.	
Module 1		15 Hours
Sets and Subsets,	set operations and the laws of set theory, counting and Venn di	agrams, a first word
on probability, co	untable and uncountable sets. Fundamentals of Logic: Basic C	onnectives and truth
tables, logic equiv	valence, the laws of logic, logical implication, rules of inferen	ce, proportional and
-	the use of quantifiers, quantifiers, definitions and the proofs s to artificial intelligence.	of theorems, normal
Module 2		10 Hours
Properties of the I	ntegers: Mathematical Induction, the well ordering principle, rec	cursive definition.
Module 3		15 Hours
Relations and Fu	nctions: Cartesian Products and Relations, functions, plain a	nd one-to-one, onto
composition and	numbers of the second kind, special functions, the pigeon-hol inverse functions, properties of relations, computer recognition is, partial orders, Hasse diagrams, equivalence relations and par	n zero, one matrices
Module 4		10 Hours
Groups: Definition	ns, examples, elementary properties, costs, normal subgroups,	permutation groups,
homeomorphisms	, isomorphism, and cyclic groups, cosets and Lagrange's T	Theorem. Burnside's
Theorem and simp	ble applications.	
Module 5		6 Hours
Introduction to gr tree, algorithms.	aph theory, trees, planarity, connectivity, traversability, shortes	t path and spanning
Reference	(1) J.P. Tremblay & R. Manohar, "Discrete mathematic	cal structures with
books	 applications to computer science", Tata McGraw Hill, 2008. (2) C.L.Liu, "Elements of Discrete mathematics", 3rd ed. McGraw Hill, 2008 (3) Kenneth Rosen, "Discrete mathematics and its applications", TMH, 2011. (4) Jean Gallier, "Discrete mathematics", Springer, 2011. 	
	(5) Ralph P. Grimaldi, "Discrete and combinatorial mathe introduction", Pearson, 2003.	matics: An applied

Subject Code	Mathematics-III	Credits: 3
MA 200		Total hours 42
Course Prerequisites	Mathematics-I & II	
Objectives	This Mathematics course provides requisite and relevant background necessar	
	understand the other important engineering mathematics c	ourses offered for
	Engineers and Scientists. Important topics of applied ma	thematics, namely
	complex analysis, power series solutions, Fourier series a	nd transforms and
	partial differential equations.	
Module 1	Complex Analysis 1	8 hours
Complex Numbers, ge	ometric representation, powers and roots of complex numbe	rs, Functions of a
complex variable, Ana	lytic functions, Cauchy-Riemann equations; elementary fun	nctions, Conformal
mapping (for linear tran	nsformation); Contours and contour integration, Cauchy's theore	em, Cauchy integral
formula; Power Series	and properties, Taylor series, Laurent series, Zeros, singulariti	ies, poles, essential
singularities, Residue th	eorem, Evaluation of real integrals and improper integrals.	
Module 2	Power Series Solutions 9	hours
Differential Equations I	Power Series Method - application to Legendre equation, Legendre equat	endre Polynomials,
Frobenious Method, Be	essel equation, Properties of Bessel functions, Sturm-Liouville	BVPs, Orthogonal
functions.		
Module 3	Partial Differential Equations 1	5 hours
Introduction to PDE, b	basic concepts, second order PDE and classification, D'Alem	nberts formula and
Duhamel's principle fo	r one dimensional wave equation, Laplace's and Poisson's e	quations, Laplace,
Wave, and Heat equation	ons using separation of variables. Vibration of a circular membra	rane. Heat equation
in the half space.		
Texts/References	 E. Kreyszig, Advanced engineering mathematics (8t Wiley (1999). W. E. Boyce and R. DiPrima, Elementary Differentia Edition), John Wiley (2005). R. V. Churchill and J. W. Brown, Complex variables 	al Equations (8th
	(7th Edition), McGraw-Hill (2003).	11

Subject Code	Data Structures Laboratory	Credits: 2 (0-0-3)
CS 204		Total hours: 42
Course Objective	s The course provides practical knowledge in implementi structures in C	ng the standard data
List of Experime	nts	
(1) Implement	ation of array operations, Structures & Unions.	
(2) Stacks, Qu	eues, Circular Queues, Priority Queues, Multiple stacks and qu	eues.
(3) Infix to pos	stfix expression using stack	
(4) Implement	ation of linked lists: stacks, queues, single linked lists.	
(5) Implement	ation of polynomial operations. Doubly linked lists.	
(6) Tree traver	sal: AVL tree implementation, application of trees.	
(7) Implement	ation of Hash Table.	
(8) Searching	and sorting.	
(9) Traversal of	f graph	
Reference books	 Mark Allen Weiss, "Algorithms data structures and problem Addison Wesley, 1996. Seymour Lipschutz, G A VijayalalashmiPai, "Data structures, TMH, 1986 O.G. Kakde&P.S. Deshpandey, "Data structures ISTE/EXCEL books, 2004. Aho Alfred V., Hopperoft John E., UIlman Jeffrey D., Algorithms", Addison Wesley, 1983. 	structure", Schaum's and algorithms",

Subject Code	Digital Systems Design (DSD)	Credits: 3 (3-0-0)
CS 250	Digital Systems Design (DSD)	Total hours:45
Course Objectives	To understand the working of digital systems. Hard computer can be studied in greater depth.	
Module 1		10 Hours
representation of s excess 3 codes, gra	And Boolean Algebra: Review of binary, octal & hexad signed numbers, floating point number representation I y code-error detecting & correcting codes. Boolean algebr , canonical forms, simplification of logic functions using	BCD, ASCII, EBCDIC, a: Postulates & theorems
Module 2		8 Hours
& decoders, multi	ic Design: Logic gates, implementation of combinational plexers &demultiplexers, code converters, comparator, ary adder, parity generator/checker, implementation of	half adder, full adder,
Module 3		11 Hours
	on tables, asynchronous & synchronous counters, modulus ng counter, timing waveforms, counter applications.	s counters, shift register,
Module 4		8 Hours
Sequential Logic	Design-II: Basic models of sequential machines, conce	ept of state table, state
-	ction through partitioning & implementation of synchron chronous sequential logic design.	nous sequential circuits,
Module 5		8 Hours
Programmable Log	ic Devices: Semicustom design, introduction to PLD's, F	ROM, PAL, PLA, FPGA
Architecture of Pl	LD's: PAL 22V10, PLS 100/101, implementation of	digital functions. Logic
Families: RTL, D	TL, TTL families, Schottky, clamped TTL, Emitter	Coupled Logic (ECL),
Integrated Injection	h Logic (IIL), MOS inverters, CMOS inverters, compar	rison of performance of
various logic famili	es.	
books (Alan B.Marcovitz, "Introduction to logic design", 3r Professional, 2009. Giovanni De Micheli, "Synthesis and optimization of McGraw-Hill Education 2003. Zvi Kohavi, Niraj K. Jha, "Switching and finite auto Cambridge University Press, 2011. Douglas A. Pucknell &Kamran Shrayhian, "Basic V circuits", Prentice Hall 2000. ParagK.Lala, "Fault tolerant & fault testable hardware of 	of digital circuits", Tata omata theory", 3 rd Edition LSI design systems and

Subject Cod	e	Economics	Credits: 3(3-0-0)
HS 250			Total hours: 45
Course Out	come	The fundamental objective of this course aims at providing a com the broad area of economics and its scenario. The course aspires the light of economic decision makings, and facilitates tohave grip	to bring the students into
Module 1		Introduction to Economics	2 hours
Constructing asset allocati		Optimization and Equilibrium in market demand and supply, Com	parative statistics and
Module 2		Utility, Choice, Budget Constraint and Consumer Preference	6 hours
Cardinal Util	lity, Cons	tructing a Utility Function, Budget constraint in case of two good	s, Shifting of budget line
and impact o	f Taxes, S	Subsidies, and Rationing. Indifference curve, Marginal Rate of Sub difference curve from utility functions, Marginal Utility vs MRS	e e
Module 3		Demand, Revealed Preference & Slutsky Equation	6 hours
	Inferior (Goods, Income Offer Curves and Engel Curves, Perfect Substitute	
Douglas Pre	ferences,	The Idea of Revealed Preference, From Revealed Preference titution Effect, The Income Effect, Rate of Change and change of I	to reference, Recovering
Module 4		Consumer Surplus, Market Demand & Equilibrium	6 hours
to Market De	emand, Tł	e Good, Constructing Utility from DemandFrom, Change inConsum ne Inverse Demand Function, The Extensive and the Intensive Marg Supply, Market equilibrium, Inverse Demand and Supply Curves	gin, Elasticity, Elasticity
Module 5		Technology and Profit Maximization	3 hours
•	-	Describing Technological Constraints, Properties of Technology, ning Technical Rate of Substitution, Returns to Scale, Profits, Th	
The Organiz	ation of	Firms, Short-Run Profit Maximization, Profit Maximization i	-
Maximizatio			2 h ours
Module 6		National Income Accounting	2 hours
		Related concepts, Nominal or real GDP, Methods of measuring NI.	
Module 7		Determinants of Equilibrium Output and IS – LM Model	8 hours
Aggregate d	emand a	nd Equilibrium output, Consumption function and aggregate de	emand, Multiplier, Govt
sector, Budg	get and Fu	ll employment, Asset and Goods Market, Equilibrium and adjustm	ent to equilibrium in IS -
LM model			
Module 8		Money and Fiscal policy and International Linkages	8 hours
•	te, Balan	policy, crowding out, composition of output and policy mix, H ce of Trade and capital mobility, Mundell-Fleming model, Ca	•
Module 9		Aggregate Demand, Supply and Growth	4 hours
Aggregate de	emand and	l policies, Aggregate Supply, Fiscal and monetary policy under Alt	ternative supply
		tity theory and neutrality of Money.	- ~ -
Books Kor	utsoyiann	R.: Intermediate Microeconomics, W.W. Norton & Co., New work is, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macm nd Stanley Fisher: Macroeconomics, McGraw Hill	

Subject Code	Systems Programming (SP)	Credits: 4 (3-1-0)
CS 251		Total hours:56
Course Objectives	To understand the relationship between system soft architecture to design and implement assemblers, linkers an	
Module 1		10 Hours
1 1	ogramming system: Assemblers, loaders, macros, compilers lata, instructions. Machine language: Address modification	
	cation using index registers, looping Assembly language.	using instructions as
Module 2		15Hours
	dependent assembler features, machine independent assemble ss assemblers, implementation example. Table processing: Se	-
Module 3		15 Hours
-	loader features, program linking, algorithms and data st t loader features, automatic library search, loader design optic on example.	
Module 4		10 Hours
_	asic macro processor functions, macro definition and expansi lgorithms, implementation example, discussion of ANSI C ma	_
Module 5		6 Hours
Moune 5		
	ols: Text editors, overview of the editing process, user interfac	
System Software To	ols: Text editors, overview of the editing process, user interface g systems, debugging functions and capabilities, relationship	ce, editor structure,
System Software To interactive debuggin the system.		ce, editor structure, with other parts of

Subject Code	Object Oriented Programming (OOP)	Credits: 3 (3-0-0)
CS 252		Total hours:45
Course	This course focuses on principles of object oriented program	nming paradigm. The
Objectives	course also includes practice of writing programs in C++ and	d Java.
Module 1		10 Hours
Principles of OOP:	Programming paradigms, basic concepts, benefits of OOP, ap	plications of OOP
Introduction to C+-	+: History of C++, structure of C++, basic data types, type ca	sting, type modifiers,
operators and cont	trol structures, input and output statements in C++. Classe	es and objects: class
specification, mem	ber function specification, scope resolution operator, acces	s qualifiers, instance
creation .Function	s: Function prototyping, function components, passing	parameters, call by
	y reference, inline functions, default arguments, overloade	
	binters to objects, this pointer, dynamic allocation operators, d	
Module 2		10Hours
	structors, parameterized constructors, overloaded constructo	
	copy constructors, static class members and static objects. (
-	and binary operator, overloading the operator using frie	
• •	ig and data conversion.	ind function, stream
Module 3		8 Hours
	no derived classes single inheriteness motosted data with	
	ng derived classes, single inheritance, protected data with	-
-	e, multi-level inheritance, hierarchical inheritance, hybrid in	-
	actors in derived and base class, abstract classes, virtual fu	unction and dynamic
polymorphism, virt	ual destructor.	
Module 4		7 Hours
-	g: Principle of Exception handling, exception handling mecha	-
•	ng the exception. Streams in C++: Stream classes, formatted a	
	defined manipulators, file streams, file pointer manipulation	, file open and close.
Templates: Templa	te functions and Template classes.	
Module 5		10 Hours
Object oriented pro	gramming using Java: Introduction to Java, bytecode, virtual	machines, basic data
types, operators, c	ontrol structures, classes and objects, using Javadoc, pack	ages, arrays, strings,
inheritance, interfa	ces, exception handling, multithreaded programming, Java	streams, developing
user interfaces in Ja	ava.	
Reference	1) BJarne Stroustrup, "The C++ Programming Language", Ad	ddison Wesley, 2004.
books	2) Stanley B Lippman, "The C++ Primer", Addison Wesley, 2	2005.
	(3) Ira Pohl, "Object oriented programming using C++", 2 nd e	d, Pearson Education
	India, 2003.	
((4) Patrick Naughton and Herbert Schildt, "Java 2: The Comp	lete Reference",
	Fourth ed, McGraw Hill Professional 2001.	
	(5) Paul. Deitel, Harvey Deitel, "Java: How to program", 8 ^t limited 2010	Edition, PHI private
	limited, 2010.	

Subject Code	Mathematics-IV	Credits: 3 (3-0-0)
MA 250		Total hours: 45
Course Objectives	This is a one semester course that covers elements of linear of vector spaces, norm, and basic topology and views the useful to model most real world observations. It probabilistic models for Information processing and system	e signal space model aims at developing
Module 1		15 Hours
	: Review of vector spaces, linear data models, Eigen-decom	-
Fourier series and	d transforms, Some other transforms and applications to data re	presentation.
Module2		10 Hours
and applications	ability via measure theory and Borel-Field, Kolmogorov axio , random variable, properties of CDF/PDF, inequalities on & probability generating functions.	
Module 3		10 Hours
	one random variable, discrete and continuous random variables ric, uniform, exponential, Gaussian, statistical tests on surve	
Module 4		10 Hours
sequences, rando detection and ex	models using randomness, information theory, pattern om processes, measurements with random processes, types of stimation (statistical inference models), Markov chains a bles from communication networks	_
Reference books	 Athanasios Papoulis, U. S. Unnikrishnan Pillai, "Probabil and Stochastic processes", 4th ed, Tata McGraw-Hill Edit Vijay K. Rohatgi, A. K. Md. Ehsanes Saleh "An introd and statistics", 2nd edition, Wiley series in probability and Gilbert Strang, "Introduction to linear algebra", 3rd Cambridge Press, 2005. Sheldon M. Ross, "Stochastic Processes", 2nd edition Limited, 2008. Thomas M. Cover, Joy A. Thomas, "Elements of info edition, Wiley-Interscience, 2006. 	tion, 2002 luction to probability statistics, 1976. edition, Wellesley- n, Wiley India Pvt.

Subject Code	Object Oriented Programming	Credits: 2 (0-0-3)	
CS 253	Laboratory	Total hours: 42	
Course Objectives	and subclasses, methods) using C++ and Java.	the basic object oriented programming concepts (objects, classes s, methods) using C++ and Java.	
List of experiments			
 (3) Operator over (4) Matrix manip (5) Overloading (6) Practice on te (7) Implementation (8) Implementation (9) Implementation (10) Inheritance boostice of Jac (13) File handling (14) Multithreade 	blication in C++ rloading exercises pulation using dynamic memory allocation dynamic memory allocation operators emplates on of linked list using templates on of sorting algorithms using templates on of stack and queue using exception handling		
books (2 (3 (4) (5) (6) (7)) BJarne Stroustrup, "The C++ Programming Language", Ad.) Stanley B Lippman, "The C++ Primer", Addison Wesley, 2) Ira Pohl, "Object oriented programming using C++", 2nd e Education India, 2003) John R.Hubbard, "Schaum's Outline of Programming with Hill Professional, 2003 i) K.R.Venugopal, RajKumar Buyya, T.Ravishankar, "Master McGraw-Hill Publishing Company Limited, 2006 i) E. Balagurusamy, "Object Oriented Programming with C+ Hill, 4th ed., 2008 ii) Patrick Naughton and Herbert Schildt, "Java 2: The Compled., McGraw Hill Professional 2001 ii) Paul.Deitel, Harvey Deitel, "Java: How to program", 8th ed India private limited, 2010 	2005. d., Pearson n C++", McGraw ing C++", Tata +", Tata McGraw- ete Reference", 4 th	

Subject Code	Digital Systems Laboratory	Credits: 2 (0-0-3)
CS 254		Total hours: 42
Course Objectives	The course provides practical knowledge in designing t	he digital systems
List of Experimen	ts	
(1) Simplificati	on, realization of boolean expressions using logic gates/un	iversal gates
(2) Realization	of half/full adder & half/full subtractors using logic gates	-
(3) Realization vice versa	of parallel adder/subtractors using 7483 chip, BCD to Exc	cess-3code conversion &
(4) Realization	of binary to gray code conversion & vice versa	
(5) MUX/DEM	UX – use of 74153,74139 for arithmetic circuits & code co	onverter
(6) Realization	of one/two bit comparator and study of 7485 magnitude co	omparator
(7) Use of a) De	ecoder chip to drive LED display & b) Priority encoder	
(8) Truth table	verification of flip-flops: i) JK Master Slave ii) T type iii) l	D type
	of 3 bit counters as a sequential circuit & M 74192,74193)	OD-N counter design
(10) Writing &	testing of sequence generator	
	 J. Bhasker, "A VHDL primer", 3rd edition, Addison We Douglas Perry, "VHDL: Programming by example" International, 2002. 	
(3) Peter Ashenden, "The Designer Guide to VHDL", Morg	an Kaufmann, 1998

Subject Code: VE200	Value Education	Credits: 1 (1-0-0) Total hours: 14
Course Prerequisite	General Awareness of the Society/ Environment we live in	
Course Objectives	It aims at Holistic Development	
Course Outcome	At the end, the students should be a complete human being in e	every respect
Module 1	Ethics in Engineering	4 hours
Concepts of Values	and Ethics, History and Purposes, Utilitarianism, Duties, Ri	ghts, Responsibility,
Virtue, Honesty, Mora	l Autonomy, Obligations of Engineering Profession and moral I	Propriety
Module 2	Engineer's Moral responsibility	3 hours
Engineer's Moral resp	onsibility for Safety and Human Rights, Risk Assessment and C	communication,
Product Liability, Eng	ineers-Employers Liaison, Whistle-Blowing and Its Moral Justit	fication
Module 3	Computer Ethics	3 hours
Social Impact of Com	puter, Gender-Issues and Privacy, Cyber Crime, Ethical use of S	oftware
Module 4	Intellectual property	4 hours
Definition, Types, Ri	ghts and Functions, Patents, Trademark, Grant of Patent in	India, Surrender and
Revocation of Patents draft application of Pa	, Compulsory Licensing, Acquisition of Inventions by the Government, WTO	ernment, Contents of
Texts:	 Vinod V. Sople, Managing Intellectual Property: The Strategic Imperative, PHI,2006 Govindarajan, Natarajan & Senthil Kumar, Engineering Ethics, PHI Robin Attfield, A Theory of Value and Obligation, London: Croomhelm, 1987 Jones and barlett, "Cyber Ethics: Morality and Law in Cyber Space" 	
Reference	Case Studies from Newspapers	

Subject Code		Credits: 4 (3-1-0)
CS 300	Operating Systems (OS)	Total hours: 56
Course	This course covers the objectives and functions of oper	rating systems which
Objectives	include process management, memory management, disk	•
	and File Systems. At the end of the course student sho	
	application keeping concurrency and synchronization	-
	shared memory, mutual exclusion Process scheduling servi	
Module 1		10 Hours
	OS, batch processing, multi-programming, interrupts, CPU	•
scheduling, concu	rrent processes, threads, multi-threading, inter process commun	nication.
Module 2		10 Hours
Mutual exclusion	, Software solution, hardware solutions, atomic test and set, I	LL, swap instructions,
monitors, deadloc	ks, avoidance, prevention and detection algorithms.	
Module 3		14 Hours
	ment, fixed and variable paging, segmentation, virtual men paging, page replacement algorithms, trashing, and strategies to	•
Module 4		12 Hours
•	k scheduling algorithms, LOOK, C-LOOK, SCAN, C-SCAN performance evaluation.	N, I/O Hardware, I/O
Module 5		10 Hours
Operating system	security & protection, breaches, solutions, mechanisms, Ir	nside attacks, outside
attacks, case studi	es - the UNIX kernel and Microsoft Windows NT.	
Reference	1) Peter B. Galvin, "Operating System Concepts", 8 th Ed., TM	
books	2) Andrew.S.Tanenbaum, "Modern Operating Systems", 3 rd 2009.	ed., PHI Learning,
	3) Silberschartz& Galvin, Operating System Concepts, Add 1997.	lison Wesley, 5 th ed.,
	4) MelinMilenkovic, "Operating Systems: Concepts and De New York, 2000.	esign", McGraw Hill,

Subject Code	Database Systems (DS)	Credits: 4 (3-1-0)
CS 301		Total hours: 56
Course Objectives	This course covers the relational database systems RDBS system for business, scientific and engineering application topics are reinforced using tools such as Oracle server in includes entity-relation model, normalization, relational algebra, and data access queries as well as an introduction to	ons at present. The in labs. The course model, relational
Module 1		12 Hours
system concept and language and interfa using the Entity R constraints, keys, sp	erview of database management system, database system vs f architecture, data model schema and instances, data indeper aces,(DDL,DML,DCL), overall database structure, database u celationship model: ER model concepts, notation for ER pecialization, generalization, aggregation, reduction of an ER relationship of higher degree.	ndence and database sers. Data modeling diagram, mapping
Module 2		14 Hours
integrity, referentia calculus, tuple and c SQL data type and 1 and indexes, queries	del and Language: Relational data model concepts, integrity l integrity, key constraints, domain constraints, relational domain calculus.Introduction on SQL: Characteristics of SQL iterals, types of SQL commands, SQL operators and their process and sub queries, aggregate functions, insert, update and dele- minus, cursors, triggers, procedures in SQL/PL SQL.	algebra, relational , advantage of SQL, cedure, tables, views
Module 3		18 Hours
key, super key, norr form, loss less join MVD, and JDs,inc. ofserializability, ser	& Normalization: Functional dependencies, primary key, for nal forms, first, second, third normal forms, BCNF, 4th Norr decompositions, canonical cover, redundant cover, synthesis lusion dependence, transaction processing concept, transact ializability of schedules, conflict & view serializable sched action failures, log based recovery, deadlock handling.	nal form,5th normal the set of relation , tion system, testing
Module 4	12 Hours	
2PL, time stamping multi version schen storage devices, tert hashing, types of sin	ol Techniques: Concurrency control, locking techniques for concurrency control, validation based protocol, mes and recovery with concurrent transaction. Storage: Intra- iary storage, buffering of blocks, structure of files, file organization in the storage indexes, multilevel indexes, dynamics multiles, database security.	multiple granularity, oduction, secondary zation, indexing and
books (Korth, Silberschatz, "Database System Concepts", 4th ed., 7 Elmsari and Navathe, "Fundamentals of Database Systems Wesley, 2004 Raghu Ramakrishnan , Johannes Gehrke, "Database Mana 3rd Edition, McGraw- Hill, 2003. J D Ullman, "Principles of database systems", Computer S 	", 4 th ed., A. gement Systems",

Subject Code	Microprocessors and Microcontrollers	Credits: 3(3-0-0)
CS302	(MPMC)	Total hours:45
Course Objectives	To introduce the student with knowledge about architectur programming with 8086 microprocessors and 8051 microco brief introduction to ARM 7 and ARM 9 micro controllers. subject, the student should be able to design microprocess system.	ntrollers. It gives a After studying this
Module 1		12 Hours
	ory of microprocessors, basics of computer architecture, comput rogramming model, architecture.	er languages, CISC
Module2		10 Hours
memory segment program develop	eture of the 8086 microprocessors, address space, data orga ation and addressing, stack, I/O space, Assembly language oment, 8086 microprocessor architecture, min/max mode, onfiguration, hardware organization of address space, contr	programming and coprocessor and
Module 3		10 Hours
keyboard/display controller, direct	terfacing devices, 8255A programmable parallel interface, 8 interface, 8254 programmable interval timer, 8259A programmory access (DMA), 8237 DMA controller, serial I/O and d I/Os, serial I/O lines, 8251A programmable communication inter	cammable interrupt ata communication,
Module 4		13 Hours
interrupt, timers p	controller, CPU operation, memory space, software overview, poarallel port inputs and outputs, serial port, low power special r RM processors, features of ARM 7 and 9 processors.	1 '
Reference books	 Hall D.V., "Microprocessors and Interfacing", McGraw Hi Triebal W A & Singh A., "The 8088 and 8086 microprocess Hill, 2007. Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin I 8051 microcontroller and embedded systems", 2nd edition, H 2009. Ramesh Gaonkar, "Microprocessor architecture programmi with 8085", 5th edition, Penram International Publishing, 20 	sors", McGraw D Mckinlay,"The Pearson education, ang and applications

Subject Code CS 303	Theory of Computation (TOC)	Credits: 4 (3-1-0) Total hours: 56
Course Objectives	This course introduces models of computation: Regular Recursive and recursively enumerable sets models and co models.	
Module 1		10 Hours
proof, additional for	ation, classification, properties and equivalences, automata: In orms of proof, inductive proofs, finite automata (FA), determin inistic finite automata (NFA), Finite Automata with Epsilon tra	nistic finite automata
Module 2		10Hours
converting DFA to its applications to minimization of au	a and languages: Introduction to regular expression, building a regular expression, converting regular expression to DFA, prove languages not to be regular, closure properties of tomata.	pumping lemma and regular languages,
Module 3		15 Hours
and nondeterminist	guages, pushdown automata (PDA): Definition, Graphical no ic, instantaneous descriptions of PDAs, language acceptance b valence of the CFG and PDAs, pumping lemma for CFLs, o blems for CFLs.	y final states and by
Module 4		15 Hours
by Turing machin hierarchy, recursive problems, universa	Introduction to Turing machines, instantaneous descriptions, les, Turing machine transition diagrams, Church-Turing hy- ely enumerable sets, existence of non-recursively enumerable n lity of Turing machine, separation of recursive and recursively , undecidable problems of Turing machines.	ypothesis, Chomsky otion of undecidable
Module 5		6 Hours
reduction, complet variants of satisfia independent sets, H Reference	on of tractability/feasibility, the classes NP and co-NP, polyno eness under this reduction, NP-completeness of propositiona bility, NP-complete problems from other domains: graphs (a familtonian cycle), number problem (partition), set cover. (1) J.E. Hopcroft and J.D. Ullman. "Introduction to Automata of Computations" Addison Wesley, 1070	l satisfiability, other clique, vertex cover,
	 of Computations", Addison-Wesley, 1979. (2) C. Papadimitriou and C. L. Lewis. "Elements of Theory of Prentice-Hall, 1981. (3) John. C. Martin, "Introduction to languages and the theory of 3rd edition, TMH, 2003. (4) Peter Linz, "An introduction to formal language and aut Narosa publishing house, 2002. (5) John E. Hopcroft, Rajeev Motwani and Jeffery D. Ullman Languages, and Computation", 3rd Edition, Pearson Education (6) Michael Sipser, "Introduction to the Theory of Computation Learning, 2001. 	of computation", omata", 3rd edition, "Automata Theory, ion, 2008.

Subject Code	Operating Systems Laboratory	Credits: 2(0-0-3)
CS 304		Total hours: 42
Course Objectives	To understand the implementation of an operating system	
List of experiment	S	
(1) Linux based	l exercises to practice/simulate: scheduling, memory manager	nent algorithms.
(2) Implementa	tion of various CPU scheduling algorithms (FCFS, SJF, Prior	ity).
(3) Implementa	tion of various page replacement algorithms (FIFO, Optimal,	LRU).
(4) Concurrent	programming; use of threads and processes, system calls (for	k and v-fork).
(5) Implementa	tion of Producer-Consumer problem, Bankers algorithm	
(6) To simulate	concept of semaphores.	
(7) To simulate	concept of inter process communication.	
(8) Implementa	tion of various memory allocation algorithms, (First fit, B	est fit and Worst fit),
	uling algorithms (FCFS, SCAN, SSTF, C-SCAN)	
(9) Kernel reco	onfiguration, devicone drivers and systems administration	of different operating
systems.		1 0
•	ities and OS performance tuning.	
	1) Peter B. Galvin, "Operating System Concepts", 8 th ed., TN	ИН, 2012.
	2) Andrew.S.Tanenbaum, "Modern Operating Systems", 3rd	
	2009	
	3) Silberschartz& Galvin, "Operating System Concepts", Ad	ldison Wesley, 5 th ed.,
	1997.	, , , ,
	(4) MelinMilenkovic, "Operating Systems: Concepts and D	esign", McGraw Hill,
	New York, 2000.	C , ,

Subject Code	Database Systems Laboratory	Credits: 2 (0-0-3)
CS 305		Total hours:42
Course Objectives	To obtain working knowledge of a database manage developing applications using the databases.	gement system and
List of experiments	5	
(1) Defining sch	emas for applications.	
(2) Creating tab insertion into	les, Renaming tables, Data constraints (Primary key, Foreign o a table.	key, Not Null), Data
(4) Sub-queries,	ta, aggregate functions, Oracle functions (mathematical, chara Set operations, Joins. databases, writing SQL and PL/SQL queries to retrieve in	
(6) Triggers & C	lirsors	
(7) Assignment	in Design and Implementation of Database systems or packa e automation, hotel management, hospital management;	ages for applications
	of Forms, Reports Normalization, Query Processing Algo	rithms in the above
(9) Distributed using servlet	data base Management, creating webpage interfaces for d s.	atabase applications
Reference	1) Ramez Elmasri, Shamkant B Navathe, "Fundamentals of	of database systems",
books	5 th ed., 2003.	
	2) Avi Silberschatz, Henry korth and S. Sudarshan, Concepts", 5 th Edition, TMH, 2005.	"Database Systems

Subject Code	Microprocessor and Microcontroller	Credits: 2 (0-0-3)
CS 306	Laboratory	Total hours: 42
Course Objectives	To practice writing programs using microprocessor.	
List of experiment	s	
(1) 8085 and 80	86 kit familiarization and basic experiments	
	operation of 16 bit binary numbers	
(3) Programmin	ig exercise : sorting ,searching and string	
(4) Interfacing	with A/D and D/A converters	
(5) Interfacing	with stepper motors	
(6) keyboard in	terfacing to 8086	
(7) 8255 interfa	ce to 8086	
(8) Assembly la	inguage programming of 8051	
(9) Timer progr	amming of 8051, using interrupts	
(10) LCD interf	acing to 8051 –project	
Reference (1) ROM-BIOS service summary- Programmer's Guide to the	e IBM PC.
books		

Subject Code ES300	Environmental Studies	Credits: 3 (3-0-0) Total hours: 45
Course	Understanding environment, its constituents, importance	for living, ecosystem,
	human developmental activities vs environment, climate	change, national and
Objective	international environment related developments, need for	public awareness, its
	protection and conservation activities.	
Module 1		Hours: 2
-	nary nature of environmental studies: Definition, scope a	nd importance, Need
for public aw	areness.	T
Module 2		Hours: 8
	and non-renewable Natural resources : Natural resou	
-	rest resources : Use and over-exploitation, deforestation,	
	ining, dams and their effects on forest and tribal people; V	
	ization of surface and ground water, floods, drought, confli	
	problems; Mineral resources : Use and exploitation, env	
	d using mineral resources, case studies; Food resources : V sed by agriculture and overgrazing, effects of modern a	
	blems, water logging, salinity, case studies; Energy resource	
	able and non renewable energy sources, use of alternate	
	l resources : Land as a resource, land degradation, man ind	
	desertification; Role of an individual in conservation	
	e of resources for sustainable lifestyles.	
Module 3		Hours: 10
chains, food structure and	nd decomposers, Energy flow in the ecosystem, Ecologi webs and ecological pyramids, Introduction, types, ch function of the Following ecosystem, Forest ecosystem, o stem, Aquatic ecosystems (ponds, streams, lakes, rivers, oc	naracteristic features, Grassland ecosystem,
Module 4		Hours: 12
Biodiversity and its conservation: Introduction – Definition : genetic, species and ecosystem diversity, Bio geographical classification of India, Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity : habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity, Eco-cultural heritage of India-various festivals related to Environment, Tradition of community conserved areas-Sacred forests, sacred tanks, sacred mountains, sacred rivers.		
Module 5		Hours: 12
National and International Environment related developments		
Environmental ethics : Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear, accidents and holocaust, Environment related Acts, Issues involved in enforcement of environmental legislation, Public awareness, Wasteland reclamation, Consumerism and waste products, UN Frame Convention Climate Change, Kyoto protocol, concept of carbon credits, latest CoP meet Agenda; Filed Work(equal to 5 lecture hours): Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/sacred groves/sacred forests, Visit to a local polluted site-Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes, etc.		

Reference books	 Textbook for Environmental Studies For Undergraduate Courses of all Branches of Higher Education (online book -UGC Website), Erach Bharucha,University Grants Commission , India. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science and Environment, Edi:1st,1997 ISBN-13 9788186906200; ISBN-10 8186906207 R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005. Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill, 2006. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press, 2005. Masters, Gilbert M., Introduction to Environmental Engineering and Sciences, Prentice
	Press, 2005.6. Masters, Gilbert M., Introduction to Environmental Engineering and

Subject Code	Compiler Design (CD)	Credits: 4 (3-1-
CS 350		0)
		Total hours: 56
Course	Describe the steps and algorithms used by language transla	tors, Recognize the
Objectives	underlying formal models such as finite state automata, push- their connection to language definition through regula grammars, Discuss the effectiveness of optimization.	
Module 1		10 Hours
Introduction to co	ompiler design, Model of a Compilers, Translators, Interp	reters, Assemblers,
	uter Architecture vs Compiler Design, Lexical analyzer, Regu	lar expressions and
finite automata. Module2		8 Hours
	text free grammars, BNF notation, Syntax Analysis.	0 Hours
Module 3		14 Hours
Parsing Technique	s: Top-down parsing and Bottom-up parsing, general parsing str	rategies, brute force
	e descent parser and algorithms, simple LL(1) grammar, botton	
of a right sententia	l form, shift reduce parsers, operator precedence parsers, LR, S	SLR, Canonical LR,
LALR grammar an	d parsers, error recover strategies for different parsing technique	es.
Module 4		14 Hours
Symbol table, synt	ax-directed translation schemes, intermediate code generation, tr	ranslation schemes
for programming la	anguage constructs, runtime storage allocation.	
Module 5		10 Hours
Code generation a	nd instruction selection: Issues, basic blocks and flow graphs,	register allocation,
DAG representation	n of programs, code generation from DAG, peep hole optimizat	tion, code generator
generators, specifi	cations of machine. Code optimization, source of optimizatio	ns, optimization of
basic blocks, loops	, global dataflow analysis, solution to iterative dataflow equation	ns.
Reference	1) Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman, "Con	mpilers; Principles,
books	Techniques & Tools", Addison- Wesley Publication, 2001.	1
	2) William A. Barrett et.al, "Compiler Construction, Theory an	d Practice",
	Galgotia 2000 3) Holub A.I., "Compiler Design in C", Prentice Hall India.200	0

Subject Code CS 351	Design and Analysis of Algorithms (DAA)	Credits: 3 (3-0-0) Total hours: 45	
Course Objectives	To study paradigms and approaches used to analyze and design appreciate the impact of algorithm design in practice.	gn algorithms and to	
Module 1		10 Hours	
probabilistic analy searching algorith	ation, RAM model, big Oh, big Omega, asymptotic analysis, a ysis, linearity of expectations, worst and average case analy ms, hashing algorithms, lower bound proofs for the above p e, accounting and potential methods, analysis of Knuth-Mor- palanced trees.	ysis of sorting and problems, amortized	
Module2		11 Hours	
programming, con Warshall algorithm	Problem Solving, Divide & Conquer, Strassens algorithm, O(n)_ median finding algorithm, dynamic programming, combinatorial search, matrix chain multiplication, optimal binary search trees, Floyd Warshall algorithm, CYK algorithm, Greedy, set of intervals, Huffman coding, Knapsack, Kruskal& Prims algorithm for MST, back tracking, branch & bound, traveling salesman problem		
Module 3		8 Hours	
Computing Algori disjoint sets.	thms, Simple Numerical algorithms, B trees, Fibonacci Heaps	, Data Structure for	
Module 4		8 Hours	
	lgorithms based on DFS, BFS, topological sort, pattern matc est path, flow, cuts. Efficient algorithms for matrix ir odular arithmetic.		
Module 5		8 Hours	
theorem, NP Com algorithms.	s, P, NP, Co-NP, NP Hard & NP complete problems. Search / de pleteness for clique, vertex cover, TSP, set covering ⊂	sum, approximation	
	 (1) Aho, Hopcroft and Ullman "The design and analysis of Computer Algorithms", Addison Weseley. (2) Horowitz and Sahni, "Fundamentals of Computer Algorithms", Galgotia Publications, 2000. (3) Baase S., "Computer Algorithms: Introduction to Design and Analysis", Addison Wesley. 2000 (4) Donald E. Knuth, "Art of Computer Programming, Volume 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 2000 (5) Corman, Leiserson and Rivest " Introduction to Algorithm", Prentice Hall India, 3rd Edition, 2010 (6) AnanyLevtin, "Introduction to Design and Analysis of Algorithms", 2003. 		

Subject Code	Software Engineering (S	SE)	Credits: 3 (3-0-0)
CS 352			Total hours: 45
Course Objectives	Following this course, students will be able and explain its importance, 2) Discuss the software processes, 3) Explain the importan the notion of professional responsibility. Th of software engineering, life cycle models a principles of software coding, design an languages & reusable code. Participatory de interface & mock up to confirm specifi Professional issues & to explain why they a & experience working in a team.	concepts of some ce of process visions of course cover and system engined testing. Impressign & debugging fications. To in	ftware products and sibility, 4) Introduce s the basic concepts neering, concepts & rovement in design ing. Specification of ntroduce ethical &
Module 1		6 Hours	
	oftware engineering and its objectives, S/W m digm, verification, validation.	yths, generic vio	ew of process, S/W
Module 2		11 Hours	
Life cycle mode	els, system engineering, requirements engineer	ring, business p	process engineering,
control system.	interface designs, real time software design, data		tem, monitoring and
Module 3		14 Hours	
structural testing	oftware testing, types of S/W test, black box to g, test coverage criteria based on data flow me on testing, validation testing, system testing and d	echanisms, reg	-
Module 4		14 Hours	
point models, Q	nentation techniques measures and measurements COCOMO model, error tracking, software co ics, software maintenance, project planning, risk	onfiguration ma management, CA	nagement, program ASE tools.
Reference books	 R.S. Pressman, "Software Engineering", Me PankajJalote, "An Integrated Approach to s 2002. Ian Sommerville, "Software Engineering", House, 1997. Bell Morry and Pugh. "Software Engineering & Qua New Delhi. Waman S. Jawadekar, "Software Engineer McGraw Hill. 	software Engine 5th ed., Addison ng Approach", Pr llity Assurance"	ering", Narosa Pub., -Wesley Publication rentice Hall. 2001 , BPB Publications,

Subject Code	Computer Networks (CN)	Credits: 3 (3-0-0)	
CS 353		Total hours: 45	
Course Objectives	This course focuses on understanding the design of assimilating hubs into a personal network.	computer networks,	
Module 1		6 Hours	
protocols, Practical Link Control protoc	Introduction to Computer Networks, Overview of OSI reference model. Topology design, Problems and protocols, Practical local area network design and implementation. IEEE LAN Standards, Logical Link Control protocols, HDLC, ALOHA, SLOTTED ALOHA, FDDI, Client Server model and related softwares. Computer Networks and Internet, Network edge, network core, Network Access, Delay and Loss		
Module 2		17 Hours	
	vices, UDP, TCP, New transport layer protocols, congestion of sions of TCP, network layer services, routing, IP, routing in in		
Module 3		9 Hours	
•	, error detection and correction, multiple access protocols, A vireless links, mobility, PPP, ATM, MPLS, VLAN.	ARP, Ethernet, hubs,	
Module 4		13 Hours	
Cryptography, auth	Multimedia networking, streaming stored audio and video, real-time protocols, security, Cryptography, authentication, integrity, key distribution, network management, Firewalls, Brief functioning of upper layers, E-mail and other application.		
books () () () ()	 J. F. Kurose and K. W. Ross, "Computer Networking: A T Featuring Internet", 3/e, Pearson Education, 2005. Peterson L.L. & Davie B.S., "Computer Networks, A syst Harcourt Asia, 2003. Andrew. S. Tanenbaum, "Computer Networks", Prentice H 2002. Fred Halsall, "Data Communications, Computer networkin Wesley Publishing Co., 2nd Edition, 2002. William Stallings, "Data & Computer Communication Maxwell, MacMillan International Edn. 2003. Behrouz A. Forouzan, "Data Communications & Networks McGraw Hill. 	ems approach", 3/E, fall of India, 5 th Edn, ng on OSI", Addison ons", 2nd Edition,	

Subject Code	Compiler Design Laboratory	Credits: 2(0-0-3)
CS 354		Total hours: 42
Course Objectives	To obtain the practice of writing compilers.	
List of experiments		
(1) Introduction	to Flex/Lex& Bison/Yacc tools, Lexing and tokenizing Prog	grams
(2) Implementing	g an alternative grammars for infix expressions	
(3) Parsing and p	barse trees	
(4) Type checkin	ıg	
(5) Intermediate	code generation	
(6) Simple optim	nization (constant folding, etc.)	
(7) Relations		
(8) Control flow		
(9) Functions		
(10) Building a r	ninicompiler (possibly subsets of Standard Compilers li	ke PASCAL or other
languages) and executing Simple problems to demonstrate the Compiler capabilities		
Reference 1)	Holub A.I., "Compiler Design in C", Prentice Hall India.2	2000.
books 2		
	Press, 1998.	- •
3)	V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, "Compilers-	Principles,
	Techniques & Tools", 2/e, Pearson Education, 2007.	-

Subject Code	Networks Laboratory	Credits: 2 (0-0-3)	
CS 355		Total hours: 42	
Course Objectives	To provide students with a theoretical and practical base in issues.	n computer networks	
List of experiments			
(1) Implementat	ion of basic Client Server program using TCP and UDP Socke	t	
(2) Exercises co	mprising simulation of various protocols and performance stud	dy	
(3) TCP/IP Leve	l Programming Problems		
	g fully concurrent application with a TCP server acting as a di		
client progra	client programs allowing concurrent connection and message transfer (Eg. Chat sytem).		
(5) Routing Alge	(5) Routing Algorithms and internetworking		
(6) Experiments	with open source firewall/proxy packages like iptables,ufw, see	quid etc	
(7) Experiments	with Emulator like Netkit, Emulabetc		
(8) Experiments	with Simulator like NS2, NCTU NS etc		
Reference 1) W. Richard Stevens, Bill Fenner and Andrew M. Rudo	ff, "UNIX Network	
books	Programming", PHI.		
2			
3) Elliotte Rusty Harold, "Java Network Programming", 3 ^r	^d Edition, O'Reilly,	
	2004.		

Subject Code	Mini Project/Industrial Training	Credits: 1(0-0-2)
CS 356		
Course Objectives	Students are expected to undergo hands on training on a the guidance of a faculty/ an expert from industry. The prob be relevant to Computer Science and Engineering application	olem domain should

Subject Code CS 400	Foundation of Cryptography (FC)	Credits: 4 (3-1-0) Total hours: 56
Course Objectives	The purpose of the course is to familiarize the student topics that have been at the centre of interest in appl theory, particularly in cryptography. It also includes students with cryptography, cryptographic protocols an curve systems.	ications of number s familiarizing the
Module 1		13 Hours
Mathematical prelimit	naries: Number theory and algebra, finite fields.	
Module 2		9 Hours
Symmetric key encry	ption: Stream ciphers and block ciphers.	
Module 3		12 Hours
• • • •	phy, digital signatures, attacks, hash functions, authentica bublic key infrastructure.	ation schemes, key
Module 4		10 Hours
Identification scheme	es, interactive proofs, commitment protocols, zero know	ledge proofs, non-
interactive proofs.		
Module 5		12 Hours
Secret sharing schem	es, digital cash, electronic voting, elliptic curve, elliptic cu	irve cryptosystems,
identity based encrypt	ion.	
Reference books	 (1)Neal Koblitz, "Number theory and cryptography", Springer, 2007. (2)Hans Delfs, Helmut Knebl, "Introduction to Cryptography: Principles an 	

Subject Code	Introduction to Machine Learning	Credits: 3 (3-0-0)
CS 401	(IML)	Total hours: 45
Course	To develop framework for representation, classification	and processing of
Objectives	information using various mathematical approaches with real in statistics, and modern algorithms [Genetic, Neural network	
Module 1		8 Hours
	ear algebra and review of algorithms, Introduction to pattern cla x algorithm and quantization with Kraft inequality, entropy as m	e e
Module 2		15 Hours
5	n theory, classifiers, discriminant functions, decision surfaces. In non-parametric techniques in pattern classification, order statis	1
Module 3		15 Hours
KNN, linear discr	iminants, non-metric methods, grammar based methods, diction	ary and the Lempel-
Ziv estimation, m	ixtures, clusters data description and clustering, component an	alysis – PCA, ICA,
architectures and	performance analysis of pattern classification	
Module 4		7 Hours
Database systems, search & complexity, distributed, parallel and randomized processing environments, selected topics and research papers from PAMI, PY, KBS, IFS, for seminar and assignments.		
Reference	ence (1) Luciano Da Costa, Roberto Cesar Jr. – "Shape analysis and classification:	
books	 theory and practice ", CRC Press, 2001 (2) T Hastie, R Tibshirani, J Friedman – "The elements of statistical learning: Data mining, Inference and Prediction", Springer-verlag, 2009 (3) K. Fukunaga – "Introduction to statistical pattern recognition", Academic press (4) Yu Xinjie, Mitsuo Gen – "Introduction to Evolutionary Algorithms", Springer (5) Richard O. Duda, Peter E. Hart and David G. Stork "Pattern Classification", Wiley, 2007 (6) Christopher M. Bishop "Pattern Recognition and Machine Learning", Springer, 2006 	

Subject Code	Management	Credits: 3 (3-0-0)
HS 400		Total hours: 45
Course Outcome	Develops the ability to understand and analyze the broad and its financial dynamism	l aspect of management
Module 1	Principles of Accounting	5 hours
Accounting Cycle, Assu	imptions, Classifications of Accounts- Journal, Cash Book	k, Ledger, Final
Accounts-Manufacturin	g Account, Trading Account, P & L Account, Balance She	eet.
Module 2	Financial Statement Analysis	5 hours
Balance sheet, Profit an Funds flow and cash flo	d Loss Account, Economic vs Accounting Profit, Changes ow statement.	s in Financial Position,
Module 3	Ratio Analysis	6 hours
Nature of Ratio Analysi	s, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profita	bility Ratio, DuPont
Analysis, Comparative	statement and Trend Analysis, Inter-firm Analysis.	
Module 4	Working Capital	6 hours
Concept of working Cap	pital, Operating and Cash conversion Cycle, Permanent an	d Variable working
Capital, Balance working	ng capital position and Issues.	
Module 5	Time Value of Money	5 hours
Time preference for mo	ney, Future value, Annuity, Perpetuity, Sinking fund facto	or, Present value,
Annuity, Perpetuity, cap	pital recovery factor, Multiple period Compounding.	
Module 6	Capital Budgeting	8 hours
Nature and type of Inve	stment decision, Net Present value, (NPV), Internal Rate of	of Return (IRR), Payback
period, Profitability Ind	ex, Nature and Behavior of Cost, Breakeven point, multip	ole products analysis,
decision points.		
Module 7	Financial System	6 hours
Introduction to Indian F	inancial System, Financial Institutions and Financial Marl	kets.
Module 8	Industrial Engineering & Project Management	4 hours
Work Study, Time Stud	y, Industrial Psychology, Project Management (PERT, CF	PM)
Text Books	I.M Pandey, <i>Financial Management</i> , 10 th edition, Vikish Publication Brealey Y Myers, <i>Principles of Corporate Finance</i> , McGraw-Hill Rajiv and Anil: <i>Financial Management</i> , 2 nd Edition, Oxford University Press	
	L.M Bhole: Financial Institutions and Markets, Tata Mc	•

Subject Code CS 402	Seminar	Credits: 2 (0-0-2)
Course Objectives	Students will have to choose a topic in Computer Science and current trends or industry practices, prepare a write up, and pr with a suitable demonstration.	,

Subject Code	Security Laboratory	Credits: 2 (0-0-3)
CS 403		Total hours: 42
Course Objectives	To study the number-theoretic and cryptographic algorith hands on experience with the number theoretic algorith algorithms. To learn the usage of the number theoretic supplement with the C programming language.	ims and cryptographic
List of experiments		
6	hm for finding the Greatest Common Divisor of two large	integers.
	ean algorithm for finding the GCD of two large integers.	
•	algorithm to find the GCD of two large integers.	
	Multiplicative inverses in Z_n . Z_n is defined as <i>the integer</i>	s modulo $n.Z_n = \{0,$
-	n a $\in Z_n$. Find the multiplicative inverse of a.	
1 0	to find the modular inverse of the matrix if it exists. and multiply algorithm for modular exponentiation in Z_n .	
1 1	order of a group element.	
8. Finding a genera		
9. Chinese remaind		
	orithm for factoring integers.	
-	orithm for factoring integers.	
12. Fermat's factoriz		
	quares. Finding a congruence of squares modulo n to factor	n.
14. Fermat primality		
	probabilistic primality test	
16. Miller-Rabin pro	babilistic primality test	
17. Lucas-Lehmer pr	imality test for Mersenne numbers	
18. AKS primality te	est	
19. DES Symmetric	key algorithm	
20. RSA public key a	algorithm, Elgamal Cryptosystem, Subset sum, Secret Shar	ing scheme.
Reference books (1) Hand Book of Applied Cryptography by Alfred J. Menez	es. Paul C. van
l l l l l l l l l l l l l l l l l l l	Oorschot and Scott A. Vanstone	,
(2	2) (It is freely available: One of the source links:	
,	http://www.cacr.math.uwaterloo.ca/hac/)	
(3) PARI C Library: http://pari.math.u-bordeaux.fr/	
(4	4) The C Programming Language by Brian W. Kernighan, I	Dennis M. Ritchie
	5) Any Library packages for multi-precision arithmetic.	

Elective Subjects

Subject Code	Object Oriented Analysis and Design	Credits: 3 (3-0-0)
CS 500	(OOAD)	Total hours: 45
Course Objectives	To apply an iterative process such as the Unified Pro requirements and document them using Use Cases. P	erform software analysis
	and record the results using UML notation. Discussion of the software development affects testing and quality.	iss how object oriented
Module 1		8 Hours
An overview of development life c	object oriented systems development, object basics, sycle.	object oriented systems
Module 2		13 Hours
unified approach,	dology , Booch methodology , Jacobson methodology unified modeling language , use case , class diagran collaboration diagram , state diagram , activity diagram.	· • · · · ·
Module 3		12 Hours
• •	ses, object analysis, classification, identifying object rel kioms, designing classes, access layer, object storage, and	- ·
Module 4		12 Hours
Designing interfa satisfaction, mini	nce objects, software quality assurance, system usa	ability, measuring, user
Reference books	 Ali Bah rami, "Object Oriented Systems Development", Tata McGraw-Hill, 1999. Martin Fowler, "UML Distilled", 2nd ed., PHI/Pearson Education, 2002. Stephen R. Schach, "Introduction to Object Oriented Analysis and Design", Tata McGraw-Hill, 2003. James Rumbaugh, Ivar Jacobson, Grady Booch "The Unified Modeling Language Reference Manual", Addison Wesley, 1999. Hans-Erik Eriksson, Magnus Penker, Brain Lyons, David Fado, "UML Toolkit", OMG Press Wiley Publishing Inc., 2004. 	

Subject Code CS 501	Advanced Data Structures (ADS)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	Advanced Data Structures is about using mathematical of graphs to represent computational problems. It aims at sophisticated algorithms and methods of analysis.	0
Module 1		9 Hours
asymptotic notation	orithms, algorithms as a technology, analyzing algorithms, doons, standard notations, common functions, recurrences, substituted and order statistics: Merge sort, quick sort, heap sort, sorting in s.	tion method, master
Module 2		9 Hours
splay trees. Advan	a, hash functions, open addressing, search trees, binary search traced Data structures: B – Trees, binomial heaps, fibonacci heap ix Trees-Tries-Text compression, text similarity testing-range and k-d trees.	s, data structures for
Module 3		9 Hours
sort, strongly com Single-source she Dijkstra's algorit Maximum flow: F	s: Elementary graph algorithms, representation of graphs, BF nected components, minimum spanning trees, the algorithms of ortest paths: Bellman-ford algorithm, single source shortes hm, all-pair shortest paths, matrix multiplication, Floyd-Y Flow networks, the Ford-Fulkerson method, maximum bipartite r	Kruskal and Prim's. t paths in DAG's, Warshall algorithm. natching.
Module 4		9 Hours
of greedy strategy	and analysis techniques: Greedy algorithms, an activity, selection, Huffman codes. Dynamic programming: Matrix chain multip ming, optimal binary search trees.	
Module 5		9 Hours
algorithm. NP-Co	The naïve string matching algorithm, Rabin-Karp algorithm, mpleteness: Polynomial time, Verification, NP-Completeness a ofs, NP-Complete problems.	
Reference books	 Thomas Cormen, Charles E Leiserson and Ronald D Riv Algorithms", PHI, 2001. Mark Allen Weiss, Algorithms, "Data Structures and Pro C++", Addison Wesley, 2002. M.T.Goodrich and R.Tomassia,"Algorithm design: Foun internet examples", John Wiley and sons. EllisHorowitz, Satraj Sahni and S.Rajasekaran, "Fundan algorithms", Galgotia publications pvt. Ltd. R.C.T.Lee, S.S.Tseng, R.C.Chang and T.Tsai, "Introduct analysis of algorithms: A strategic approach", McGraw Hill 	oblem Solving with dations, analysis and nentals of computer tion to design and

Subject Code CS 502	Advanced Computer Architecture (ACA)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To understand concepts of parallel processing and implementing parallel execution within a single processor (p superscalar) and multiprocessor systems. To gain knowledg art research topics on advanced computing systems	pipeline, VLIW, and
Module 1		9 Hours
multiprocessors an properties: Condit parallelism, progra	r Models: The state of computing, classification of p ad multicomputer, multi vector and SIMD computers. Pro- ions of parallelism, data and resource dependences, hard m partitioning and scheduling, grain size and latency, program s inter connects, hierarchical bus systems, crossbar switch and abining network.	bgram and network ware and software n flow mechanisms,
Module 2		9 Hours
	ors: Advanced processor technology, instruction-set architectures, scalar processors, superscalar processors, VLIW architectures,	
Module 3		9 Hours
branch prediction,	struction pipelining, dynamic instruction scheduling, branch h arithmetic pipeline design, computer arithmetic principle tional arithmetic pipelining	
Module 4		9 Hours
mechanisms, mes	Multiprocessor system interconnect, cache coherence a sage-passing mechanism, scalable, multi-threaded and data hniques, principles of multithreading, scalable and multithe d architectures.	aflow architectures:
Module 5		9 Hours
	inguages and compilers: Latency-Hiding techniques environment of modes, shared variable program structures, message pa	ssing programming
Reference books	 Dezso Sima, Terence Fountain, Peter Kacsuk, "A architectures: A design space approach", Addison Wesley. K.Hwang and F.A. Briggs, "Computer architecture and p McGraw Hill Publications K. Hwang, "Advanced computer architecture-paral programmability", McGraw Hill. J. Hennesy and D. Patterson, "Computer architecture approach", Morgan Kaufmann, 200.3 	barallel processing", lelism, scalability,

Subject Code	Advanced Microprocessors (AMP)	Credits:3 (3-0-0)
CS503		Total hours:45
Course Objective		d microprocessors.
Module 1		9 Hours
80386 architecture	e, enhancements of 80186,80286 architecture, real and virtua e, special registers, memory management, memory paging a incements, cache memory, comparison of microprocessors (8	mechanism, 80486
Module 2		10 Hours
Pentium instructi microprocessor a	cessor architecture, special Pentium registers, Pentium memor ons, Pentium pro microprocessor architecture, special fe rchitecture, Pentium II microprocessor architecture, Pentiu octure, comparison of Pentium processors.	atures, Pentium II
Module 3		10 Hours
PowerPC620, Inst	ruction fetching, branch prediction, fetching, speculation, ins	struction dispatching
- ·	truction execution, issue stalls, execution parallelism, ins architecture, Pipelining, out of order core pipeline, Memory	-
Module 4		8 Hours
	A32, MIPS R8000, MIPS R10000, Motorola 88110, Ultra SPARC version, DSP processors.	a SPARC processor-
Module 5		8 Hours
	& Interconnection, new generation mother boards 286 to Pen- - PCI- PCIX, peripheral interfaces and controller, memory and	
Reference books	 B.B.Brey, "The Intel Microprocessor 8086/8088 /80 80386, 80486 Pentium, Pentium Pro, PII, PIII & Programming & Interfacing", Pearson Education, 2004 John Paul Shen, Mikko H.Lipasti, "Modern Proce Mcgraw Hill,2006 Douglas V.Hall, "Microprocessors and Interfacing", IIEdition 2006 Mohamed Rafiquzzaman, "Microprocessors an BasedSystem Design", II Edition, CRC Press, 2007 	IV Archietecture, ssor Design", Tata Tata McGraw Hill,

Subject Code	Principles of Programming Languages	Credits: 3 (3-0-0)
CS 504	(PPL)	Total hours:45
Course	The basic thrust of this course will be on learning the dist	inctive techniques in
Objectives	the different paradigms and what semantic and compiling is	ssues come up in the
	various languages considered. The course introduces Im functional programming, declarative programming and s oriented programming.	
Module 1		12 Hours
Imperative and o	bject-oriented programming, role of types, static and dynamic t	ype checking, scope
rules, grouping of polymorphism, to	lata and operations, information hiding and abstract data types, emplates.	objects, inheritance,
Module 2		12 Hours
function declarat	amming, expressions and lists, evaluation, types, type systems, va- tions, lexical scope, lists and programming with lists, polymorph l functions, abstract data types.	-
Module 3		12 Hours
• • •	ing, review of predicate logic, clausal-form logic, logic as a pro rithm, abstract interpreter for logic programs, semantics prolog.	
Module 4 9 Hours		9 Hours
Lambda calculus	and semantic environment and rules.	
Reference books	 Kenneth C. Louden, "Programming Languages: Principles and Practice", 2nd ed., Thomson 2003. Carlo Ghezzi, Mehdi Jazayeri, "Programming Language Concepts", 3rd ed., John Wiley & Sons, 1997. Ravi Sethi, "Programming Languages: Concepts and Constructs", 2nd ed., Pearson Education Asia. 	

Subject Code	Data Warehousing and Data Mining	Credits: 3 (3-0-0)
CS505	(DWDM)	Total hours:45
Course Objectives	Following this course, students will be able to 1) Leadatabase technology, 2) Understand data mining principle Discover interesting patterns from large amounts of cextract patterns to solve problems, make predictions of our systematically supervised and unsupervised models a respect to their accuracy, 5) Design and implement application using sample, realistic data sets and modern to	es and techniques, 3) lata to analyze and utcomes. 4) Evaluate nd algorithms with t of a data-mining
Module 1		9 Hours
data model, data multidimensional support data extract technology, from o	hitecture, OLAP technology for data mining, data warehous warehouse architecture, data warehouse implementation, versus multi relational OLAP, categories of tools, DBMS section, cleanup and transformation tools for metadata, develo data warehousing to data mining, data generalization, efficie further development of data cube and OLAP Technolog	OLAP guidelines, chemas for decision pment of data cube nt methods for data
Module 2		12 Hours
	a mining tasks, objectives (classification, clustering, associat , deviation detection).	ion rules, sequential
Module 3		8 Hours
Data and preproces	sing (data cleaning, feature selection, dimensionality reduction).
Module 4		8 Hours
	cision-tree based approach, rule-based approach, instance n: Naive and Bayesian networks, classification model evaluatio	
Module 5		8 Hours
Clustering (partition cluster validation	nal methods, hierarchical methods, graph-based methods, der methods), anomaly/outlier detection (introduction to variou ensity-based and other methods for outlier detection).	sity-based methods,
books	 Jiawei Han and Micheline Kamber, "Data mining techniques", 2nd ed., Morgan Kaufmann publishers. Raph Kimball," Data warehouse toolkit", John Wiley & (3) Michael. J. Berry, Gordon Linoff, "Data mining tech sales, customer support", John Wiley & Sons. 	Sons Publications

Subject Code CS 506	Advanced Database Systems (ADBS)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To develop an appreciation of emerging database trends as structured data, the internet, and object-oriented database process of DB Query processing and evaluation.	ses. To explain the
Module 1		11 Hours
distributed databa	base concepts, overview of client-server architecture and uses, concurrency control heterogeneity issues, persistent prog nd its implementation, clustering, indexing, client server	gramming languages,
Module 2		11 Hours
balancing, query	chitectures, data partitioning, intra-operator parallelism, pipelin processing- index based, query optimization: cost estimation, e query processing and optimization, XML, DTD, XPath, XM	query optimization:
Module 3		11 Hours
Recovery, multile	ction models: Save points, sagas, nested transactions, mul evel recovery, shared disk systems, distributed systems 2PC, storage, security and privacy- multidimensional k- anor	3PC, replication and
Module 4		12 Hours
ERDs), logical da	l data: Conceptual data models for spatial databases (e.g. ata models for spatial databases: raster model (map algebra), need for spatial operators and relations, SQL3 and ADT. spa	vector model, spatial tial operators, OGIS
Reference books	 AviSilberschatz, Henry Korth, and S. Sudarshan, "Databa 5th ed., McGraw Hill, 2005. S. Shekhar and S. Chawla, "Spatial databases: A tour, Pren (3) Ralf HartmutGuting, Markus Schneider, "Moving objects Kaufman, 2005. R. Elmasri and S. Navathe, "Fundamentals of database Cummings,5th ed., 2007. Raghu Ramakrishnan, "Database management systems", N Ceri S and Pelagatti G, "Distributed databases principles a Mc-Graw Hill, 1999. 	tice Hall", 2003. databases", Morgan systems", Benjamin- AcGraw-Hill, 2000.

Subject Code		Credits: 3 (3-0-0)
CS 507	E-Commerce (EC)	Total hours: 45
Course	To provide principles of e-commerce from a business perspe	ctive.
Objectives		
Module 1		12 Hours
Infrastructure and	tools for e-commerce, current trends in e-commerce applicatio	ns development, the
business of interne	t commerce, enterprise level e-commerce.	
Module 2		12 Hours
Security and end	ryption, electronic payment systems, search engines, intel	ligent agents in e-
commerce, on-line	auctions, data mining for e-commerce.	
Module 3		12 Hours
Web metrics, reco	mmended systems, knowledge management, mobile e-commerce	ce, legal, ethical and
social issues.		
Module 4 9 Hours		9 Hours
Seminars and mini	projects.	
	(1) Henry Chan et al., "E-Commerce-Fundamental and applic	ations", John Wiley
D.f	& Sons 2002	
Reference books	2) G. Winfield Treese and Lawrence C.S., "Designing Systems for Internet	
	Commerce", Pearson Education, LPE, 2002 (3) Fensel, Dieter, Brodie M.L., "Ontologies: A Silver Bu	llet for Knowledge
	Management and ECommerce", Allied Publishers, 2004	
	(4) Zimmermann, Olaf Tomlinson, Mark R.: Peuser, Stefan, "I Services", Allied Publilshers, 2004	Perspectives on Web

Subject Code CS 508	Advanced Operating Systems (AOS)	Credits: 3(3-0-0) Total hours: 45
Course Objectives	To provide comprehensive and up-to-date coverage of the in distributed operating system, multi-processor operating operating system.	5 1
Module 1		9 Hours
communication ne system, lamp ports	distributed systems , system architecture types, issues tworks, primitives, theoretical foundations, inherent limitati- logical clocks, vector clocks, casual ordering of messages, g ation, termination detection, distributed mutual exclusion.	ons of a distributed
Module 2		9 Hours
issues in deadlock centralized, distribu	ck detection, introduction, deadlock handling strategies in detection and resolution, control organizations for distributed and hierarchical deadlock detection algorithms, agreement	deadlock detection, ent protocols.
Module 3	memory, architecture, algorithms for implementing DSM, me	12Hours
issues. Failure reco backward and forw synchronous and a	ng algorithm, requirements for load distributing, task migra overy and Fault tolerance: Introduction, basic concepts, class ard error recovery, recovery in concurrent systems, consistent synchronous check pointing and recovery, check pointing for n replicated distributed databases.	ification of failures, set of check points,
Module 4		8 Hours
	urity, preliminaries, the access matrix model and its implem vanced models of protection. Cryptography basics,multi- stributed systems.	
Module 5		7 Hours
serializability theor	S, database OS, database systems, a concurrency control y, distributed database systems, concurrency control algorithm	ol model, problem, s.
Reference	 MukeshSinghal Niranjan, Shivorothri G., "Advanced Co systems" Andrew S. Tanenbaum, "Distributed Operating systems" Doreen L. Galli, "Distributed operating systems - cond Prentice-Hall 2000. A Silberschatz, "Applied Operating systems Concepts", Wi 	cepts and practice",

Subject Code CS 509	Cyber Laws & Intellectual Property Right (CLIPR)	Credits:3 (3-0-0) Total hours: 45
Course Objectives	To introduce the cyber world, intellectual property law and cyber law in general to explain about the various facets of cyber-crimes, to enhance the understanding of problems arising out of online transactions and provoke them to find solutions, to clarify the Intellectual Property issues in the cyber space and the growth and development of the law in this regard and to educate about the regulation of cyber space at national and international level.	
Module 1		12 Hours
•	T act; the rights the various parties have with respect to creating, bution, storing and copying digital data	modifying,
Module 2		12 Hours
1	onsibilities and potential liabilities, intellectual property issues co of digital data, the similar act of other countries.	nnected with use
Module 3		12 Hours
Computer crime,	computer fraud, hacking.	
Module 4		9 Hours
Unauthorized modification of information, privacy, computer pornography harassment.		
Reference books	 (1) D. Brainbridge, "Introduction to computer law" Education,2004. (2) P. Duggal, "Cyber law: the Indian perspective", 2005. 	, 5 th ed., Pearson

Subject Code	Information Theory (IT)	Credits: 3 (3-0-0)
CS 510		Total hours: 45
Course Objectives	This course aims at developing contents from Information theory formulating its mathematical structure towards design, representation and performance limits associated with the problems in information systems.	
Module 1		15 Hours
information using	obability theory & statistics, analysis and discrete mather probability, digitization and Shannon's model for information	storage/transmission
Module 2		10 Hours
characterization, colless for DMS), ex	and the law of large numbers, bounds on typicality, propertion onditional, relative, joint entropy, mutual information, source istence of minimum information, entropy as divergence, ent ate of Markov sources, comments on complexity	coding theorem (loss
Module 3		10 Hours
	ality, greedy algorithm via min-max constraint, Shannon-Fano ion function and data compression of speech or image (case st	• •
Module 4		10 Hours
rates for unreliabl betting, stock mark learning theory, di	liability analysis, Burg's theorem and entropy maximization, e communication, Shannon-McMillan-Brieman theorem, inf tet (the log-optimal portfolio), special topics : algorithms in d stributed processing/source coding, information theory in mac	formation theory and atabase development, hine learning
books	 T. Cover, J Thomas, "Elements of information theory", Wi R. G. Gallager, "Information theory and reliable commun Press A Rohatgi, MdEhsanes Saleh, "Introduction to probability, Relevant Literature pointed in the Class from IEEE Tran Theory 	nication", Cambridge statistics", Wiley

Subject Code	Optimization Techniques in Computing	Credits: 3 (3-0-0)	
CS511	(OT)	Total hours:45	
Course Objectives	The main goal of this course is to provide the students	with a background,	
	foundation, and insight into the several dimension	ns of Optimization	
	Techniques.		
Module 1		15 Hours	
Basic OR techniqu	es, requirements, networks, design, role and methods, uncons	strained optimization	
methods- Newton l	ke methods, conjugate direction methods.		
Module 2		15 Hours	
Constrained optim	Constrained optimization: Linear programming, theory of constrained optimization, Non-linear		
programming. Dat	abases, compilers, optimization and performance in web	computing, internet	
application.			
Module 3		15 Hours	
Performance meas	urement tools, case studies, Implementation of an optimiz	zation technique for	
Computer Science	applications		
Reference (e (1) K Kanth, "Introduction to computer system performance evaluation", McGraw		
books	Hill, 1992		
((2) David K Smith, "Network optimization in practice", ellise, Horrwood		
	publications, 1982		
	3) R. Fletcher, "Practical methods of optimization", 2nd Editio	on, Wiley.2000.	

Subject Code CS 512	Soft Computing (SC)	Credits: 3 (3-0-0) Total hours: 45
Course	The course explores the soft computing approaches to cons	ider uncertainty that
Objectives	is inherent in pattern analysis tasks.	
Module 1		8 Hours
Biological neuron, 1	nerve structure and synapse, artificial neuron and its model,	activation functions,
Neural network arcl	hitecture: single layer and multilayer feed forward networks,	recurrent networks.
Various learning tec	chniques; perception and convergence rule, Auto-associative a	nd hetro-associative
memory.		
Module 2		8 Hours
Architecture: Percep	otron model, solution, single layer artificial neural network, n	nultilayer perception
	gation learning methods, effect of learning rule co-efficien fecting back propagation training, applications.	t, back propagation
Module 3		10 Hours
Basic concepts of fu	uzzy logic, fuzzy sets and crisp sets, fuzzy set theory and open	ations, properties of
-	d crisp relations, fuzzy to crisp conversion.	
Module 4		9 Hours
Membership function	ons, interference in fuzzy logic, fuzzy if-then rules, fuzzy im	plications and fuzzy
algorithms, fuzzyfic	ation and defuzzificataion, fuzzy controller, industrial applicat	tions
Module 5	· · · · · · · · · · · · · · · · · · ·	10 Hours
Genetic algorithm(GA):Basic concepts, working principle, procedures of GA,	flow chart of GA,
	tions(encoding), initialization and selection, genetic o	
generational cycle, a	applications.	-
books (2 (3 (4 (4) (4) (4) (4) (4)	 Satish Kumar, "Neural networks: A classroom approach", I J. S. R. Lang, C. T. Sun and E. Mizutaju "Neuro-Fuzzy a Pearson Education CT. Liu and C.S. George Lee "Neural fuzzy System: A ne to intelligent system", PH 1996 V. Kecman "Learning and soft computing" MIT press 2001 A Ghosh, S. Dehuri and S. Ghosh(eds), "Multi-obj algorithms for knowledge discovery from databases", Sprin S. Bandyopadhyay and S.K. Pal, "Classification and lea algorithms: applications in bioinformatics and web intell Verlag, 2007 S. Rajsekaran& G.A. VijayalakshmiPai, "Neural network genetic algorithm:synthesis and applications" Prentice Hall 	nd soft computing", puro fuzzy synergism ective evolutionary ger 2008 rning using genetic igence", , Springer- ks, fuzzy logic and

Subject Code	Applied Algorithms (AA)	Credits: 3 (3-0-0)	
CS513		Total hours: 45	
Course Objective	The course provides an overview of some of the essential which are commonly used in the scientific enterprise.	The course provides an overview of some of the essential numerical techniques which are commonly used in the scientific enterprise.	
Module 1		15 Hours	
problem analysis a	thms: Algorithm design techniques; stable marriage proble and representative problems. greedy algorithms, interval schedu ofits, 1/2 approximation for knapsack. Data compression: Hut	ling, scheduling with	
LZ77, gzip.			
Module 2		11 Hours	
String Matching a	lgorithms: Rabin-Karp algorithm, Knuth Morris pratt algorithm	. Parallel algorithms:	
Designing parallel	algorithms; combinatorial algorithms.		
Module 3	Module 3 10 Hours		
Network flows: B	ellman ford algorithm. divide-and-conquer, closest points proble	em. external memory	
algorithms, online	algorithms.		
Module 4		9 Hours	
1 0	Graph Algorithms, internet algorithms and security- cryptography algorithms. basics of randomized algorithms. basics of approximation algorithms.		
Reference books	 Alfred V Aho, John E Hopcroft, Jeffery D Ullman, algorithms", Addison Wesley , 1993 J. Kleinberg, E. Tardos, "Algorithm design". Pearson Educ Wesley, 2006." Michael Jay Quinn, "Designing efficient algorithms for McGraw Hill 1997. Rajeev Motwani, PrabhakarRaghavan, "Randomized algo University Press, 1995. R. E. Tarjan, "Data structures and network algorithms", SI (6) Vijay V. Vazirani, "Approximation algorithms", Springer, 2005. 	ation, Addison parallel computers", prithms", Cambridge AM, 1983.	

Subject Code	Network Management(NM)	Credits: 3 (3-0-0)
CS514		Total hours: 45
Course Objectives To appreciate the need for interoperable network management, u		agement, understand
	general concepts and architecture behind standards based a	network management.
	Understand advanced information processing techniques	s such as distributed
	object technologies, software agents and internet technolo management	gies used for network
Module 1		11 Hours
Data communications information network	and network management overview: Goals, architecture and p and technology.	erspectives, review of
Module 2		11 Hours
SNMP and network	management- basic foundations: Standards, models and	languages, network
<u> </u>	tion and information models, communication and functional m	
Module 3		11 Hours
Network Managemen	at tools, systems and engineering and applications, managem	ent of heterogeneous
network with intel	ligent agents, network security management, internet	management (IEEE
communication May,	Oct.03).	
Module 4		12 Hours
Broadband network management, wired and optical networks management, QoS in IP network, basic methods & theory for survivable network design & operation, network planning, network management standards.		
Reference books	 (1) M. Subramanian, "Network management: principles and practice", Adison-Wesley, 2000. (2) James F. Kurose and Keith W. Rose, "Computer networking", Pearson Education, LPE, 2003 (3) J. Burke, "Network management concepts and practice, A Hands-on approach", Pearson Education, 2000. (4) Larry L. Peterson and Bruce S. Davie, "Computer networks, a system approach", 3rd edition, Elsevier. 	

Subject Code	Software Architecture (SA)	Credits: 3 (3-0-0)
CS515		Total hours:45
Course Objective	es Complex software systems require abstraction and analys level of abstraction. In this course we study, typical software	
Module 1		15 Hours
Typical software these structures.	system structures (architectural styles), techniques for designir	ng and implementing
Module 2		10 Hours
	terizing and reasoning about architectures, and tools architecture	al modelling. Role of
	tware engineering;	1
Module 3		10 Hours
Enterprise Archite	Enterprise Architectures, Zachman's Framework; Architectural Styles, Design Patterns;	
Module 4		10 Hours
Architecture Desc	ription Languages; Product-line architectures; Component based	d development.
Reference books	 (1) Frank Buschmann, RegineMeunier, Hans Rohnert, MiachelStal, Douglas Schmidt, "Pattern oriented sof Volumes 1 &2, Wiley (2) Len Bass, Paul Clements, Rick Katzman, Ken Bass, "Sof practice".2nd ed. Addison-Wesley Professional 2003 (3) George T. Heineman, William T. Councill, "Comport engineering", Addison-Wesley, 2001 (4) Kurt Wallnau, Scott Hissam and Robert Seacord, "But commercial components", Addison-Wesley 2002 	tware architecture", tware architecture in tent based software

Subject Code CS 516	Cyber Laws & Security Standards(CLSS)	Credits: 3 (3-0-0) Total hours: 45	
Course Objectives	To acquire critical understanding in cyber law, the emerging property issues explore legal & policy developments in regulate cyber space & to develop competencies for dealing using cyber space.	various countries to	
Module 1		15 Hours	
Perimeter barrier	Perimeter barrier standards, cyber laws, cyber security issues, FGIB cyber security proposals.		
Module 2 15 Hours		15 Hours	
NRIC cyber secur	rity recovery best practices, creation of new practices.		
Module 3		15 Hours	
NRIC physical se	NRIC physical security practices.		
Reference books	 (1) www. Bell-labs.com/user/krauscher/nric/#intraduction%20TO%20NRIC (2) Hacking exposed scambrey mcclure, kartz tata-mcgrawhill 		

Subject Code	Wireless Networks & Systems (WNS)	Credits: 3 (3-0-0)	
CS 517		Total hours: 45	
	To provide students with the knowledge and skills necessary	y to securely design	
Course	deploy and manage enterprise-wide wireless local area netw		
Objectives	security of wireless networks for weaknesses.		
Module 1		11 Hours	
Introduction to r	etwork resilience problems and solutions, wireless beyond	d 3G, performance	
modeling of (wire)	ess) networks and formal methods.		
Module 2	Module 2 11 Hours		
Network design a	Network design algorithms & network design using network processors, wireless ad-hoc networks,		
security issues in c	control, management, routing and other areas of networks		
Module 3	Module 3 11 Hours		
Distributed contro	l in (wireless) network and middleware, distributed mobile comp	outing.	
Module 4		12 Hours	
Embedded systems in mobile/wireless/network systems, hardware & software design/development			
issues, standardization in wireless/mobile network systems.			
Reference	1) Theodore S. Rappaport, "wireless communications	– principles &	
books	practices",2 nd ed, Pearson Education, 2002		
	(2) Boucher N., "Cellular radio handbook", Quantum Publishing, 1991		
	3) Feng& Leonidas, "Wireless sensor networks", Elsevier India	, 2005	

Subject Code	Web Engineering(WE)	Credits: 3(3-0-0)	
CS 518	······································	Total hours: 45	
Course	To apply the concepts, principles, and methods of Web e	ngineering to Web	
Objectives	applications development		
Module 1		10 Hours	
Web Engineering	g Fundamentals: Requirements specification and analysis, w	web-based systems	
development meth	nodologies and techniques, migration of legacy systems to web er	vironments.	
Module 2		10 Hours	
Web-application	development: Web-based real-time applications development,	testing, verification	
and validation, quality assessment, control and assurance, configuration and project management.			
Module 3		10 Hours	
Web metrics: gen	erating metrics for estimation of development efforts, performance	ce specification and	
evaluation, update	e and maintenance.		
Module 4		15 Hours	
User-centric deve	User-centric development: Development models, teams, staffing, integration with legacy systems,		
human and cultural aspects, user-centric development, user modeling and user involvement and			
feedback, end-user application development.			
Reference	(1) Journal of Web Engineering, Rinton Press, IEEE & ACM	I Publications	
books	(2) Cato and John, "User centered web design", Pearson Education	ation, 2001	
500 1 5		,	

Subject Code	Software Project Management (SPM)	Credits: 3 (3-0-0)
CS 519		Total hours: 45
Course	This course introduces project management as it relates t	to the software life
Objectives	cycle. Different software life cycle models and the p activities in each phase of the life cycle are studied. Projec are introduced, including effort estimation & the use of sof analysis and resource allocation and project scheduling. The with a project monitoring & control, project contracts & team	t planning activities tware metrics. Risk ne course concludes
Module 1	with a project monitoring & control, project contracts & tear	11 Hours
Introduction, promanagement.	ject definition, contract management, activities covered by	y software project
Module 2		11 Hours
Overview of Proje	ect planning, stepwise project planning, life cycle phases, artif	acts of the process,
model based softw	vare architectures, workflows of the process, check points of the	process.
Module 3		11 Hours
Software manager	nent disciplines, iterative process planning, project organization	s & responsibilities,
process automatio	n, project control & process instrumentation, tailoring the process	ss.
Module 4		12Hours
Modern project pr	ofiles, next generation software economics, modern process tra	nsitions, the state of
practice in softwar	re project management, the COCOMO cost estimation model, cl	nange of metrics
Reference books	 K. Conway, "Software project management: From concepting Books, 2001. I. Jacobson, G.Booch, J.Rumbaugh, "The unified soft Process, Addison Wesley, 1999. Stephan H.Kin, "Metric and models in software quaddison Wesley 1995. Walker Royce, "Software Project Management", Addison V (5) Pankaj Jalote, "Software Project Management in Practice" Inc. Delhi, 2002 	ware development" ality engineering", Wesley,1998.

Subject Code	Advanced Compilers (AC)	Credits: 3 (3-0-0)
CS520	indvanced compilers (inc)	Total hours:45
Course	Complex software systems require abstraction and analysi	s at an architectural
Objectives	level of abstraction. In this course we study, typical software	e system structures.
Module 1		10Hours
Overview of com	piler design, optimizing compilers, graph structures for cont	rol flow analysis of
programs, data flo program dependen	w analysis of programs, static single assignment form, data dep ce graph.	endence of program,
Module 2		10 Hours
Scalar optimizatio	on, loop optimizations, register allocation, instruction schedul	ling, local methods,
graph colouring, c	ode scheduling software pipelining, inter procedural dataflow	analysis, optimizing
for memory hierar	chies.	
Module 3		9Hours
High performance	e systems, scalar, vector, multiprocessor, SIMD, message pa	assing architectures.
sequential and para	allel loops, data dependence use-def chains.	
Module 4		16Hours
Dependence sys	tem, GCD test, Banerjee's Inequality, exact algorit	thm, vectorization,
concurrentization,	array region analysis, loop restructuring transformations	
Reference books	 (1) Robert "Building an Optimizing Compiler Morgan", Digital Press, 1998. (2) M. Wolfe, "High Performance Compilers for Parallel Computing", Addison-Wesley, 1996. (3) Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann Publishers, 1997. (4) R. Allen and K. Kennedy, "Optimizing Compilers for Modern Architectures", 	
	 Morgan Kaufmann Publishers, 2003. (5) A. Appel,Press, "Modern Compiler Implementation in C", 1998. (6) A. Aho, M. Lam, R. Sethi and J. Ullman "Compilers: Principles, Techniques, and Tools", 2007. (7) Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann, Elsevier Science, 2003 	
	(8) Michael Wolfe, "High Performance Compilers for P Addison Wesley, 1995.	arallel Computing",

Subject Code CS 521	Computer Vision (CV)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	The objective of this course is to understand the basic issue and major approaches that address them. Even though being used for many practical applications today, it is still n Hence, definitive solutions are available only rarely.	Computer Vision is
Module 1		11 Hours
Local shading m	overview, pinhole cameras, radiometry terminology. Sources, s odels- point, line and area sources; photometric stereo. Colo ception, Representing color; A model for image color; surface	or: Physics of color;
Module 2		12 Hours
transforms; Samp Edge detection:	olution, edge effects in discrete convolution; Spatial free oling and aliasing; filters as templates; Normalized correlations Noise; estimating derivatives; detecting edges. Texture: R riented pyramid; Applications; Shape from texture. The geom	and finding patterns. Representing texture;
Module 3		11 Hours
Stereopsis: Recor	nstruction; human stereo; Binocular fusion; using color camera.	·
Module 4		11 Hours
	clustering: Human vision, applications, segmentation by graph fitting a model, Hough transform; fitting lines, fitting curves;	
Reference books	 David A Forsynth and Jean Ponce, "Computer vision- A modern approach", Pearson education series, 2003. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Digital image processing and computer vision", Cengagelearning, 2008. Schalkoff R. J., "Digital image processing and computer vision", John Wiley, 2004. Sonka M., Hlavac V., Boyle R., "Image processing analysis and machine design". PWS Publishers Ballard D., Brown C., "Computer vision", Prentice Hall 	

Subject Code	Artificial Intelligence (AI)	Credits: 3 (3-0-0)
CS522		Total hours:45
Course Objectives	· ·	
	playing, more complex problems in first-order predic knowledge bases, planning, and reasoning systems.	ate logic, inference,
Module 1		15 Hours
techniques; probler	ificial intelligence, architecture of AI & KBCS systems, d n solving, knowledge based reasoning, logic, inference, know ertain information; state space search, heuristic search.	e
Module 2		10 Hours
Planning and mal	king decisions, learning, distributed AI, communication,	web based agents.
introduction & desig	gn of expert systems, various applications;	
Module 3		10 Hours
Negotiating agents	, artificial intelligence applications and programming. introd	uction to fuzzy logic
systems, natural lar	guage processing;	
Module 4		10 Hours
Heuristic search tec	hniques, knowledge based systems. problem solving by search	h; uninformed search,
informed ("heuristic	c") search, constrained satisfaction problems, adversarial searc	ch,
Reference (1) Nilson, "Artificial intelligence : A new synthesis",	Morgan Kaufmann
books	Publishers, 2001.	
(2) Charniak and Mcdermott, "Introduction to artificial int	telligence", Addison-
	Wesley, 1985.	
	(3) S. Russel and P. Norvig, "Artificial intelligence - A modern approach", Prentice	
	Hall, 1995. 4) Deepak Khemani, "A first course in artificial intelligence",	Tata McGraw
	Hill,2013.	
	(5) Ginsburg, "Essentials of artificial intelligence", Morgan Kaufmann, 1993.	
	6) George F. Luger, "Artificial intelligence", Pearson Educati	
(7) Edwin wise, "Hands on AI with Java", McGraw Hill, 2004	

subject Code	Multimedia & Virtual Reality (MVR)	Credits: 3 (3-0-0)
CS523		Total hours:45
Course	To provide basic knowledge of multimedia and over	view of the tools &
Objectives	taxonomy of multimedia authoring, including data repr	esentation for images,
	video & audio. To understand data compression & multim	edia communication &
	retrieval	
Module 1		11Hours
Introduction to r	nultimedia technology and its applications, multimedia ha	ardware and software
essentials. multim	edia graphics fundamentals. multimedia audio - sound card fu	ndamentals
Module 2		12Hours
MIDI fundament	als: digital video production techniques, image proces	sing - digital image
fundamentals, dig	gital image development and editing, computer animation	techniques, animation
software. multime	dia file formats – growth pace of multimedia in IT industry.	
Module 3		11Hours
Concepts of virtua	I reality and its effectiveness in real time applications, virtual	reality tools,
introduction to sci	entific visualization and virtual reality, hardware requirements	s, sound, animation
techniques, VR or	flight simulation.	
Module 4		11Hours
VR on CAD / CA study of multimed	AM processing : Virtual banks, compression and decompress lia workstations	ion techniques, CASE
Reference	(1) The Winn L. Rosch "Multimedia Bibble", SAMS Publishi	
books	(2) D. P. Kothari & Anshu, "Hypermedia: From multimedia to	V. R." , PHI, 2004.

Subject Code	Software Quality Assurance (SQA)	Credits: 3 (3-0-0)
CS524		Total hours:45
Course Objectives	The course will introduce the basics of software quality the issues, processes, and techniques in software qu discussed. The course will train the students to appl	ality assurance are
	techniques in different activities of software development	
Module 1		15 Hours
management appro	ware quality, software defects, reasons of poor quality, qual aches, cost and economics of SQA, quality measuremen nent, life cycle, models, maintenance issues, specification.	
Module 2		10 Hours
-	nts and SQA, requirements defects, writing quality requirement ument, software design model and software design defects	nts, quality attributes
Module 3		10 Hours
testing: WBT techr	cepts, programming and SQA, SQA reviews, software in iques, BBT techniques, testing strategies, debugging, test t cases, responsibilities of testers	-
Module 4		10 Hours
SQA and SCM, SC	M plan and SQA plan, process assurance, process manageme	nt and improvement,
-	ity metrics, a process model of software quality assurance. Idation.cost estimation, tools, debugging, simulators, ISO 90	•
books (4	 Capers Jones, "Software quality: Analysis and guide International Thomson Computer Press. 1997. Capers Jones, "Software assessments, benchmarks, a Addison-Wesley Professional, 2000. Pankaj Jalote, "An integrated approach to software e Publication, 1995. John J Marciniack, (Ed), "Encyclopedia of software engir and Sons,1994. Isabel Evans, "Achieving software quality through t Publishers, 2004. Mordechai Ben, Menachem, Garry S. Marliss, "Software practical, consistent software", Thomson Learning. James F. Peters, Witold Pedrycz, "Software engineering approach" WSE, Wiley. 	nd best practices", ngineering", Narosa heering", John Wiley eam work", Allied re quality producing

Subject Code CS 525	Protocol Engineering(PE)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	Characterize protocol engineering. Compare and contra protocols such as TCP/IP, DNS, DHCP, LDAP, and IPsec.	st various Internet
Module 1	·	11 Hours
Basic design con	unication Network: Overview of computer network protocol, OS cept: Protocol as a system, life cycle model, architectural des up approach ,separation of concern.	
Module 2		11 Hours
Requirement spec	ification: service specification service data unit service eleme	ents, communication
mode, Protocol an	chitecture:Basic protocol concept, protocol layer, protocol enti	ty, protocol element
protocol data unit.		
Module 3		11 Hours
Protocol structure	ng, design and specification protocol structuring, the us	sers of pdu service
structuring, gener	ic protocol function, five elements of protocol specification	n, rules of design,
specification lange	uage, message sequence chart, petri net finite state machine	
Module 4		12 Hours
Protocol Data Fo	rmat: Abstract Syntax format design principles, ASN.1, ASI	N.1 record structure
ASN.1 encoding r	ule, XML Syntax, DTD and XML schemas example, Case of	protocol data format
customer information	tion: XML-based customer information, ASN.1 binary-encoded	based XML schema
and ASN.1 cooper	ration.	
Reference	(1) Web sites, IEEE, ISO and ITU-T sites.	
books	(2) P. Venkatram & S. S. Manavi, "Protocol Engineering", PHI,	, 2004.

Subject Code CS 526	Software Testing (ST)	Credits: 3(3-0-0) Total hours: 45
Course Objectives	To discuss the distinctions between validation tests and describe strategies for generating system test cases. To gain skills on how to use modern software testing tools to supp projects.	the techniques and
Module 1		9 Hours
definitions, softwar origins of defects, d	heering activity, role of process in software quality, testing e testing principles, the tester's role in asoftware develop efect classes, the defectrepository and test design, defect exa eloping a defect repository.	ment organization,
Module 2		9 Hours
approach to test case other black box test testdesign, test adequirole in white box base	ng design strategies, the smarter tester, test case designstrategie design, random testing, equivalence class partitioning, bount tdesign approaches, black box testing and cots, using whit uacy criteria, coverage and control flow graphs, covering code sed test design – additional white box test evaluating test adequacy criteria.	dary value analysis, e box approach to
Module 3		9 Hours
testable unit, the test	of testing, unit test, unit test planning, designing the unitte st harness, running the unit tests andrecording results, integrati egration testplanning, system test, the different types, regress tests.	on tests, designing
Module 4		9 Hours
attachments, locatin policy development	ng and debugging goals and policies, test planning, testplan co g test items, reporting testresults, the role of three groups i , processand the engineering disciplines, introducing the te ialist, building a testing group.	n test planning and
Module 5		9 Hours
and control issues, c components of revie Reference (1	 surements and milestones for controlling and monitoring, staturiteria for test completion, scm, types of reviews, developing w plans, reporting review results.) Glenford J. Myers, "The art of software testing", John Wiley) Boris Beizer, Black "Testing: Techniques for functional test systems", John Wiley & Sons, 1995. 	g a review program, & Sons, 1979.
(4) William Perry, "Software testing: Effective methods for soft Wiley, 1995.) Cem Kaner, Jack Falk, Hung Quoc Nguyen, "Testing comp Ed, Intl. Thomson Computer Press, 1993.) Ilene Burnstein, "Practical software testing", Sprin Edition, 2003. 	outer software", 2nd

Subject Code CS 527	Mobile Communications (MC)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To understand the issues involved in mobile communication analysis.	on system design &
Module 1		8 Hours
	ellular mobile systems: A basic cellular system, performance craironment, operation of cellular systems, planning and cellular stems.	-
Module 2		8 Hours
	lar radio system design:General description of the problem, connel interference reduction factor, desired c/i from a n	
omnidirectional an	ntenna system, cell splitting, consideration of the components of	cellular systems.
Module 3		10 Hours
Interference:Intro	duction to Co-channel interference, real time Co-channel	interference, Co-
channelmeasurem	ent, design of antenna system, antenna parameters and the	ir effects, diversity
receiver, non Co-	channel interference - different types.	
Module 4		9 Hours
Cell coverage for	signal and traffic:General introduction, obtaining the mobile poi	nt- to - point model,
propagation over	water or flat open area, foliage loss, propagation in near in dis	tance, long distance
propagation, poin	t - to - point predication model - characteristics, cell site, antenn	a heights and signal
coverage cells, mo	bile - to - mobile propagation.	
Module 5		10 Hours
Mobile communi satellite services	cations by satellite service systems in operation, INMARSAT, I	MSAT, LEO mobile
Reference books	 (1)Lee W.C.Y., "Mobile cellular telecommunications", McGraw (2) Mazda F., "Telecommunications engineering" Reference 1993. (3) Gibson J.D., "Mobile communication hand book", CRC pre (4)Macario R.C.V., "Cellular radio", Macmillan, 1993. (5) Bud Bates, "Wireless networked Communication", McGraw (6)Dr. KamiloFeher, "Wireless digital communication", PHI. 	book, Butterworth, ss, U.S.A., 1996.

Subject Code CS528	Information Security(IS)	Credits: 3 (3-0-0) Total hours:45
Course Objectives	To provide extensive, detailed and critical unders principles and theories of computer network secu application and operating system security, web se mobile application security.	rity. also the course focuses on
Module 1		9Hours
Security proper	ties, threat models, examples; control hijacking attacks	and defences.
Module 2	v	9 Hours
Tools for robust access control	t code, exploitation techniques and fuzzing, dealing w	ith legacy code, least privilege,
Module 3		9 Hours
Operating system	n security, cryptography overview, basic web security	model
Module 4		9 Hours
Web application	security; session management and user authentication	, HTTPS: goals and pitfalls
Module 5		9 Hours
Mobile platform architecture	n security models: Android, iOS, mobile threats and r	nalware, the trusted computing
Reference books	 (1) Matt Bishop, "Computer security, arts & science (2) Pceprzyk et.al. "Fundamentals of computer sece (3) Derek Atkins and 9 others, "Internet security" 7 (4) Michael Howard and David LeBlane, "Writin Publishers. (5) Dave Aitel, "How hackers look for bugs" 	urity", Allied Publishers, 2004. Fechmedia 2nd edition, 1997.
	(6) Charlie Miller, "Real world fuzzing"	

Subject Code	Network Security(NS)	Credits: 3 (3-0-0)
CS529		Total hours:45
Course Objectives	To provide extensive, detailed and critical understanding issues, principles and theories of network security.	g of the concepts,
Module 1		15 Hours
Introduction to net	work security and associated techniques, Firewall design pri	nciples: Packet
filtering, Gateways	: Circuit-level gateways; application-level gateways,	
Module 2		10 Hours
Firewall Configura	tions, Intrusion Control: Detection; Anomaly-Based IDS Int	rusion Recovery;
Vulnerability Scan	ners; Login, Audit, and Sniffers,	
Module 3		10 Hours
Communication Se	curity Network Access Layer;- Internet Layer - Transport La	ayer;
Module 4		10 Hours
Application Layer	- Message Security Risk Analysis, Policies, Procedures and	Enforcement. Special
Topics : DOS Mitig	gation , VPNs Special Topics: Viruses, SPAM. Network prot	ocols and
vulnerabilities, Net	work defenses, Denial of service attacks, Malware,	
Reference (1) C. Kaufman, R. Perlman, M. Speciner, "Netwo	ork security: Private
books (communication in a public world", Prentice Hall, 2002. 2) William Stallings, "Network security essentials", 2/e, Pea	rson Education, 2003.

Subject Code CS 530	Parallel Algorithms (PA)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To introduce techniques for the design of efficient parallel implementation.	algorithms and their
Module 1		10 Hours
Parallel processing parallel algorithms.	, parallel models, performance of parallel algorithms, com	plexity measure for
Module 2		11Hours
1	esigning parallel algorithms, pointer jumping technique, d y, pipelining, accelerated cascading, symmetry breaking.	livide and conquer,
Module 3		12Hours
Lists and trees, list	t ranking, Euler-tour technique, Tree contraction, computation	on of tree functions,
0 0 1	orting algorithms. parallel combinatorial algorithms: permutation tions, derangements. parallel searching algorithms: maximum st element.	
Module 4		12Hours
connectivity problematrix computation Reference (books (((((((((((((((((((rithms, parallel graph search &, tree traversal algorithms, params, parallel algorithms for path problems., Ear decomposities, General dense matrices. 1) Jaja, J. "An introduction to parallel algorithms", Addison MA, 1992. 2) Gibbons A., W.Rytter, "Efficient parallel algorithms", C Press; Cambridge, 1988 3) H. Sparkias and A. Gibbon, "Lecture notes on par Cambridge University Press, 1993. 4) K. Hwang and F. A. Briggs, "Computer architecture and McGraw Hill Inc., 1985. 	ion, Polynomial and n- Wesley, Reading, ambridge university rallel computation",
(5) S. Akl., "Design and analysis of parallel algorithms", Prenti	ce Hall Inc, 1992.

Subject Code	Distributed Algorithms(DA)	Credits: 3 (3-0-0)
CS531		Total hours:45
Course Objectives	To introduce the main algorithmic techniques in the fram models of computing; to define the most significant comp the computational limits of parallelism and concurrency.	
Module 1		9 Hours
e	ams: models and complexity measures. Modeling: Synchron m model, asynchronous shared memory model, asynchror as system model.	
Module 2		9 Hours
	ynchronous ring: Basic algorithm, non-comparison based algorithm. Lower bounds on the algorithms. Leader election in	
Module 3		9 Hours
Distributed consens failures. approximat	us with process failures: Algorithms for stopping failures, alg e agreement.	gorithms for byzantine
Module 4		9 Hours
U	nent using read/write shared memory. Basic asynchronous ring algorithms, leader election in arbitrary network.	network algorithms:
Module 5		9 Hours
time to asynchrono	synchronizer implementations. algorithm tolerating process far ous networks. applications. termination detection for diffu- rithms, mutual exclusion, general resource allocation algorit	sing algorithms. The hms.
Reference books	1. Nancy & Lynch, Distributed Algorithms, Harcour Asia	a, 2001.

Subject Code CS 532	Web Services & Cloud Computing (WSCC)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To standardize a framework applications to communicate of get a general idea about the models of web services. To und area of "cloud computing" and how it relates to traditional n To understand how well-known algorithms such as Page index construction can be expressed in the Map-Reduce competence in Ajax as a vehicle for delivering hig applications.	erstand the emerging nodels of computing. e Rank and inverted framework. To gain
Module 1		11 Hours
Basic concepts, er	nabling infrastructure, core functionality and standards.	
Module 2		12 Hours
Service semantics	, web service composition, service development and recent research	arch trends.
Module 3		11 Hours
Introduction to clo	oud computing, cloud computing delivery models.	
Module 4		11 Hours
1	 Industry case Studies of cloud, Map Reduce, Apache VCL, op, Security issues in cloud (1) Rajkumar Buyya, Christian Vecchiola, and Thamarai Sel Computing, International Edition: Morgan Kaufmann, 2013 (2) AlonsoG.,Casati F., Kuno H., Machiraju V., "Web Set Architectures and Applications Series: Data- Cen Applications"PHI 2004. (3) SanjivaWeerawarana, Francisco Curbera, Frank Leymann Platform Architecture: SOAP, WSDL, WS-Policy, WS-Ad WS-Reliable Messaging and more", Prentice Hall Publicati (4) Thomas Erl, "Service oriented Architecture: Concept Design", Prentice Hall Publication, 2005. (5) R. Allen Wyke et-al, "XML Programming", WR Publishers (6) Richard Monson-Haefel, "Web Services", Pearson (LPE). (7) "Cloud Application Architectures" by George Reese, O 2009. (8) "Cloud Security and Privacy", Tim Mather, SubraKuma 2009. (9) The Hadoop – Definitive Guide, Tom White, O'Reilly, 200 	lvi, Mastering Cloud 3. ervices – Concepts, atric Systems and et al, "Web Services dressing, WS-BPEL, on, 2005. rs, Technology and 4, , 2005. 'Reilly Publications, araswamy, O'Reilly,

Subject Code	Computer Security Audit and Assurance	Credits: 3 (3-0-0)
CS533	(CSAA)	Total hours:45
Course Objectives	To introduce students to the concepts of Information As	surance and how to
	secure such information using appropriate systems and tech	nologies, presenting
	introductory aspects on computer audit including auditing	information systems
	auditing computerized systems, auditing applications etc	. Also, to introduce
	students to the key management and Public Key Infrastructu	ıre.
Module 1		10 Hours
Security policy fram	meworks; practices and procedures, business practice disc	losures. Information
Systems in Global C	Context · Threats to Information Systems · Security Consider	ations in Mobile and
Wireless Computing	g · Information Security Management in Organizations ·	Building Blocks of
Information Security	y · Information Security Risk Analysis · Overview of P	hysical Security for
Information Systems	s · Perimeter Security for Physical Protection · Biometrics Co	ontrols for Security ·
Biometrics-based Se	curity: Issues and Challenges · Network Security in Perspectiv	ve.
Module 2		15 Hours
·Networking and Di	gital Communication Fundamentals · Cryptography and Er	cryption · Intrusion
Detection for Security	ng the Networks · Firewalls for Network Protection · Virtual	Private Networks for
Security · Security	of Wireless Networks · Business Applications Security: A	n EAI Perspective ·
Security of Electroni	c Mail Systems · Security of Databases · Security of Operatin	g Systems · Security
Models, Framework	s, Standards and Methodologies · ISO 17799/ISO 27001	· Systems Security
Engineering Capabil	ity Maturity Model - The SSE-CMM · COBIT, COSO-ERM a	and SAS 70.
Module 3		10 Hours
· Information Secu	rity: Other Models and Methodologies · Laws and Le	gal Framework for
Information Security	· Security Metrics · Privacy - Fundamental Concepts and F	Principles · Privacy -
Business Challenges	s · Privacy - Technological Impacts · Web Services and Pr	rivacy · Staffing the
Security Function ·	Business Continuity and Disaster Recovery Planning. F	Policy authority and
practices, informati	on security practices, personal and physical security	practices, operation
management practice	es.	
Module 4		10 Hours
· Auditing for Secur	ity · Privacy Best Practices in Organizations · Asset Manager	ment · Ethical Issues
and Intellectual Prop	erty Concerns for InfoSec Professionals. PKI's and	key management
schemes, key gener	ration, key storage, backup, recovery and distribution. XI	ML frameworks for
security policy speci	fication, certificate management life cycle.	
	(1)W K Brotby, Information security management metrics, CF	1
(2)Nina Godbole, Information systems security: security m	
	frameworks and best practices, John Wiley and sons Ltd. 20	009.

Subject Code	Big Data Analysis (BDA)	Credits: 3(3-0-0)
CS534		Total hours: 45
Course	This course covers the object oriented programming co	oncepts using C++.
Objectives		
Module 1		15 Hours
Overview of b scientist.	vig data, stages of analytical evolution, state of the practi	ice in analytics, the data
		4.077
Big data analy methods using	tics in industry verticals, data analytics lifecycle, operational R, advanced analytics - analytics for unstructured data - map	
Big data analy methods using Hadoop ecosy		lizing basic data analytic preduce and Hadoop, the
methods using	R, advanced analytics - analytics for unstructured data - map	lizing basic data analytic
Big data analy methods using Hadoop ecosy Module 3 Data Visualiza	R, advanced analytics - analytics for unstructured data - map	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory
Big data analy methods using Hadoop ecosy Module 3 Data Visualiza data managem	R, advanced analytics - analytics for unstructured data - map stem, in-database analytics.	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory
Big data analy methods using Hadoop ecosy Module 3 Data Visualiza data managem Module 4	R, advanced analytics - analytics for unstructured data - map stem, in-database analytics.	lizing basic data analytic p reduce and Hadoop, the 10 Hours chitecture, Main memory ng.
Big data analy methods using Hadoop ecosy Module 3 Data Visualiza data managem Module 4	R, advanced analytics - analytics for unstructured data - map stem, in-database analytics. ation Techniques, Stream Computing Challenges, Systems arc ent techniques, energy-efficient data processing, benchmarkin	lizing basic data analytic preduce and Hadoop, the 10 Hours chitecture, Main memory ng. 10 Hours

Subject Code	Business Intelligence (BI)	Credits: 3 (3-0-0)
CS 535		Total hours:45
Course Objectives	Explore the concepts of business intelligence/business analytic creation of Wikis and Blogs relevant to the course. To develop thinking, problem-solving and decision-making skills .	
Module 1		15 Hours
Ũ	erial, strategic and technical issues associated with business a warehouse, analytics and DSS.	1
Module 2		15 Hours
Design, implementa reporting and visual	tion and utilization, data as the basis for decision making, bus ization.	siness
Module 3		15 Hours
	hitecture, OLAP, data cubes, Reporting tools, Balance Scorec entation. Case studies.	ard, dash board
	 Efraim Turban, Ramesh Sharda, Jay Aronson, David King, and business intelligence systems", 9th ed., Pearson Education David Loshin, "Business Intelligence - The Savy Mana Onboard with Emerging IT", Morgan Kaufmann Publishers 	on, 2009. ger's Guide Getting

Subject Code	Secure Software Engineering	Credits: 3 (3-0-0)			
CS 536	Secure Software Engineering	T-4-1 b 45			
	(SSE)	Total hours: 45			
Course Objectives	This course focuses on secure software engineering process and	nd details the secure			
	programming and software security.				
Module 1		15Hours			
Definition of softw requirements.	are security, threats and vulnerabilities, risk management, secur	rity			
Module 2 10Hours					
Principles of secure	e design and patterns, secure programming, validation of the da	ta.			
Module 3		10Hours			
Secure usage of cry	ptography, code reviews and static analysis.				
Module 4		10Hours			
Secure testing, crea	ating a software security programs.	•			
Reference books (1) Julia H Allen, Sean J Barnum, Robert J Ellison, Gary McGraw, Nancy M Read, "Software Security Engineering: A Guide to Project Managers", Addison Wesley, 2008. (2) Particular Security Engineering: A Guide to Project Managers and Security Engineering.					
	(2) Ross J Anderson, "Security Engineering: A Guide to Buildin Distributed Systems", Wiley, 2008.				
(3) Howard M and LeBlanc D, "Writing Secure Code", Microsoft Press, 2003.					

Subject Code	Computer Graphics (CG)	Credits: 3 (3-0-0)			
CS 537		Total hours: 45			
Course Objective	1	To have an introduction to computer graphics to develop abilities to comprehend contemporary issues and address them.			
Module 1	Iodule 1 6 Hours				
interpreter, display	raphics hardware devices, display devices, pr v file structure, and graphics file formats. text me shapes, colors, co-ordinate systems, application	ode graphics function, graphic mode			
Module 2		11 Hours			
midpoint circle al inside –outside tes	algorithms: DDA circle drawing algorithm, Bre gorithm, polygons, types of polygons, polygon t, polygon filling: Flood fill, scan-line algorithm	n representation, entering polygons, n.			
	Module 3 13 Hours				
point. 3D Transf transformation, n	a: scaling, Reflection, shearing, Rotation, Tran formation: scaling, rotation, translation, rotation ormalization, transformation. Line clipping: nt subdivision algorithm Polygon clipping: Suth	ion about arbitrary axis. Viewing Cohen-Sutherland, Line clipping			
Module 4		15 Hours			
Curve generation: arc generation using DDA algorithm. Interpolation, B-Spline, Bezier curves. Fractals: Hilbert's Curve, Koch curve, Fractal lines, Fractal Surfaces. Raster scan display, Random scan display Need for graphics standards, Graphics standards, Advantages of Graphics standards, Hazards of Graphics standards. Graphical user interface Open GL: What is Open GL, How OpenGL works, Open GL and animation, Graphical processors: GPUs.					
Reference	(1) Ronald Hearn & MPauline Baker, "Compute				
books	 (2) James D. Foley, Andrews van Dam, Ste "Computer graphics principles and practice" (3) William Newman and Robert Sproull, "E Graphics", Tata McGraw-Hill, 1973. 	', 2 nd ed., Addison Wesley, 1996.			

Subject Code	Graph Theory (GT)	Credits: 3 (3-0-0)		
CS 538		Total hours: 45		
Course Objectives	This is an introductory course about properties and applic aims at the usage of graph theoretic methods for modeling p in discrete mathematics.			
Module 1		12 Hours		
representations of smaller graphs, cor cut-vertices and cu	rial representation of a graph, isomorphic graphs, su graphs, degree of a vertex, special graphs, complements, nected graphs and shortest paths, walks, trails, paths, cycles it-edges, blocks, connectivity, weighted graphs and shortest hortest path algorithm, Floyd-Warshall shortest path algorithm	, connected graphs, st paths, weighted		
Module2		12 Hours		
	and characterizations, number of trees, Cayley's formula, orithm, Prim's algorithm, bipartite graphs, Eulerian graphs, F roblem.			
Module 3		12 Hours		
matchings, matching	necessary conditions and sufficient conditions, independent ags in bipartite graphs, Hall's theorem, Konig's theorem, pe- plorings, basic definitions, cliques and chromatic number	erfect matching's in		
Module 4		9 Hours		
Edge colorings, Gupta-Vizing theorem, class-1 and class-2 graphs, edge-coloring of bipartite, graphs, planar graphs, basic concepts, Euler's formula and its consequences, characterizations of planar graphs, 5-color-theorem, directed graphs, directed walks, paths and cycles, Eulerian and Hamilton digraphs.				
books ((Adrian Bondy, U. S. R. Murty, "Graph Theory", Springer, Reinhard Diestel, "Graph Theory", 3rd edition, Springer, 20 Douglas B. West, "Introduction to Graph Theory", Prentice Jonathon L. Gross, "Combinatorial methods with com Chapman & Hall /CRC press, 2008 	00. e Hall, 1996		

Subject Code	Distributed Computing Systems (DCS)	Credits: 3 (3-0-0)
CS 539		Total hours: 45
Course Objectives	This course covers abstractions and implementation techniq distributed systems. It focuses on server design, network pre- storage systems, security, and fault tolerance.	0
Module 1		9 Hours
	buted Systems and applications, Distributed vs parallel Message Passing mechanisms IPC and RPC.	systems, models of
Module2		11 Hours
exclusion using tin token & quorums, of philosophers proble	ion, physical & logical clocks, vector clocks, verifying clock ne stamp, election algorithms, Distributed mutual exclusion centralized & distributed algorithms, proof of correctness & m, Implementation & performance evaluation of DME Algorit	using time stamps, complexity, drinking thms.
Module 3	gorithms, global states, global predicates, termination de	13 Hours
	tion, disjunctive predicates, performance evaluation of leader	
Module 4		12 Hours
Distributed File Sy	stems and Services, Shared data, Synchronization Transaction	on and Concurrency
Control. Distributed Tolerance.	databases, Name service, Timing & Coordination, Replicatio	n, Security and Fault
books () (, (, (, (, (, (, (, (,	 Vijay K Garg "Elements of Distributed Computing", Wiley Pradeep Sinha, "Distributed Operating Systems- Competine Systems and M.V. Steen, "Distributed System Paradigms", PHI.2003 George Couloris, Jean Dollimore & Time Kindberg, "I Concepts & Design", 2nd Edition, Addison Wesley 2003. V. Rajaraman, C. Siva Ram Murthy, "Parallel, Compu Programming", PHI. Khemkalyani and Singal, "Distributed Computing" Nancy Lynch, "Distributed Algorithm" Singal and Shivaratri, "Ditributed OS" 	cepts and Design", ns – Principles and Distributed Systems:

Subject Code:	Professional Communication-II and	Credits: 4 (2-0-3)
HU 501& HU 502	Language Lab	Total hours: 56
Course Prerequisite	Knowledge of English	
Course Objectives	This course aims at Personality Development	
Course Outcome	At the end, the students should possess a Saleable Image with	employability skills
Module 1	Principles of Soft Skills and Practice	12 hours
	ills and Personality, Attitude, Dress Code, Body Language, I y Test, C.V Writing and the difference between CV & Resume	ndividual and Group
Module 2	Group Discussion, Extempore, JAM and Survey	16 hours
Indian Culture, Gende	oth, Google vs Social Networking Sites, Newspaper is the thing r Discrimination, Who is Smarter: Human Beings or Computer	and so on
Module 3	Interview	14 hours
Types of Interview, In	terview Ethics, Questions and Mock-Interview Sessions	
Module 4	Business Presentation and Seminars	14 hours
Business Presentation	and Students' Seminar	
Texts:	1.W.B. Martin, Ethics in Engineering Tata McGraw Hill, India	a
	2. Patnaik, Priyadarshi, Group Discussion and Interview Skil (Video CD)	ls, New Delhi: CUP,
	3Downes, Colm, <i>Cambridge English for Job Hunting</i> ,2009 Audio CDs)	, New Delhi,CUP (2
	TV News (Headlines Today, ND TV and BBC), Chat-Show	vs on TV, Magazines
Reference	like India Today, Outlook, The Week and English Dailies.	Reader's Digest for
	Expressive Skill, English Films & English Comics	

Academic Hand Book

for

Bachelor of Technology Programme

in

Electronics and Communication Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Programme Structure Summary

Institute-wide Categories of the Courses

The Bachelor of Technology (B.Tech.) program at National Institute of Technology Goa (NIT Goa) will have 170 credits as the lower limit for the award of degree. These courses are grouped in a number of categories as shown below:

S.N.	Category	Credits	Remarks	
1.	Basic Sciences (BS)	27	Mathematics	- 14 Credits
			Physics	- 8 Credits
			Chemistry	- 5 Credits
2.	Basic Engineering Sciences (ES)	14	Engineering Mechanics	- 3 Credits
			Mechanical Engineering	- 2 Credits
			Basic Electrical Science	- 5 Credits
			Computer Programming	- 4 Credits
3.	Humanities and Languages (HL)	9	Professional Communication	n - 3 Credits
			Economics	- 3 Credits
			Management	- 3 Credits
4.	Technical Arts (TA)	5	Engineering Drawing	- 3 Credits
			Workshop	- 2 Credits
5.	Professional Theory and	110		
	Practice (PT)			
6.	Others (*Not counted for final	5*	Environmental Studies	- 3 Credits
	CGPA)		Physical Education	- 1 Credits
			Value Education	- 1 Credits
Total Credits		170	165 credits are counted for	CGPA

Semester-wise Distribution of the Courses

Semester I	Semester I (Structure Common to All Branches)				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
MA100	1	Mathematics-I*	4(4-0-0)	4	
PH100	2	Physics*	3(3-0-0)	3	
ME100	3	Engineering Mechanics*	3(3-0-0)	3	
CS100	4	Computer Programming and Problem Solving	4(2-0-3)	4	
HU100	5	Professional Communication*	3(2-0-2)	3	
ME101	6	Engineering Drawing*	3(1-0-3)	3	
PH101	7	Physics Laboratory*	2(0-0-3)	2	
Total Credi	its			22	

Semester II	Semester II (Structure Common to All Branches)				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
MA150	1	Mathematics-II*	4(4-0-0)	4	
PH150	2	Material Science*	3(3-0-0)	3	
CY150	3	Chemistry*	3(3-0-0)	3	
ME150	4	Elements of Mechanical Engineering *	2(2-0-0)	2	
EE150	5	Basic Electrical Science	3(3-0-0)	3	
ME151	6	Workshop Practices*	2(0-0-3)	2	
CY151	7	Chemistry- Laboratory*	2(0-0-3)	2	
EE151	8	Basic Electrical Science Laboratory	2(0-0-3)	2	
PE150	9	Physical Education	1(1-0-0)	1	
Total Credi	its			22	

*The course contents can be found under syllabus details of First year B. Tech programme.

Semester III	Semester III				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
EC201	1	Analog Electronics	3(3-0-0)	3	
EC202	2	Signals and Systems	4(3-1-0)	4	
EC203	3	Network Theory and Synthesis	4(3-1-0)	4	
EC204	4	Electromagnetic Theory	4(3-1-0)	4	
MA200	5	Mathematics –III	3(3-0-0)	3	
EC205	6	Analog Electronics Laboratory	2(0-0-3)	2	
EC206	7	Signals and Systems Laboratory	2(0-0-3)	2	
Total Credit	S			22	

Semester IV	Semester IV				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
EC251	1	Digital Electronics	3(3-0-0)	3	
EC252	2	Communication Engineering	4(3-1-0)	4	
EC253	3	Devices	4(3-1-0)	4	
HU250	4	Economics	3(3-0-0)	3	
		Mathematics-IV (Probability, Statistics and Random			
MA250	5	Processes)	3(3-0-0)	3	
EC254	6	Digital Electronics Laboratory	2(0-0-3)	2	
EC255	7	Communication Engineering Laboratory	2(0-0-3)	2	
VE200	8	Value Education	1(0-0-2)	1	
Total Credit	S			22	

Semester V	Semester V				
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits	
ES300	1	Environmental Studies	3(3-0-0)	3	
EC301	2	Data Structures and Algorithm	4(3-1-0)	4	
EC302	3	Control System	4(3-1-0)	4	
EC303	4	Digital Signal Processing	4(3-1-0)	4	
EC304	5	Microprocessor and Microcontroller	3(3-0-0)	3	
EC305	6	Digital Signal Processing Laboratory	2(0-0-3)	2	
EC306	7	Microprocessor and Microcontroller Laboratory	2(0-0-3)	2	
Total Credi	ts			22	

Semester VI							
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits			
EC351	1	Wireless Communication	4(3-1-0)	4			
EC352	2	Linear Integrated Circuits	3(3-0-0)	3			
EC353	3	Digital Communication	4(3-1-0)	4			
EC354	4	Communication Network	3(3-0-0)	3			
EC4XX	5	Elective I	3(3-0-0)	3			
EC355	6	Linear Integrated Circuits Laboratory	2(0-0-3)	2			
EC356	7	Digital Communication Laboratory	2(0-0-3)	2			
EC399	8	Mini Project/Industrial Training	1(0-0-2)	1			
Total Credits				22			

Semester VII						
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits		
EC401	1	VLSI Circuit Design	3(3-0-0)	3		
HS400	2	Management	3(3-0-0)	3		
EC402	3	Information Theory and Coding	3(3-0-0)	3		
EC4XX	4	Elective II	3(3-0-0)	3		
EC403	5	VLSI Design Laboratory	2(0-0-3)	2		
EC448	6	Seminar	2(0-0-3)	2		
EC449	7	Major Project	4(0-0-6)	4		
Total Credits			20			

Semester VIII						
Course Code	SI. No.	Total Credits (L-T-P)	Credits			
EC4XX	1	Elective III 3(3-0-0)	3			
EC4XX	2	Elective IV 3(3-0-0)	3			
EC4XX	3	Elective V 3(3-0-0)	3			
EC4XX	4	Elective VI 3(3-0-0)	3			
EC499	5	Major Project 6(0-0-9)	6			
Total Credits			18			

Note: A student has to choose 12 credits as Program Electives and 6 credits as Open Electives. Open Electives are courses which students can take from any department.

List of Electives

Program E	Program Electives			
Course Code	SI. No.	Course Name	Total Credits (L-T-P)	Credits
EC404	1	Electronic Instrumentation	3(3-0-0)	3
EC405	2	Digital System Design	3(3-0-0)	3
EC406	3	Computer Architecture and Organization	3(3-0-0)	3
EC407	4	Advanced Digital Signal Processing	3(3-0-0)	3
EC408	5	Statistical Signal Processing	3(3-0-0)	3
EC409	6	DSP Algorithm and Architecture	3(3-0-0)	3
EC410	7	Speech and Audio Processing	3(3-0-0)	3
EC411	8	Image and Video Processing	3(3-0-0)	3
EC412	9	Biomedical Signal Processing	3(3-0-0)	3
EC413	10	Error Control Coding	3(3-0-0)	3
EC414	11	Spread Spectrum Communication	3(3-0-0)	3
EC415	12	Optical Communication	3(3-0-0)	3
EC416	13	AdHoc and Sensor Networks	3(3-0-0)	3
EC417	14	Antennas and Propagation	3(3-0-0)	3
EC418	15	Satellite Communication	3(3-0-0)	3
EC419	16	Microwave Engineering	3(3-0-0)	3
EC420	17	Radar and Navigation Systems	3(3-0-0)	3
EC421	18	Digital Image Processing	3(3-0-0)	3
EC422	19	Active Filters and Data Converters	3(3-0-0)	3
EC423	20	Embedded Systems	3(3-0-0)	3
EC424	21	Low-Power VLSI Circuit Design.	3(3-0-0)	3
EC425	22	Logic Synthesis and Optimization	3(3-0-0)	3
HU401	23	Professional Communication - II and Language Lab	4(2-0-3)	4

First Year Course Contents

Subject Code		Credits: 3 (3-0-0)
EE151/EC151	Basic Electrical Science	Total hours: 45
Course	To expose students to basic electric devices and components	s characteristics and
Objectives	techniques of analyzing them.	
Module 1	DC circuit Analysis	12 hours
Node analysis of	elements, Voltage sources, Current sources, Ohm's Law, Kircho DC circuits,Source transformation, Star-Delta Transformation, lysis of RC, RL, RLC with DC excitation.	
Module 2	Magnetic circuit Analysis and AC circuit Analysis	12 hours
Average and RM	Induction, Self and mutual inductances, Magnetic circuits. Fu IS values, Form and Peak factor, Concept of Phasors, Complex oncepts of three phase circuits.	
Module 3	Semiconductor Devices and Circuits	14 hours
diodes Half-wave Approximate ana	e, Characteristics, Diode approximations, DC load line, AC equive e diode rectifier and Full-wave diode rectifier, Shunt capacitor f lysis of capacitor filters, Power supply performance, Voltage r, Characteristics, DC Load line and Bias Point, Biasing circuit des	ilter, Ripple factor - regulators; Bipolar
Module 4	Elements of Digital Electronics	7 hours
e e	tal Signals, Introduction to Digital Electronics, Digital Logic G , SRAM, DRAM, ROM, PROM, EPROM, EEPROM.	ates. Introduction to
Text Books	 Del Toro, Electrical Engineering Fundamentals, Pearson Education, 2002. R.J. Smith, Circuits, Devices and Systems: A First Course in Electrical Engineering, Wiley-5th edition William H. Hayt Jr., Jack E. Kemmerly, Steven M. Durbin, Engineering Circuit Analysis, TMH, 2002. 	
Reference Books	2. A.S. Sedra & K.C Smith, <i>Microelectronic Circuits</i> , 1999.	Oxford Univ. Press

Subject Code EE152/EC 152	Basic Electrical Science Laboratory	Credits: 2 (0-0-3) Total hours: 45	
Course Objectives	To have hands on experience on principle of basic elect components and their analysis.	ronic passive and active	
	List of Experiments		
 13. Desi 14. Clip 15. Rect 16. Netw 17. Phas 18. BJT 19. Tran 20. Digit 	List of Experiments 12. Verification of KVL and KCL circuit laws. 13. Designing and AC, Transient analysis of series and parallel RC, LC and RLC circuits . 14. Clipping , Clamping circuits & voltage multipliers with diodes. 15. Rectifiers with C, LC & CLC filters - half wave, full wave & Bridge. 16. Network Theorem - Superposition, Thevenin, Norton and Maximum Power Transfer 17. Phasor Analysis of series and parallel RC,LC and RLC circuits. 18. BJT and JFET Characteristics. 19. Transistor as an Amplifier. 20. Digital Combinational Logic gates. 21. Memory Elements.		

Second Year Course Contents

Subject Code	Analog Electronics	Credits: 3(3-0-0)	
EC201		Total hours:45	
Course Objectives	blocks like Current Mirrors, Amplifiers, Diff MOSFET.	To develop the skill of analysis and design of various Analog circuit building blocks like Current Mirrors, Amplifiers, Differential Amplifiers using BJT and MOSFET. To understand the concept of Negative and Positive feedback.	
Module 1		Hours 13	
Load line and Bias transformer coupled MOSFET Amplifier	tion, Input and output impedance, Operating point stability, Analyses and design of CC, CE and multistage Amplifiers; Thermal runaway in BJT An Analysis and Design of Common Source, Commo rmal runaway in MOS Amplifiers.	CB configurations; RC coupled and pplifiers.	
Module2		Hours 12	
Differential pair with Power amplifiers: Pu distortion – Convers	ers: MOS Differential pair, Small and Large Signa Active loads. Ish pull stage, Heat dissipation, Class A, B, AB, C, ion efficiency and Relative performance.	D, E& S Power Amplifiers - Harmonic	
Module 3		Hours 08	
BJT/MOSFET Mode	e of Amplifiers: Hybrid π equivalent circuit el, Miller effect. Types of Noise, Noise representation, Noise in diffe		
Module 4		Hours 12	
 Feedback and Stability: Introduction to Negative feedback – Basic feedback concepts; Ideal Feedback Topologies - Voltage shunt, Voltage series, Current series and Current shunt Feedback Configurations; Loc gain – Stability of feedback circuit, Nyquist stability criterion, Phase and Gain margins; Oscillators : Bas principles of Oscillators, Analysis of RC Phase Shift, Wein bridge, Colpitts, Hartley and Crystal Oscillators. Reference books A S Sedra& K C Smith, "Microelectronic Circuits", Oxford University Press.1998. BehzadRazavi, "Fundamentals of Microelectronics", John Wiley & Sons .2008. Robert Boylestad & Louis Nashelsky," Electronic Devices & Circuit Theory", PHI., 1995. 			

Subject Code		Signals And Systems	Credits: 4 (3-1-0)	
EC202			Total hours: 56	
Course Object	tives	The objective of the course is to introduce the undergraduate students to concepts of continuous and discrete time signal and systems. In this regards emphasis is on developing and describing general principle. We will develop mathematical tolls for describing the signals and systems. After attending this course they are expected to analyze and design any signal processing system with ease.		
Module 1		6	hours	
		luction to the course, Basic concepts of signals te time systems, basic systems properties.	and systems, signal transformations,	
Module2		8	hours	
	Linear time invariant (LTI) systems: Discrete and continuous – time LTI systems, convolution, properties of LTI systems, system described by differential and difference equations.			
·	resenta	a of periodic signals: Representation of continu- tion of discrete time periodic signals and their		
Module 4		1	4 hours	
	Fourier Transform of aperiodic signals: Continuous and discrete time Fourier transform, properties of transforms, convolution and multiplication property, duality, time-frequency characterization, sampling.			
Module 5	Module 5 14 hours			
characterization	Laplace and z- transform: The Laplace and z-transform, region of convergence, properties, analysis and characterization of LTI system using Laplace and z – transform, realization of LTI system using Laplace and z – transform.			
Reference books		ppenheim, Willisky and Hamid Nawab, "Signals and Systems", Prentice Hall, 2nd ed. Haykin and B. V. Veen, et al, "Signals and Systems", Willey India Edition, 2nd ed.		

Subject Code	Network Theory and Synthes	is Credits: 4(3-1-0)
EC203		Total hours: 56
Course Objectives	 To expose the students to the basic co analysis in Time and Frequency domain To Introduce the techniques of Network 	-
Module 1		Hours 16
Conventions for conventions, Lo	Evaluation of Fourier Coefficients, Waveforms Sym describing the Networks: Network equations, Nur pop variable analysis and Node variable analysis, Dua ular solutions, Time Constants, Initial conditions in	nber of network Equations, Source lity. First-order differential equations:
Module2		Hours 14
	Ramp, Impulse Functions, Waveform Synthesis, Impedestrictions on Pole and Zero Locations for driving point	
	ers: Short-Circuit Admittance and Open-Circuit Impo , Relationship between Parameter sets. Sinusoidal S or Diagrams.	
Module 4		Hours 14
Real Functions. Sy functions, Synthesis function, Synthesis Admittance function	Elements of Realizability theory, Causality and Stabi enthesis of One-port Network with two kinds of Eleme s of L-C Driving point Immittance functions, Properties of R-C Driving point Impedance function, Properties n, Synthesis of R-L Impedance and R-C Admittance func- nd Cauer forms of RC and RL networks.	nts- Properties of L-C Immittance es of R-C Driving point Impedance s of R-L Impedance and R-C unction. Properties of RC network
Reference books	 Van Valkenberg, "Network Analysis", Prent Franklin F. Kuo, "Network Analysis and Syr Roy Choudhary, "Network and Systems", W 	thesis", Wiley International Edition

Subject Code	Electromagnetic Theory	Credits: 4(3-1-0)	
EC204		Total hours: 56	
Course Objective		To impart the knowledge of electric, magnetic fields and the equations governing them as well as time varying field. To develop understanding about guided waves & transmission lines.	
Module 1		18 hours	
Potential gradient, current density in	Magnetic field: Electrical scalar potential, Diffe , Energy stored in electric field, Boundary condition a conductor, Equation of continuity; Energy stored etic boundary conditions, Vector Magnetic potential	ions Capacitance, Steady current and I in magnetic fields, Magnetic dipole-	
Module 2		14 hours	
force, Maxwell's e	ons and travelling waves: Conduction current and equations, Plane waves, Poynting theorem, Plane ele Uniform plane wave-wave equation for conducting r ions.	ctromagnetic waves - Solution for free	
Module 3		14 hours	
characteristics, Lin propagation in con	etween parallel planes, Transverse electric and near Elliptical and Circular Polarization, Wave equ ductors and dielectric, Depth of penetration, Reflec ectric, Poynting Vector and flow of power.	ations for conducting medium, Wave	
Module 4		10 hours	
	es and Waveguides: Transmission line equations, transitic impedance; Theory of waveguide transmission	-	
Reference books	 W.H. Hayt, "Engineering Electromagnetic Edition David J. Griffithe, "Introduction to Electro Edition E. C. Jordan, "Electromagnetic waves and India,2nd edition. 	odynamics", Prentice Hall India, 3rd	

Subject Code	Mathematics-III	Credits: 3
MA 200		Total hours 42
Course	Mathematics-I & II	
Prerequisites		
Objectives	This Mathematics course provides requisite and relevant bac	ckground necessary to
	understand the other important engineering mathematics courses	s offered for Engineers
	and Scientists. Important topics of applied mathematics, nam	nely complex analysis,
	power series solutions and partial differential equations.	
Course Outcome	At the end of this course the students are expected to learn,	
	Understand the statement of Cauchy's Theorem and compute	the Taylor and Laurent
	expansions of simple functions, determining the nature of	-
	calculating residues, series solution of the differential equations	and solution of partial
	differential equations.	
Module 1	Complex Analysis	18 hours
Complex Numbers	, geometric representation, powers and roots of complex numbers, I	Functions of a complex
•	functions, Cauchy-Riemann equations; elementary functions, Co	••••
linear transformation	on); Contours and contour integration, Cauchy's theorem, Cauchy i	ntegral formula; Power
Series and prop	perties, Taylor series, Laurrent series, Zeros, singularit	ies, poles, essential
-	ue theorem, Evaluation of real integrals and improper integrals.	
Module 2	Power Series Solutions	9 hours
Differential Equation	ons Power Series Method - application to Legendre equation,	Legendre Polynomials,
Frobenious Metho	d, Bessel equation, Properties of Bessel functions, Sturm-Liouv	ille BVPs, Orthogonal
functions.		
Module 3	Partial Differential Equations	15 hours
Introduction to Pl	DE, basic concepts, second order PDE and classification, D'A	lemberts formula and
Duhamel's princip	le for one dimensional wave equation, Laplace's and Poisson'	s equations, Laplace,
Wave, and Heat eq	uations using separation of variables. Vibration of a circular mem	brane. Heat equation in
the half space.		
Texts/References	1. E. Kreyszig, Advanced engineering mathematics Wiley (1999).	(8th Edition), John
	2. W. E. Boyce and R. DiPrima, Elementary Different	ential Equations (8th
	Edition), John Wiley (2005).	
	3. R. V. Churchill and J. W. Brown, Complex varia	bles and applications
	(7th Edition), McGraw-Hill (2003).	

Subject Code	Analog Electronics Laboratory	Credits: 2(0-0-3)	
EC205		Total hours: 45	
Course Objectives	To provide experience on design, testing, and ana	alysis of basic Analog Electronic	
	Circuits.		
List of Experiments			
Experiment No. 1			
Logic gates using Diod	es		
Experiment No. 2			
Diode as a clipper,			
Experiment No. 3			
Clipping and Clamping	Circuit		
Experiment No. 4			
Full wave rectifier			
Experiment No. 5			
Regulated and Unregul	ated Power supply		
Experiment No. 6			
RC Circuit Analysis			
Experiment No. 7			
Biasing Circuits:			
Experiment No. 8			
Effect of Negative feed	back		
Experiment No. 9			
RC couple amplifier us	ing BJT		
Experiment No. 10			
Complementary Push-F	Pull amplifier using BJT and OP-Amp		

Subject Code	Signals and Systems	Credits: 2 (0-0-3)
EC206	Laboratory	Total hours: 45
Course Objectives	This Laboratory course is offered in conjunction Systems". The aim of this course is to introduce ideas about signals and systems representation environment.	students to simulate the theoretical
List of Experiment	s	
-	ntroduction to Signals and Matlab Software: Define the soft of Signals. Plot these signals with requisite labels.	signals with certain characteristics
Experiment No. 20	Convolution Operation and response to arbitrary signal.	
Experiment No. 3D	Demonstration and verifying the properties of Systems.	
Experiment No. 4N	latural and Forced Response of Second order Systems.	
Experiment No. 5F	ourier Series analysis of periodic signals.	
Experiment No. 6F	ourier Transform analysis of aperiodic signals.	
Experiment No. 7T	ime Frequency Analysis of First and Second order syste	ms and Bode plot.
Experiment No. 8S	ampling of continuous time signals and Aliasing	
Experiment No. 9 I	Design of Frequency Selectivity filter with arbitrary cent	ral frequency.
Experiment No. 10 Frequency Characte	Pole – Zero Analysis of Second order system for continur ristics.	ous time signals. Time and
Experiment No. 11	Analysis of Second order system for discrete time signa	ls.
Experiment No. 12	Feed Back System and their Characteristics.	
Reference books	Oppenheim, Willisky and Hamid Nawab, "Signals and Systems", Prentice Hall, 2nd ed. S. Haykin and B. V. Veen, et al, "Signals and Systems", Willey India Edition, 2nd ed.	

Subject Code	Digital Electron	nics Credits: 3-0-0 (3)		
EC251		Total hours:45		
Course Objectives	After studying this subject	 This subject exposes the students to Digital Fundamentals. After studying this subject the student will be able to Design, Analyze and Interpret Combinational and Sequential Digital Circuits. 		
Module 1		Hours 12		
Method, Boolean	Number Systems and Boolean Algebra, Simplification of functions using Karnaugh map and QuineMcClusk Method, Boolean Function Implementation, Minimization and Combinational Design, Examples Combinational Digital Circuits, Hazards in Combinational Circuits, Hazard free realization.			
Module2		Hours 12		
Clocked Flip-Flop, Counters: Design of	Introduction to Sequential circuits: Latches and Flip-Flops (RS, JK, D, T and Master Slave), Design of a Clocked Flip-Flop, Flip-Flop conversion, Practical Clocking aspects concerning Flip-Flops. Counters: Design of Single Mode and Multimode Counters, Ripple Counters, Synchronous Counters, Shift Register Counters and Random Sequence Generators.			
Module 3		Hours 12		
and Design of Syn Design of the Next Cycles.	chronous Sequential Circuits; Finite Sa State Decoder. Asynchronous Sequential spects: Timing and Triggering considerati	of Sequential Networks, State Diagram, Analysis te Machine, State Reduction, Minimization and Logic: Analysis and Design, Race conditions and ons in the Design of Synchronous Circuits, Set up		
Module 4		Hours 9		
Logic Families: Fundamentals of ECL, TTL, CMOS Logic family, Transfer Characteristics, Input and Output Characteristics, Tristate Logic, Wired Logic and Bus Oriented structure, Practical Aspects, MOS gates, MOS Inverter, CMOS inverter, Rise and fall time in MOS and CMOS gates, Speed Power Product, Interfacing BJT and CMOS gates.				
Reference books	2002	2002		

Subject Code	Communication Engineering Credits: 4 (3-1-0)	
EC 252		Total hours: 56
Course Objectives	To enable students to analyze and design analog	og communication systems and have
-	overview of how modern communication syste	em works.
Module 1	1	2 Hours
Elements of electronic	communication systems, Need for modulation, cha	annel, noise, frequency spectrum,
	nains, Review of Fourier analysis, Review of Rand	
Processes, Power Spect	ral Density, Power and Bandwidth Calculations, E	Ergodicity.
Module2	1	1 Hours
Amplitude Modulatio	n (AM), DSB-SC, SSB, VSB and ISB transmissio	ons, modulators, mathematical
-	ndex, frequency spectrum, power requirement of the	
Module 3	1	3 Hours
Angle Modulation:Fre	quency Modulation (FM), mathematical Analysis,	, modulation index, frequency
spectrum, power requir	ement of FM, narrowband & wideband FM, noise	triangle in FM, pre-emphasis and
de-emphasis techniques	s, phase modulation, power contents of the carrier	& the sidebands in angle
	ction characteristics of angle modulation, generation	on of FM signals, comparison
between AM & FM		
Module 4	1	2 Hours
Radio Receivers: Basi	c receiver (TRF), Super heterodyne receiver, perfo	ormance parameters for receiver
such as sensitivity, sele	ctivity, fidelity, image frequency rejection etc., AN	M demodulation, FM demodulation,
AGC technique, double	e-spotting effect, Performance Analysis of Amplitu	de and Angle Modulation Schemes
in the presence of Noise	e : Signal to Noise Ratio (SNR) analysis.	
Module 5		8 Hours
Television Systems: O	perating principles, composite video signal, blanki	ing & synchronizing pulses, block
•	hitter & receiver, Color transmission & reception p	
CCIR-B, NTSC, PAL,		
,		

Reference	1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.
books	2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson
	Education, 2002.
	3. Taub H. and Schilling D.L., "Principles of Communication Systems", Tata McGraw
	Hill, 2001.
	4. R.R Gulati, "Monochrome and Colour Television", New Age International, 2007.
	5. H. Stark, J. W. Woods, Probability and Random Processes with Applications to Signal
	Processing, Prentice-Hall, 2003.
	6. Peyton Z. Peebles Jr., Probability, Random Variables and Random Signal Principles,
	4/e, Tata McGraw-Hill, New Delhi, 2002.

	Devices	Credits: 3(3-1-0)		
EC253		Total hours: 56		
Course Objectives	devices.	To understand and describe the impact of solid-state device capabilities and		
Module 1:		Hours 14		
The Diamond lattice; Energy Bands and Cl Equilibrium and wav semiconductor - Bon Excess Carriers in Se	ials: Periodic Structures, Crystal Lattices; Cubic Lat Crystal Properties and Growth of Semiconductors. narge Carries in Semiconductors: Equilibrium Carrie e particle duality; Intrinsic semiconductor - Bond an d and Band models; Carrier transport, Random motie emiconductors: Injection level, Lifetime, Direct and f Carrier; Built-in Fields - Diffusion and Recombina Injection.	er concentration, Thermal ad Band models; Extrinsic on. Indirect Semiconductors,		
Module2		Hours 13		
Characteristics, Smal	Structure, Equilibrium Picture, Band Diagram, DC l-signal Equivalent Circuit, Switching Characteristic niconductor Junctions, Schottky Barriers, Rectifying	cs; Zener Breakdown; Graded		
Characteristics, Smal Junctions, Metal -Ser Other PN Junctions: Light-Emitting Diode	l-signal Equivalent Circuit, Switching Characteristic	es; Zener Breakdown; Graded g contacts, Ohmic Contacts.		
Characteristics, Smal Junctions, Metal -Ser Other PN Junctions:	l-signal Equivalent Circuit, Switching Characteristic niconductor Junctions, Schottky Barriers, Rectifying Photodiodes, Solar cells, Photo detectors, Noise and	es; Zener Breakdown; Graded g contacts, Ohmic Contacts.		
Characteristics, Smal Junctions, Metal -Ser Other PN Junctions: Light-Emitting Diode Module 3 Bipolar Junction Tran	l-signal Equivalent Circuit, Switching Characteristic niconductor Junctions, Schottky Barriers, Rectifying Photodiodes, Solar cells, Photo detectors, Noise and	cs; Zener Breakdown; Graded g contacts, Ohmic Contacts. Bandwidth of Photo detectors, Hours 13 n, Transistor action and		
Characteristics, Small Junctions, Metal -Ser Other PN Junctions: Light-Emitting Diode Module 3 Bipolar Junction Tran Amplification; Comr	I-signal Equivalent Circuit, Switching Characteristic niconductor Junctions, Schottky Barriers, Rectifying Photodiodes, Solar cells, Photo detectors, Noise and e, Lasers, Semiconductor Lasers.	cs; Zener Breakdown; Graded g contacts, Ohmic Contacts. Bandwidth of Photo detectors, Hours 13 n, Transistor action and		

Subject	Code	Economics	Credits: 3(3-0-0)
HS 250			Total hours: 45
Course	Outcome	The fundamental objective of this course aims at providing a com- the broad area of economics and its scenario. The course aspires the light of economic decision makings, and facilitates tohave grip	to bring the students into
Module	1	Introduction to Economics	2 hours
Construct asset allo	-	, Optimization and Equilibrium in market demand and supply, Com	parative statistics and
Module	2	Utility, Choice, Budget Constraint and Consumer Preference	6 hours
and impa	act of Taxes,	structing a Utility Function, Budget constraint in case of two good Subsidies, and Rationing. Indifference curve, Marginal Rate of Subndifference curve from utility functions, Marginal Utility vs MRS	e e
Module	3	Demand, Revealed Preference & Slutsky Equation	6 hours
Douglas	Preferences,	Goods, Income Offer Curves and Engel Curves, Perfect Substitute The Idea of Revealed Preference, From Revealed Preference stitution Effect, The Income Effect, Rate of Change and change of I	to reference, Recovering
Module	4	Consumer Surplus, Market Demand & Equilibrium	6 hours
to Marke and Den	et Demand, T nand, Market	e Good, Constructing Utility from DemandFrom, Change inConsun he Inverse Demand Function, The Extensive and the Intensive Mars Supply, Market equilibrium, Inverse Demand and Supply Curves	gin, Elasticity, Elasticity
Module		Technology and Profit Maximization Describing Technological Constraints, Properties of Technology,	3 hours
Substitut The Org	tion, Diminis ganization of	hing Technical Rate of Substitution, Returns to Scale, Profits, Th Firms, Short-Run Profit Maximization, Profit Maximization i turns to Scale	e Organization of Firms,
Module	6	National Income Accounting	2 hours
National	Income and	Related concepts, Nominal or real GDP, Methods of measuring NI.	
Module	7	Determinants of Equilibrium Output and IS – LM Model	8 hours
Aggrega	te demand a Budget and Fi	and Equilibrium output, Consumption function and aggregate de ull employment, Asset and Goods Market, Equilibrium and adjustm	emand, Multiplier, Govt.
Module	8	Money and Fiscal policy and International Linkages	8 hours
Exchang exchang	ge rate, Balan e rates	policy, crowding out, composition of output and policy mix, I nce of Trade and capital mobility, Mundell-Fleming model, Ca	pital Mobility and fixed
Module		Aggregate Demand, Supply and Growth	4 hours
		Id policies, Aggregate Supply, Fiscal and monetary policy under Alt ntity theory and neutrality of Money.	ternative supply
Text Books	Koutsoyianr Dornbusch a	R.: Intermediate Microeconomics, W.W. Norton & Co., New work his, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macm and Stanley Fisher: Macroeconomics, McGraw Hill t J. "Macroeconomics, New York, John Wiley	

Subject Code	Mathematics - IV (Proba	bility,	Credits: 3 (3-0-0)	
MA 250	Statistics And Random Processes)		Total hours: 45	
Course	This course provides mathematical foundat	ion to describe J	phenomenon occurring	
Objectives	with chance. Students will be able to describe experiment with probabilistic measure.	ibe, analyze and	draw inferences about	
Module 1		6 hours		
Space and Events and application.	obability: Relative frequency and notion of pro; Combinatorics; Joint and Conditional Probab	oilities; Independ		
Module2		15 hours		
Random Variable conditional expect variables; Some Poisson distribution Random vector: r variables and S	om of Variables; Conditional and Joint Dens s; Expected Value: Mean, Variance and mome tation; covariance and correlation; independer special distributions: Uniform, Gaussian and ons; Multivariate Gaussian distribution; nean vector, covariance matrix and properties; chwarz Inequality; Moment-generating and	nts of random va at, uncorrelated a Rayleigh distrib Vector-space rep	ariable; Joint moments and orthogonal random putions; Binomial, and presentation of random	
applications; Bour	nds and approximations	6 hours		
•	dom Variables :Almost sure (a.s.) convergente nean square sense; convergence in probability	•	•	
Module 4		6 hours		
Statistics :Eleme	nts of estimation theory: linear minimum	mean-square err	or and Orthogonality	
<u> </u>	ation; Parameter Estimation.	1		
Module 5		12 hours		
Stationarity pro- representation of process; Spectral Examples of ran Poisson process, N	a real WSS process and analysis; Linear the factorization theorem; dom processes: white noise process and whe Markov Process.	tion function; me-invariant system ite noise sequen	Ergodicity; Spectral stem with input WSS ice; Gaussian process;	
Reference1. HbooksProc2. A	Stark, J W. Woods, "Probability and Randon essing", Third Edition, Pearson Education Papoulis, S. U. Pillai, "Probability, Randon th Edition, Tata Mc. Graw-Hill			
100				

Subject Code	Digital Electronics Laboratory	Credits: 2(0-0-3)			
EC254		Total hours: 45			
Course Objectives	To provide experience on design, testing, and analy	ysis of digital electronic circuits.			
List of Experiments					
Experiment No. 1					
Realization of logic ga	ates using diodes and transistors.				
Experiment No. 2					
	cs, Measurement of Sinking and Sourcing currents etc	c. of TTL gates.			
Experiment No. 3					
	ates using universal gates.				
Experiment No. 4					
Code converters using	basic gates.				
Experiment No. 5					
Seven segment displa	ıy.				
Experiment No. 6	New Jones of Press Jones in the side of the				
	Decoder and Encoder using basic gates.				
Experiment No. 7	design using Deceders and Multiplevers				
Experiment No. 8	design using Decoders and Multiplexers.				
Half and Full adders a	and Subtractors				
Experiment No. 9					
-	r IC & BCD adder circuit.				
Experiment No. 10					
-	Latch, JK, T, D and Master Slave) using basic gates.				
Experiment No. 11					
-	Asynchronous Counters.				
Experiment No. 12					
Johnson and Ring Co	Johnson and Ring Counters.				
Experiment No. 13					
Synchronous counters.					
Experiment No. 14					
A Sequence Generator/Detector circuit.					

Subject Code	Communication Engineering	Credits: 2 (0-0-3)			
EC 255	Laboratory	Total hours: 45			
Course Objectives	Course Objectives To introduce student to the experiments which demonstrate the theory learnt in t				
	EC 253 Communication Engineering course so the implement important components used in analog com	•			
		sommuneation systems.			
List of Experiments					
Experiment No. 1					
Fourier Series and Waveford	orm Synthesis – Analysis				
Experiment No. 2					
DSB AM System SC/FC	, with noise and without noise				
Experiment No. 3					
SSB AM System SC/FC,	with noise and without noise				
Experiment No. 4					
FM Modulation- demodu	lation using Foster Seeley Discriminator				
Experiment No. 5					
Diode Detector circuit for	AM demodulation				
Experiment No. 6					
Study and measurement o	f modulation index, Study of Super-heterodyne rec	eiver			
Experiment No. 7					
Sensitivity, Fidelity and S	Sensitivity, Fidelity and Selectivity of AM Communication System.				
Experiment No. 8					
Basic Pulse modulation sc	Basic Pulse modulation scheme : Generation and demodulation of PWM and PPM				
Experiment No. 9					
Phase locked loop charact	eristics and FM modulation and demodulation using	g PLL			
Experiment No. 10					
Noise figure and Noise me	easurements for Amplifier, detector blocks in AM sy	vstem			

Subject Code: VE200	Value Education	Credits: 1 (1-0- 0) Total hours: 14
Course	General Awareness of the Society/ Environment we live in	
Prerequisite		
Course	It aims at Holistic Development	
Objectives		
Course	At the end, the students should be a complete human being in ever	y respect
Outcome		
Module 1	Ethics in Engineering	4 hours
Concepts of V	alues and Ethics, History and Purposes, Utilitarianism, Duties, R	ights, Responsibility,
Virtue, Honest	y, Moral Autonomy, Obligations of Engineering Profession and mor	al Propriety
Module 2	Engineer's Moral responsibility	3 hours
Engineer's Mo	ral responsibility for Safety and Human Rights, Risk Assessment an	d Communication,
Product Liabili	ty, Engineers-Employers Liaison, Whistle-Blowing and Its Moral Ju	stification
Module 3	Computer Ethics	3 hours
Social Impact	of Computer, Gender-Issues and Privacy, Cyber Crime, Ethical use of	of Software
Module 4	Intellectual property	4 hours
Definition, Ty	pes, Rights and Functions, Patents, Trademark, Grant of Patent in	India, Surrender and
Revocation of	Patents, Compulsory Licensing, Acquisition of Inventions by the C	Government, Contents
of draft applica	ation of Patents, WTO	
Texts:	1. Vinod V. Sople, <i>Managing Intellectual Property</i> : The PHI,2006	Strategic Imperative,
	2. Govindarajan, Natarajan & Senthil Kumar, Engineering E	
	3. Robin Attfield, <i>A Theory of Value and Obligation, London</i>	
	4. Jones and barlett, " <i>Cyber Ethics: Morality and Law in Cy</i>	ber Space"
Reference	Case Studies from Newspapers	

Third Year Course Contents

Subject Code ES300	ENVIRONMENTAL STUDIES	Credits: 3 (3-0-0) Total hours: 44
Course Objective	Understanding environment, its constituents, importance f human developmental activities vs environment, climate international environment related developments, need for protection and conservation activities.	change, national and
Module 1		Hours : 2
Multidisciplin awareness.	ary nature of environmental studies:Definition, scope and import	ance, Need for public
Module 2		Hours: 8
resources : Us and their effect ground water, Use and explo Food resource modern agric resources : Gr energy source landslides, soi	d non-renewable Natural resources : Natural resources and associate and over-exploitation, deforestation, case studies, Timber exacts on forest and tribal people; Water resources : Use and over-ut floods, drought, conflicts over water, dams-benefits and problem bitation, environmental effects of extracting and using mineral news : World food problems, changes caused by agriculture and ulture, fertilizer-pesticide problems, water logging, salinity, rowing energy needs, renewable and non renewable energy so s, Case studies; Land resources : Land as a resource, land deg l erosion and desertification; Role of an individual in conservation of resources for sustainable lifestyles.	traction, mining, dams ilization of surface and ms; Mineral resources : resources, case studies; overgrazing, effects of case studies; Energy purces, use of alternate gradation, man induced
Module 3		Hours : 10
and decompose ecological py Following eco	Concept of an ecosystem, Structure and function of an ecosystem bers, Energy flow in the ecosystem, Ecological succession, Food ramids, Introduction, types, characteristic features, structure cosystem, Forest ecosystem, Grassland ecosystem, Desert onds, streams, lakes, rivers, oceans, estuaries).	chains, food webs and and function of the
Module 4		Hours : 12
diversity, Bic productive use levels, India a loss, poachin Conservation of India-vario	and its conservation: Introduction – Definition : genetic, s o geographical classification of India, Value of biodiversity e, social, ethical, aesthetic and option values, Biodiversity at glo s a mega-diversity nation, Hot-sports of biodiversity, Threats t g of wildlife, man-wildlife conflicts, Endangered and ende of biodiversity : In-situ and Ex-situ conservation of biodiversity us festivals related to Environment, Tradition of community c tanks, sacred mountains, sacred rivers.	y : consumptive use, bal, National and local o biodiversity : habitat mic species of India, y, Eco-cultural heritage

Module 5		Hours : 12			
National and	d International Environment related developments				
Environment	al ethics : Issues and possible solutions, Climate change, globa	al warming, acid rain,			
ozone layer	lepletion, nuclear, accidents and holocaust, Environment related A	Acts, Issues involved in			
	of environmental legislation, Public awareness, Wasteland recla				
	roducts, UN Frame Convention Climate Change, Kyoto protoc				
	t CoP meet Agenda; Filed Work(equal to 5 lecture hours): V				
	nvironmental assets river/forest/grassland/hill/mountain/sacred				
	cal polluted site-Urban/Rural/Industrial/Agricultural, Study of co	ommon plants, insects,			
birds, Study	of simple ecosystems-pond, river, hill slopes, etc.	0.11 D 1 0			
	1. Textbook for Environmental Studies For Undergraduate Cours				
	Higher Education (online book -UGC Website), Erach Bharucha	University Grants			
	Commission, India.	1 F			
	2. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science a Edi:1st,1997	nd Environment,			
	ISBN-13 9788186906200; ISBN-10 8186906207				
		vford IBH Pub 2005			
Reference	 8. R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005. 4. Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill, 2006. 				
books	1. Benny Joseph, Environmental Selence and Engineering, Tata Meestaw Tini, 2000.				
DOOLS	5. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press,				
	2005.				
	6. Masters, Gilbert M., Introduction to Environmental Engineering and Sciences,				
	Prentice Hall India, 1991				

Subject Code	Data Structures & Algorithm	Credits: 4 (3-1-0)	
EC 301	(DSA)	Total hours: 56	
Course Objectives	Following this course, students will be able to: 1) structures and algorithm design methods impacts 2) Choose the appropriate data structure and a specified application. 3) Solve problems using dat stacks, queues, hash tables, binary trees, heaps, t trees, and graphs and writing programs for these using algorithm design methods such as the greec dynamic programming, backtracking, branch and for these solutions.	the performance of programs. Igorithm design method for a a structures such as linear lists, ournament trees, binary search e solutions. 4) Solve problems ly method, divide and conquer,	
Module 1		6 Hours	
Introduction to data Elementary Operati	a structures and objectives, basic concepts Arrays: one d ons.	imensional, multi-dimensional,	
Module 2		8 Hours	
parenthesis matchi applications.	tion, elementary operations and applications such as infixing, Queues: Simple queue, circular queue, dequeue	e, elementary operations and	
Module 3		10 Hours	
Linked lists: Linea polynomial manipu	ar, circular and doubly linked lists, elementary operati lation.	ons and applications such as	
Module 4		12 Hours	
Trees: Binary tree r	epresentation, tree traversal, complete binary tree, heap, bi	nary search tree, height	
balanced trees like	AVL tree and 2-3 tree and other operations and application	ns of trees.	
Module 5 20 Hours			
Graphs: Representa	tion, adjacency list, graph traversal, path matrix, spanning	tree; introduction to algorithm	
	n techniques, algorithms on sorting: selection sort, bubb , linear and binary search.	le sort, quick sort, merge sort,	
Reference books	 (5) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, 'Addison Wesley. 2003 (6) Horowitz and Sahni , "Data Structures and algorithm (7) Michael T. Goodrich, Roberto Tamassia, "Data Stru 4thEdition, John Wiley & Sons, Inc. 	s using C/C++", 2003	

Subject Code	e	Control Systems		Credits: 4 (3-1-0)
EC 302				Total hours: 56
Course Obje	ctives	To be familiar with basic control conf mathematic modelling of physical s frequency response.	0	•
Module 1			Hou	ırs 12
Physical syste	ems, Mechan	ntroduction of Open loop and Closed loo ical and Electrical systems, Transfer fun ow graphs, Mason's Gain formula, Fe	ctions, Blo	ck diagrams, Block diagram
Module 2			Hou	urs 12
response of s	system, Resp	stants and Dynamic Error coefficients, E ponse with P, PI and PID controllers, rs, Tachogenerators, DC and AC Servor	Performan	•
Module 3			Ног	ırs 10
Conceptof sta	•	ssary conditions and Routh Criterion, I	Relative st	ability analysis, Concept of
Conceptof sta	•	•	Relative st lition of po	ability analysis, Concept of
Conceptof sta Root Locus an Module 4 Frequency do	nd Construct	•	Relative st lition of po Ho requency at	ability analysis, Concept of les and zeroes on root locus. urs 12 nd Time domain correlation,
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, P	nd Construct	on, Gain margin and Phase margin, Add	Relative st lition of po Ho requency at y response	ability analysis, Concept of les and zeroes on root locus. urs 12 nd Time domain correlation,
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, P Functions. Module 5 Compensation Concept of St	nd Construct main Analys olar plot, N n Technique ate, State Va	on, Gain margin and Phase margin, Add	Relative st lition of po Ho requency at y response Ho ompensation	ability analysis, Concept of les and zeroes on root locus. urs 12 nd Time domain correlation, e from Open loop Transfer ours 10 on. State variable Analysis: ntinuous-time systems, State
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, P Functions. Module 5 Compensation Concept of St	nd Construct main Analys olar plot, N n Technique ate, State Va ation of State	ion, Gain margin and Phase margin, Add is: Frequency response specifications, Fr yquist criterion, Closed loop frequenc s: Design of Lead, Lag, Lead-Lag Co riables and State Model, State representa	Relative st lition of po Ho requency at y response Ho ompensation ation of Co nd Observa	ability analysis, Concept of les and zeroes on root locus. urs 12 nd Time domain correlation, e from Open loop Transfer ours 10 on. State variable Analysis: ntinuous-time systems, State bility.
Conceptof sta Root Locus an Module 4 Frequency do Bode plot, P Functions. Module 5 Compensation Concept of St equation, Solu Reference	nd Construct main Analys olar plot, N n Technique ate, State Va ation of State 1. J. Nag Edition.	is: Frequency response specifications, Frequency response specifications, Frequency criterion, Closed loop frequences: Design of Lead, Lag, Lead-Lag Corriables and State Model, State representatequations, Concept of Controllability and	Relative st lition of po Ho requency as y response Ho ompensation ation of Co ation of Co ation of Co ation of Co	ability analysis, Concept of les and zeroes on root locus. urs 12 nd Time domain correlation, e from Open loop Transfer ours 10 on. State variable Analysis: ntinuous-time systems, State bility.

Subject Code	Digital Signal Processing	Credits: 4 (3-1-0)
EC 303		Total hours: 56
Course Objectives	Students will be exposed to specification	
	processing algorithms. They will learn differ different fast algorithms for filtering and othe	• • • • • • •
Module 1		8 hours
systems, interconnectio	ystems: Motivation and introduction to the court n of the systems and filtering, Z – transform an convolution theorem, system described by d s and system functions.	d the Region of convergence of
Module2		15 hours
Phase. Module 3 Filter Design Techniq	n phase systems, Lattice Structures, Linear Sy ues: Design of IIR filters and different tran y windowing, FIR filter by the Kaiser window,	16 hours nsformations, IIR filter design
FIR Filters.	, while while, i lit like by the Rubble while wi	and optimum approximation of
Module 4		9 hours
transform (DFT), Relati	ansform and Computational Aspects: Orthogonal on between Fourier transform and DFT, Circular inear Convolution using the DFT, Fast computat	Convolution, DFT properties,
Module 5		8 hours
Quantization Process an conversion noise analys	entation and Finite Worldlength Effect: Number d Errors, fixed and floating point numbers, coeff is, Low sensitivity digital filters, Limit Cycle osc	icient quantization, A/D cillations in IIR digital filters.
	Discrete time Signal Processing, 2nd Ed. – A. V Digital Signal Processing, 3rd Ed S. K. Mitra,	

Subject Code	Microprocessors and	Credits: 3(3-0-0)	
EC304	Microcontrollers	Total hours: 45	
Course Objectives	 To introduce the student with knowledge about architecture, interfacing and programming with 8086 microprocessors and 8051 microcontrollers. Also to give a brief introduction to ARM 7 and ARM 9 micro controllers. After studying this subject, the student should be able to design Microprocessor/Microcontroller based system. 		
Module 1		Hours 12	
	Microprocessors, Basics of computer archite overview, 8085 Architecture, Assembly Lang		
wiodule2		Hours 12	
ALP, Strings, Procedures,	rogram development steps, Implementing Stan Macros.		
Module 3		Hours 11	
Programmable Timer/Con	er, 8279 Programmable Keyboard/ Display Inter	face, 8259 Priority Interrupt	
Module 4		Hours 10	
Intel 8051 Microcontroller: Architecture, Memory Space, Data Types and Directives, Register Banks and Stack, Assembly Language Programming, Introduction to ARM processors –features of ARM 7 and 9 processors.			
Reference books 1. 2. 3.	Ramesh Gaonkar, "Microprocessor Ard Applications with 8085", Penram Internatio	chitecture, Programming and nal Publishing, Fifth edition zidi and Rolin D Mckinlay, "	

Subject Code	Digital Signal Processing	Credits: 2 (0-0-3)
EC 305	Laboratory	Total hours: 45
Course Objectives	This Laboratory course is offered in conjunction	e e
	Signal Processing". The aim of this course is to digital signal processing systems in a simulation	01
List of Experiments		
Experiment No. 1Sin	nulation of discrete time system	
Experiment No. 2 D	screte Time Fourier Transform	
Experiment No. 3 Tr	ansfer Function and Frequency Response and Stability	7 Test.
Experiment No. 4Re	alization of FIR and IIR transfer function	
Experiment No. 5 III	R Filter Design	
Experiment No. 6 Fl	R Filter Design	
Experiment No. 7Op	timal FIR Filter Design	
Experiment No. 8Sin	nulation of FIR and IIR Filters	
Experiment No. 9 La	ttice Filter implementation and Stability Test.	
Experiment No. 10 A Oscillation.	Analysis of Finite World Length Effect – Coefficient Q	Quantization, Limit Cycle
Experiment No. 11 I	mplementation of Signal Processing tasks on DSP Pro	cessor.
	. Discrete time Signal Processing , 2nd Ed. – A. V. O . Digital Signal Processing Laboratory, Tata Mc Graw	

Subject Code EC306	Microprocessor and Microcontrollers Laboratory	Credits: 2(0-0-3) Total hours: 45
Course Objectives	To give hands on experience on 8085/8086 and 805	1 programming
List of Experiments		
Experiment No. 1		
8085 and 8086 kit fam	iliarization and basic experiments	
Experiment No. 2		
Programming exercise	: sorting ,searching and string	
Experiment No. 3		
Interfacing with A/D and	nd D/A converters	
Experiment No. 4		
Interfacing with stepper	r motors	
Experiment No. 5		
keyboard interfacing to	8086	
Experiment No. 6		
8255 interface to 8086		
Experiment No. 7		
Assembly language pro	pgramming of 8051	
Experiment No. 8		
Timer programming of	8051, using interrupts	
Experiment No. 9		
LCD interfacing to 805	1	
Experiment No. 10		
Mini-Project		

Subject Code	9	Wireless Communication	Credits: 3 (3-0-0)
EC 351			Total hours: 45
Course Obje	ctives	To enable students to understand concept cellular systems of mobile communication ar	
Module 1			13 Hours
Model, Practi Coverage Are Parameters of Spread and C	cal Link Buc a. Small Sca Mobile Mu oherence Tin	a Large Scale Path Loss: Free Space Propagation dget Analysis : Log Normal Shadowing, Deterr ale Fading and Multipath : Impulse Response M ltipath Channels: Time Dispersion Parameters, ne, Types of Small Scale Fading : Flat Fading, . Level Crossing Rate and Average Fade Durat	nination of Percentage of Iodel of a Multipath Channel, Coherence Bandwidth, Doppler Frequency Selective Fading,
Module2			10 Hours
analysis : D/R Erlang Model	ratio, N_re	(A): Description of GSM system block diagram use, Cell Sectorization, Spectrum Efficiency, C king Analysis, Handovers – Techniques, Mode	hannel Allocation and Multicell ls and Analysis.
Module 3			10 Hours
Combining, N	Iaximal Rati	Independent Paths, Diversity System Model, Se io Combining, Equal Gain Combining, Momen mitter Diversity.	e e
Module 4			12 Hours
Direct Seque Systems, The	nce Spread Processing ne Hopped	of Spread Spectrum Systems, Pseudo Noise S Spectrum Systems, Analysis of Direct Seque Gain and Anti Jamming Margin, Frequency H Spread Spectrum Systems, Synchronization of	ence Spread Spectrum Hopped Spread Spectrum
Reference books	Se 2. An Ka 3. Sin Ha 4. An	eodore Rappaport,"Wireless Communications cond Edition, Pearson 2010. nurag Kumar, D Manjunath, Joy Kuri, "Wireles nufmann Publishers, 2008 mon Haykin, Michael Moher,"Modern Wireles II, 2005 ndrea Goldsmith, "Wireless Communications", 05.	s Networking", Morgan

Subject Code	Linear Integrated Circuits	Credits: 3(3-0-0)	
EC352		Total hours: 45	
Course Objectives	 To develop the skill of analysis and develop design skills to design var data conversion Systems 		
Module 1		Hours 12	
Inverting Configuration, Feedback, Feedback in C	d its Linear application: Ideal Op Amp circuit Differentiator, Integrator, The Negative r Op Amp circuit, Loop gain. Circuits with R Itage-to-Current converters, Current Ampli s and Applications.	esistance converter, Negative esistive Feedback: Current-to-	
Module2		Hours 10	
	Emulation of Inductor using Op-Amps-R-C, S her order filters, All-pass filter.	alen-Key Biquad, Tow-Thomas Hours 11	
rectifiers, Schmitt trigge generator. Non idealities	ge Comparators, Comparator Applications, Ze r (Inverting &Non Inverting), Astable M of Op-Amps and their effects. NE555 Timer fultivibrator, Monostable Multivibrator, Saw-Te	Iultivibrator, Triangular wave circuits: Internal architecture,	
Module 4		Hours 12	
Digital to Analog (D/A) Converters: Types of D/A converters, Accuracy, Resolution and Conversion speed, Offset error, Gain error, Integral and Differential Nonlinearity. Analog to digital (A/D) converters: A/D conversion techniques and their Nonlinearity's. Phase Locked Loop: Block schematic and Analysis of PLL, Lock range and Capture range, Typical applications of PLL, Basic Principles of operation of VCO and timer (555) and their applications.			
Circu: 3.Sed 1998 4.Ran	gio Franco, "Design with Operational Amplifie its", McGraw Hill Book Company 1998. ra A.S. & Smith K.C., "Microelectronic Circuit nakanthGaykward, "Op Amps and Linear Integ on Education, 1999.	s", Oxford University Press	

Subject Code	Digital Com	munication Credits: 4 (3-1-0)
EC 353		Total hours: 56
Course Objectiv	es To enable students to un	iderstand and compare the performance of different digital
	communication systems	(BER, SNR etc).
Module 1		5 Hours
Review of Rando	m Processes. Gaussian Process. Co	prrelation Functions and Power Spectra.
Module2		16 Hours
Noise, Probability	÷ .	Distribution of Nosiy Input, Detection of Known Signals in Iatched Filter Receiver, Detection of Signal with Unknown Maximum Likelihood Estimation. 17 Hours
	g Techniques : PCM, Channel No ust Quantization, DPCM, Delta Mo	ise and Error probability, Quantization Noise and Signal to odulation 18 Hours
Modulation. Non Keying. Digital M Optimum demode	coherent Binary Modulation Tech Iodulation Tradeoffs.	Iodulation Techniques – PSK, FSK, Quadrature Amplitude niques, Continuous Phase Modulation and Minimum Shift llimited channels- Maximum likelihood sequence detection nization and Carrier Recovery for Digital modulation.
Reference books	Wiley, 1965.2. Proakis J.G., ``Digital Comm	s I. M., "Principles of Communication Engineering", John nunications", 4th Edition, McGraw Hill, 2000. munication Systems", Wiley India Private Ltd.

Subject Code	9	Communication Network	5	Credits: 4 (3-1-0)
EC 354				Total hours: 56
Course Obje	ctives	To enable students to understand layers of different protocols and their use in network		
Module 1			9 Ho	ours
Loss and Three Application L	oughput in Pa ayer : Princi	vorking and the Internet, The Network Edge, Tacket Switched Networks. Protocol Layers ar ples of Network Applications, The Web and Har Applications.	id Thei	ir Service Models.
Module2			13 H	lours
Transport, UI	OP, Principle	rt Layer Services, Multiplexing and Demultip s of Reliable Data Transfer, Connection Orier Control, TCP Congestion Control.	0	
Module 3			12 H	lours
Forwarding a	nd Addressir	rcuit and Datagram Networks, Router Archite og in the Internet, Routing Algorithms: Link S g in the Internet, Broadcast and Multicast Rou	State A	
Module 4			13 H	lours
Protocols(AL	OHA, Slotte witches, PPP	and Services, Error Detection and Correction d ALOHA, CSMA/CA,CSMA/CD), Link Lay , Wireless networks : 802.11 Wireless LANs, edia.	er Ado	dressing, Ethernet,
Module 5			9 H	lours
Delay Guaran	tees, Quality	e Measures and Engineering Issues, Stream S of Service (QoS) Objectives in Networks, St ted Fair Queueing, RSVP.		
Reference books	Inte 2. An An	rose/Ross, "Computer Networking: A Top-E ernet", Addison-Wesley, 3 rd Edition, 2005. urag Kumar, D Manjunath, Joy Kuri, "Com alytical Approach", Morgan Kauffm evier)	munic	ation Networking : An

3. Dimitri Bertsekas, Robert Gallager, "Data Networks" (2 nd edition), Prentice
Hall.
4. Peterson, Davie, "Computer Networks : A Systems Approach", 5 th Edition,
Morgan Kaufmann Publishers.

Subject Code	Linear Integrated Circuits	Credits: 3 (3-0-0)			
EC355	Laboratory Total hour				
Course Objectives	To provide experience on design and analysis o	f various electronic			
	circuits using op-amp and other linear IC's				
List of Experiments					
Experiment No. 1					
Analysis of Inverting and n	on-Inverting amplifiers,				
Experiment No. 2					
Integrators and Differentiat	ors - AC analysis, Transient analysis				
Experiment No. 3					
Negative Resistance Realiz	ation				
Experiment No. 4					
Design and Implementation	n of Comparators, Zero crossing Detector				
Experiment No. 5					
Design of Inverting and No	on-Inverting Schmitt trigger.				
Experiment No. 6					
Single op-amp second orde	r LFF and HPF - Sallen-Key configuration.				
Experiment No. 7					
Instrumentation amplifier-g	gain, CMRR & input impedance				
Experiment No. 8					
Astable and Monostable M	ultivibrators using IC 555				
Experiment No. 9					
Design of regulated power	supply				
Experiment No. 10					
Mini-Project					

Subject Code	Digital CommunicationCredits: 2 (0-0-3)				
EC 356	LaboratoryTotal hours: 45				
Course Objectives	To introduce student to the experiments which in the EC301 Digital Communication course so and implement important components used systems.	that they know how to design			
List of Experiments	I				
Experiment No. 1					
Pulse code modulation	and demodulation : PCM, Adaptive PCM, Differ	ential PCM			
Experiment No. 2					
Companded PCM A La	aw and mu law				
Experiment No. 3					
Delta modulation and o	demodulation, slope overload distortion and granu	lar noise			
Experiment No. 4					
Manchester encoder an	nd timing recovery				
Experiment No. 5					
Sampling And Reconst	truction				
Experiment No. 6					
ASK Modulation and I	Demodulation				
Experiment No. 7					
FSK Modulation and o	demodulation: Hardware Implementation				
Experiment No. 8					
BPSK Modem: Simula	tion and Error probability evaluation				
Experiment No. 9					
BPSK generation and o	detection: Hardware Implementation				
Experiment No. 10					
QPSK generation and o	detection.				

Fourth Year Course Contents

Subject Code	VLSI Circuit Design	Credits: 3(3-0-0)
EC401		Total hours: 45
Course Prerequisites	Analog Electronics and Digital Electroni	ics
Course Objectives	 To introduce the basic concepts of C Layout preparation. To introduce the various steps in IC material to the finished product and involved in these processes. 	-
Module 1		Hours 08
Overview of VLSI Desig Performance of CMOS	Inverter: The Static CMOS Inverter, Evalu aviour, The Dynamic Behaviour, Power, Ene	ating the Robustness of the CMOS
Module2		Hours 14
Dynamic CMOS Design Sequential Logic Circuit	l logic gates in CMOS: Static CMOS Design, I n, Designing Logic for Reduced Supply V its: Static Latches and Registers, Dynamic oach to optimize Sequential Circuits, Stick di tion.	Voltages, Stick diagrams. Designing Latches and Registers, Alternative
Module 3		Hours 13
Carry look ahead Adder Shifters, 6-Transistor SR Driving large Capacitive Calculation with Distrib Electro –Static Discharge	lard cells and Data path cells, Logic and Arithi and other high Speed Adders; Array and Tree AM and DRAM cell design. e loads: Wire Delay models, Lumped, RC buted Circuit Elements, Latch up and its pre e (ESD) protection, Power Supply Noise, Sup ag and Short Channel effects.	e multipliers, Logarithmic and Barrel and Distributed RC models, Delay evention, Input and Output circuits,
Module 4		Hours 10
etching; Epitaxial Growth	Preparation, Oxidation, Diffusion, Ion Implan h - Molecular Beam Epitaxy; Optical lithograp Positive and Negative PR.	e e
2	 Jan M. Rabaey, "Digital Integrated Circuits- Second Edition, 2005 Sung –Mo Kang & Yusuf Leblebici, "CMOS Designing", MGH, Third Ed., 2003 John P Uyemura, "Introduction to VLSI Circuit S K Gandhi, "VLSI Fabrication Principle", John 	Digital Integrated Circuits- Analysis & s and Systems", Wiley India, 2006

Subject Code HS 400	Management		Credits: 3 Total hours: 45	
Course Outcome	Develops the ability to understand and analyse the broad aspec financial dynamism	ct of man	agement and its	
Module 1	Principles of Accounting	5 h	ours	
Accounting Cycle	, Assumptions, Classifications of Accounts- Journal, Cash Bool	, Ledger,	Final Accounts-	
Manufacturing Ac	count, Trading Account, P & L Account, Balance Sheet.			
Module 2	Financial Statement Analysis	5 h	ours	
	ofit and Loss Account, Economic vs Accounting Profit, Changes ash flow statement.	s in Finan	cial Position,	
Module 3	Ratio Analysis	6 h	ours	
Nature of Ratio A	nalysis, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profita	bility Rat	io, DuPont	
Analysis, Compar	ative statement and Trend Analysis, Inter-firm Analysis.			
Module 4	Working Capital 6 hours			
Concept of working	ng Capital, Operating and Cash conversion Cycle, Permanent an	d Variabl	e working	
Capital, Balance v	vorking capital position and Issues.			
Module 5	Time Value of Money5 hours		ours	
Time preference f	or money, Future value, Annuity, Perpetuity, Sinking fund facto	or, Present	value, Annuity,	
Perpetuity, capital	recovery factor, Multiple period Compounding.			
Module 6	Capital Budgeting	8 ho		
Nature and type o	f Investment decision, Net Present value, (NPV), Internal Rate of	of Return	(IRR), Payback	
•	ty Index, Nature and Behavior of Cost, Breakeven point, multip	ole produc	ts analysis,	
decision points.				
Module 7	Financial System	6 h	ours	
Introduction to In	dian Financial System, Financial Institutions and Financial Marl	cets.		
Module 8	Industrial Engineering & Project Management	4 h	4 hours	
Work Study, Time	e Study, Industrial Psychology, Project Management (PERT, CF	,		
Text Books	I.M Pandey, <i>Financial Management</i> , 10 th edition, Vikish Publ. Brealey Y Myers, <i>Principles of Corporate Finance</i> , McGraw- Rajiv and Anil: <i>Financial Management</i> , 2 nd Edition, Oxford U L.M Bhole: <i>Financial Institutions and Markets</i> , Tata McGrow	Hill niversity	Press	

Subject Code	Informatio	n Theory and Credits: 4 (3-1-0)
EC 402	Co	Doding Total hours: 56
Course Objectiv	tives To enable students to analyze fundamental parameters of information theory, to explain source and channel coding and to find capacity for simple channels.	
Module 1		9 Hours
Coding, Channel Definition of Mu	Models and Channel Coding.A M	mation Theory: Introduction, Source Models and Source Measure of Information, Discrete Probability Review, verage Mutual Information and Entropy, Probability and
Module2		8 Hours
		between them, Chain rules of Entropy, Convex Functions, becessing Inequality, Differential Entropy.
Module 3		15 Hours
-		ecodable Codes, Kraft Inequality, A Source Coding g Procedure, Huffman Codes, Lempel-Ziv Coding. 15 Hours
Module 4		15 Hours
Fano's Inequality Binary Channel,	y, Channel Coding Theorem and t	ssification of Channels, Discrete Memoryless Channels, he converse, Examples of Channel Capacity : Noiseless Outputs, Noisy typewriter, Binary Symmetric Channel, ntly Typical Sequences.
Module 5		9 Hours
e	nstruction and decoding, Standard	d correction, Review of Vector Space, properties, Linear Array decoding, Distance properties, Hamming Code,
Reference books	 Thomas Cover and Joy Thomas, "Elements of Information Theory", John Wiley, Second Edition. R. G. Gallager, "Information Theory and Reliable Communication", Addison Wesley, 1987. Shu Lin and Daniel J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice Hall, 2003 	
	4. Blahut R. E, Theory and Pr	actice of Error Control Codes, Addison Wesley, 1983.

Subject Code	VLSI Design Laboratory	Credits: 2(0-0-3)
EC403		Total hours: 45
Course Objectives	To provide the practical knowledge of designing	g the VLSI circuit and layout using
	any of CAD tools like Spice/ MAGIC/ MIRCOV	VIND/Cadence.
List of Experiments		
Experiment No. 1		
P,N,CMOS - ID-VDS Cl	naracteristics – extraction of VT and body effect fact	or
Experiment No. 2		
DC transfer characteristic	cs of a CMOS inverter	
Experiment No. 3		
Design, Simulation and l	ayout of CMOS NAND, NOR, XOR, XNOR	
Experiment No. 4		
Design, Simulation and l	ayout of AND, OR, NOT	
Experiment No. 5		
Design, Simulation and l	ayout of basic digital blocks such as Adder, Subtract	tor, Decoder, Mux etc

Subje	ect Code	Electronic Instrumentation	(Credits: 3(3-0-0)
EC40	94		ſ	Fotal hours: 45
Cours Objec		To understand the basic principles of instrum practical issues related to measurement.	nents a	and measurements and various
Modu	ıle 1]	Hours	12
Static	Characteristic	Measurement Systems; Characteristics of Ins and Dynamic Characteristics; Errors in measu Gauges, Thermistors, LVDT.		
Modu	ıle2]	Hours	10
		ents: Electronic Voltmeters, Electronic Mult c Distortion Analysers, Spectrum Analysers.	timeter	rs, Signal Analysers - Wave
Modu	ıle 3		Hours	5 11
		oscope: Cathode Ray Tube, Electrostatic Defle nent of Phase and Frequency, Sampling Oscillos		
Modu	ıle 4		Hours	s 12
		entation: Bio-potential, ECG, Blood Pressure romayograph (EMG),Spirometer.	Measu	uring Instruments, Blood Flow
Ref ere nce boo ks	Co. 2. Albert D. Measuremen	ney, "Electrical and Electronic Measurements a Helfrick, William D. Cooper, "Modern Electron t Techniques", PHI , Weibell, Pfeiffer , "Biomedical Instrumentation	nic instr	rumentation and

Subject Code	Digital System Design	Credits: 3(3-0-0)
EC405		Total hours: 45
Course Objectives	 After learning this subject students mutypical Combinational and Sequential To impart the basic idea of Memory Architecture of Computers. 	
Module 1		Hours 10
	l Circuits: Asynchronous behaviour, Analysis o Race Condition, State reduction, State Assi onal State Variables.	
Module2		Hours 12
	VHDL: Behavioural, Data Flow and Structural s, Delay models, Delta Delays, VHDL codes for Design, Examples.	
Module 3		Hours 11
PLDs (Eg: PAL14L4 &	ble Devices: Programmable Logic Arrays, Progr PAL12H6), Sequential PLDs (Eg: PAL16R4), vices (Eg: XC9500), Field Programmable Gate A	Simple PLDs (Eg: 22V10), Complex
Module 4		Hours 12
Multiple Stuck Faults, Te	Fault models, Fault Equivalence, Fault Location, esting for Single Stuck-at Faults, Design for Test can Testing, Boundary Scan, Built –In- Self-Test	ability, Testing Combinational Logic
	 C.H. Roth, "Digital system design using VH J. Bhasker, "A VHDL Synthesis Primer", B.S. 	

Subject Code	Computer Architecture and	Credits: 3(3-0-0)
EC406	Organization	Total hours: 45
Course Prerequisi	tes Digital Electronics	
Course Objectives	• To understand and Implement the Ba	sic Architecture of Computers.
Module 1		Hours 09
	Computers: Basic functional units , Bus structure, Soft as and Programs, Numbers, Arithmetic operations and g Modes.	
Module2		Hours 12
1 0	ixed point Arithmetic, Arithmetic-Logic Units (ALU) Design: Basic Concepts, Hardwired control, Micropi ing.	
Module 3		Hours 12
Connection to CPU	on: Memory Hierarchy, Main Memory, RAM and RC, Hardware Organization, Read-Write Operation, Cac t Associative Mapping, Virtual Memory, Address Sp ges.	he Memory, Associative Mapping,
Module 4		Hours 10
	ts: Register, Memory Access and Data Transfer, Arithbly languages, I/O operations, Subroutine, Program E	0
Reference books	 John P Hayes, "Computer Architecture and MCGraw Hill. Carl Hamacher, Zvonkovranesic, Safat Z., " Hill. 	

Subject Code	Advanced Digital Signal	Credits: 3 (3-0-0)
EC 407	Processing	Total hours: 45
Course Objectives	The students will be able to appreciate adva very specific areas and apply this to variety current literature.	
Module 1		1 hours
Motivation and I	Review of fundamental of DSP	
Module 2		10 hours
characterization, multistage desig	al Signal Processing : Rate convertor and decimator and interpolator, Noble identitie gn of Decimator and Interpolator, polypha splines, Nyquist filters and application, Applic	s, Rational Sampling rate convertor, ase decomposition and applications,
Module 3		12 hours
Bank – Aliasin	Two Channel filter bank, Quadrature Mirror Fi g, Multiresolution Analysis and Filter Bank Vavelets Design and their properties, Ap	k, Dyadic Wavelet, Orthinormal and
Module 4		12 hours
autocorrelation of	Power Estimation : Spectrum Analysis of De of the stationary random signals; Estimation of gnal Analysis; Multitapper Power Spectrum Est	Power Spectrum of Stationary Random
Module 5		10 hours
Estimation of Al Speech Modeling Estimation Tech Minimum –Norr Referenc 1. P. e books 2. St Pres 3. L	g and Parametric Spectral Estimation :The model l-pole Models; Estimation of Pole-Zero Models g; Minimum Variance Spectrum Estimation; Ha niques: Harmonic Models, Pisarenko Harmonic n Method, ESPRIT Algorithm P. Vaidyanathan, "Multirate Systems and Filter rephane Mallat, "A Wavelet Tour of Signal Pro s, 2008 D. Manolakis, V Ingale, S Kogon, "Statistical a se, 2005.	; Application: Spectral Estimation, armonic Models and Frequency Decomposition, MUSIC algorithm, r Banks", Prentice Hall,1993 pocessing : The Sparse Way", Academic

Subject Code	Statistical Signal Processing	Credits: 3 (3-0-0)
EC 408		Total hours: 45
Course Objectives	The students will be able to appreciate processing in a non deterministic setting applications and also appreciate the current lite	and apply this to variety of
Module 1		6 hours
6 6	I processing, representation of Narrow band si m phase and system invertibility, spectral factoriz	
Module2	, -	12 hours
statistics, Stationarity, E power spectral density,	on and analysis of signals:Discrete time stoch rgodicity, Frequency domain description of statio white noise; Linear Systems with Stationarity r ion Representation – Eigen Decomposition, K-L t	onary processes: autocorrelation, random inputs and cross power
Module 3		4 hours
Models, Lower Order M	le Models : Model Properties, All-pole modell Models; All-Zero Models: Model properties, M el Properties, Autoregressive Moving-Average	A Models, Low order Models;
Module 4	9	9 hours
measure, Linear MMSE Geometric Interpretation	Deptimum signal estimation, Linear Mean Square E Estimator, Principal Component Analysis of the o and Principle of Orthogonality, Optimum FIR an n to filtering to additive noise, Linear Prediction.	optimum Linear Estimator,
Module 5	(6 hours
	uares, Linear Least-Squares Error Estimation, Lea n, Least Square computations using SVD.	ast Square filtering, Least
Module 6		6 hours
Stability and Steady-Stat Square Adaptive Filters	pplications (Echo cancellation, Linear Predictive of e Performance of Adaptive filters; Methods of Stu – stability and steady state in Stationary Signal Op	eepest descent; Least-Mean-
RLS Algorithm.		

Fundamentals of A	rray proces	ssing and Bea	am	forming.						
Reference books		Manolakis, ng",Artech Ho		0 /	S	Kogon,	"Statistical	and	Adaptive	Signal
	(2) S. Ha	ykin, Adaptiv	ve F	ilter Theo	ory,	Pearson,	2002			

Subject Cod	DSP Algorithm and	Credits: 3 (3-0-0)
EC 409	Architecture	Total hours: 45
Course Objectives	The students will be able to optimally in programmable hardware and will be able to o	
Module 1		6 hours
algorithms - DSP System	o Digital Signal Prcessing System: Important D block diagram, signal flow graph, data flow gra Design; Introduction to DSP development Tool.	
Module2		3 hours
-	resentation and Arithmetic Operation: Fixed p cision; Floating point emulation; Q notation; Fi	
Module 3		12 hours
	of Programmable Digital Signal Processors: Cerures; Peripheral interfacing; Instruction set; gramming.	
Module 4		9 hours
Instruction ty	Processor specific Assembly language programs pes; Addressing modes. Assembly language prog ocessor; Pipelining.	•
Module 5		4 hours
-	ms: Algorithmic Considerations; Convolution; F of elementary functions; Pseudo-random numb	
Module 6		12 hours
Retiming tran Fast Convolu	Optimization of DSP Algorithms and Systems: I sformation; Unfolding transformation from data ion; Optimization using pipelining and / or para mization techniques for low power.	flow graph- folding transformation;
nce and books (2) Par	Digital Signal Processsors: Architectures, Imple and W S Gan, Pearson Prentice Hall, Second Ed VLSI Digital Signal Processing Systems – D hi, A Wiley InterScience Publication. DSP Programmable Processor User Manual of S	dition, 2006 Design and Implementation, Keshab K.

Subject (Code	Speech And Audio Processi	ng	Credits: 3 (3-0-0)
EC 410				Total hours: 45
Course		After attending this course they will have sou	und ur	derstanding of speech production
Objective	28	and representation. They can apply this kinetic implementation and research.	nowle	dge to advanced techniques for
Module	1		12 h	ours
difference	e, pitch ency do	on, Speech Perception: Human hearing, au perception, masking, models of speech perce pmain analysis of speech, parameter estimation ton	eption	. Speech Analysis: Time domain
Module2			9 ho	urs
reconstruc Stereo pre	erview ction ar ocessin	cessing: on sampling and quantization, Discrete Fo ad Quadrature mirror filter, Wavelet transforr g, Linear prediction (LP), Auditory filters, A s model, MPEG models), Spectral band replic	n, Mo Audito	odified discrete cosine transform, ory masking, Perceptual auditory
Module .		is model, fin DO models), Speedar band repri	9 ho	
	d Vecto	sion r quantization, Lossless coding, Waveform an , Analysis by Synthesis and Code excited LP c	•	0
Module 4			12 h	
		d Standard coders, MPEG-1, MPEG-2, MPEG-4, Dolby A	AC, S	ony, AMR-WB, Generic coding.
Module 5	5		3 ho	urs
	and Su	dio and Speech coders: bjective evaluation techniques (PESQ, PEAQ; ITU).	MOS	s, MUSHRA) and
Referen		uglas O'Shaughnessy, Speech Communication	on, Hu	uman and Machine, IEEE Press,
ce	1999			
books		ndamentals of Speech Recogniotion, Lawrence	ce Ral	biner, B H Juang, Second Indian
	-	nt, Pearson Education, 2005.		
	5. A. S	Spanias, Ted Painter, V Atti, Audio Signal Pro	ocess1r	ig and Coding, wiley, 2007

Subject C	ode	Image And Video Processi	ng	Credits: 3 (3-0-0)
EC 411				Total hours: 45
Course		After attending this course they can apply	differ	rent image and video processing
Objectives	5	application for representation, filtering, comp	oressi	on in various domains and would
		be able to undertake advanced techniques for	or im	plementation and research. They
		will also be in position to explore the multime	edia s	tandards in detail.
Module 1			2 ho	urs
Introductio	on			
Representa	ation of	digital images and video; Need for compressio	n, Hu	man Visual System, Redundancy
– statistica	l and ps	ycho visual; Basic image compression system;	Vide	o coder encoder.
Module2			5 ho	urs
Lossless Ir	nage Co	ompression		
Image Con	npressio	on; Elements of Source Coding; Huffman Coding	ng; A	rithmetic Coding; Arithmetic and
Lempel-Zi	ev Cod	ing; Estimation of Source Probability.	-	-
Module 3			9 ho	urs
2D transfo	rm and	Wavelets		
		onal Orthogonal and Unitary Transforms;	Two	o-Dimensional Discrete Fourier
		Discrete Cosine and Sine Transform; Hadama		
		lgorithm for DCT and Wavelet Transform.		
Module 4		6	12 h	ours
Lossy Imag	ge Com	pression		
Quantizati	on proc	ess and artifacts; Delta Modulation and DPC	CM; ′	Transform Coding based on KL
		ete Cosine Transform; Embedded Wavelet		
algorithm,	EBCC	T algorithm; Image compression standard	– JE	BIG and JPEG, JPEG 2000 -
Architectu	re, Feat	ures, Region of Interest Coding, Error Resilien	cy.	
Module 5			17 h	ours
Digital Vic	leo Cod	ling Methods and Standards		
Video For	rmats a	nd Quality; Video CODEC; Temporal Mo	del -	- Motion, Block based Motion
Estimation	and C	ompensation, sub-pixel Motion Compensation	n; Im	age Model – Predictive Coding,
Transform	Coding	g, Quantization, Reordering and Zero Encodin	ng; N	IPEG-4 and H.264 video coding
standards;	High E	fficiency Video Coding; Design and Performan	nce iss	sues.
Referenc	1. V.	Bhaskaran and K. Konstantinides, "Image	and	Video Compression Standards:
e books	Algor	ithms and Architecture," Kluwer, 1997.		
	-	E. Richardson, "H.264 Advanced Video Com	press	ion Standard", Second Edition.
		h Efficiency Video Coding – Literature will be	-	

Subject Cod	le Biomedical Signal Processin	g	Credits: 3 (3-0-0)
EC 412		0	Total hours: 45
Course	Different theoretical measures of biomedias	1 cian	als and an understanding of the
Course Objectives	Different theoretical measures of biomedical information these measures provide regard		
Objectives	behaviors of their sources in response to natu	-	-
	After attending this course students will have		· ·
	and their origin. They will understand the si		0 0
	and validate.	<i>8</i> г	,
Module 1		9 hou	ırs
Introduction	to human body and biomedical signals; Action po	otontic	I ECC EEC and EMC signals
	and applications in medical diagnosis. Motivation		-
-	stochastic approach.		reating Real – world biomedical
Module2	stochastic approach.	6 hou	115
1010uule2		0 1100	
Review of D	igital Signal Processing		
Module 3		9 hou	ırs
Classical Spo	ectral Estimation Techniques		
Discrete For	rier transform and FFT algorithms; The Periodog	gram; '	The Blackman – Tukey Spectral
Estimation:	Applications to Doppler Signals, Auditory Evok	ed Po	tentials (AEPs) and Heart Rate
-	Cepstrum Analysis: Power Cepstrum and Complex	c Ceps	strum; Application to Analysis of
	, Diastolic Heart Sound.		
Module 4		12 ho	ours
Adaptive Fil			
-	Adaptive Noise Cancelling; Adaptive Noise Canc		-
-	Application to ECG Monitoring, Enhance Fe		-
-	c Mesurements; Adaptive Line Enhancer and its	~ ~	
Sclerosis Pat	ro-Tracking Methods and applications for detecting	g Epn	epic Patients, detecting Multiple
Module 5	ients.	9 hou	186
Wibuule 5		9 1101	115
	Modeling Methods		
Ū.	ve (AR) Methods and Linear Prediction; Yule-W		•
	to modelling of ECG signals, Knee Vibration	-	_
	od Pressure, EEG modelling during Neurosurgical	-	
-	Lung Sound; The Autoregressive Moving A	-	
	to modelling of Somatosensory Evoked Potentials	s, Moo	deling of Diastolic Heart Sounds
	ng of Cutaneous Electrogastric Signals.	1	. D. 1004
	. Metin Akay, "Biomedical Signal Processing", Ac		
	. L. Cromwell, F. Weibell, E. A. Pfiffer "Biom	edical	instrument and Measurement",
books P	rentice Hall, 1980.		

	9	Er	ror Co	ontrol	Codi	ing		Credits: 3	(3-	0-0)
EC 413								Total hou	rs: 45	i
Course Obje	ctives	To enable control tech		to under	stand a	nd use	appro	opriately di	fferer	t error
Module 1						-	13 H	ours		
Coding for Re Maximum Lil	-			-						
Introduction t GF(2 ^m), Basic	-	-	-					on of Galois	Field	
Module2						9	9 Ho	urs		
Code, Error D Syndrome De Codes, Reed	coding, Pro	bability of an	Undetecte					•		ıg
		es, Goldy Cot	le.							
Module 3				ince of C			10 H		d:	£
	: Generator , Syndrome Binary Prin	and Parity C Computation nitive BCH C	heck Matri and Error	Detectio	on.	odes, Enc	codin	g and Deco		of
Module 3 Cyclic Codes Cyclic Codes BCH Codes :	: Generator , Syndrome Binary Prin	and Parity C Computation nitive BCH C	heck Matri and Error	Detectio	on.	odes, Enc	codin	g and Deco		of

Subject Code	•	Spread Spectrum	Credits: 3 (3-0-0)
EC 414		Communication	Total hours: 45
Course Objec	ctives	To enable students to understand differen their commercial applications.	t spread spectrum techniques and
Module 1			14 Hours
Gaussian Nois	se, Coherent o Spread Spo rect Sequence	Communications Concept : Detection of Binar and Non-coherent Modulation Schemes, ectrum Systems: Introduction, Pulse Noise Jar ce Spread Spectrum, Frequency Hop Spread S ectrum.	nming, Low Probability of
Module2			12 Hours
		timum Tracking of Wideband Signals, Baseba Frequency Hop Systems.	and Delay Lock Tracking Loop,
Serial Search	Synchroniza	ynchronization of the Receiver Spreading Coo tion Techniques, Generalized Analysis of Ave f Spread Spectrum Systems in Jamming Envir g.	erage Synchronization Time.
Module 4			8 Hours
Code Division	n Multiple A	ccess Systems: Cellular Radio Concept, CDM	A Digital Cellular Systems, IS 95.
Reference books	 B.S. M. 	L. Peterson, "Introduction to Spread spectrum Sklar, "Digital Communications", Pearson Edu K.Simon, "Spread spectrum communications" .Lee, "CDMA Systems Engineering handbool	ucation, 2001. ', Handbook, McGraw-Hill, 2001.

Subject Code		Optical Communication	Credits: 3 (3-0-0)
EC 415			Total hours: 45
Course Objec	tives	The objective is to understand concepts re and systems.	lated to optical components, links
Module 1			14 Hours
Motivation for Optical Fibre (-	Communications, Key Elements of Optical tion.	Fibre Systems, Standards for
Definitions, O Mode Fibres, O	ptical Fibre Graded Inde	Wave guiding and Fabrication) : Fundamenta Modes and Configurations, Mode Theory for x Fibre Structure. Signal Degradation in Opti ay, Pulse Broadening in GI Fibres.	Circular Waveguides, Single
Module2			14 Hours
concepts of re	sponsivity,	etector, pin detector, Avalanche photodiode sensitivity and quantum efficiency, noise i edance and trans Impedance receivers).	
Module 3			9 Hours
		Applications and Types of Optical Amplifiers d Fibre Amplifiers, Amplifier Noise, Optical S	-
Module 4			8 Hours
•	•	vstem-point-to-point links, fibre splicing ar noise effects on system performance, opera	
Reference books	Sir 2. Lee Co 3. G.I	rd Keiser, "Optical Fiber Communication", Magapore, 2000 A Selvarajan, S.Kar, Optical C onid Kazovsky, Sergio Benedetto and Alar mmunication Systems", Artech House, 1996. P.Agrawal, "Nonlinear Fiber Optics", 3rd Ed; P. Agrawal, "Fiber optic communication system?	ommunications, TMH, 2006 Willner, "Optical Fiber Academic Press, 2004.

Subject Code	9	Ad Hoc and Sensor Networks	Credits: 3 (3-0-0)
EC 416			Total hours: 45
Course Obje	ctives	To enable students to understand and to explain Networks and network architectures, protocol.	concepts of Ad hoc and Sensor
Module 1		4	Hours
		hoc networks and wireless sensor networks conce .11 Standard, HIPERLAN, Bluetooth, Home-RF.	epts and architectures. Wireless
Module2		8	Hours
Routing Proto	-	Protocols. Routing Protocols with Efficient Floo Aware Routing Protocols.	-
Module 3		11	Hours
Protocols. Co	ntention-Bas ased MAC P	f a MAC Protocol for Ad Hoc Wireless Networks ed Protocols. Contention-Based Protocols with Reprotocols with Scheduling Mechanisms. MAC Pro- protocols.	eservation Mechanisms.
Module 4		12	Hours
Layer Protoco Wireless Netw Other Transpo Network Secu	ol for Ad Hoo works. Classi ort Layer Pro urity Require	rity Protocols for Ad Hoc Wireless Networks: Iss c Wireless Networks. Design Goals of a Transpor fication of Transport Layer Solutions. TCP Over btocols for Ad Hoc Wireless Networks. Security i ments. Issues and Challenges in Security Provisio t. Secure Routing in Ad Hoc Wireless Networks.	t Layer Protocol for Ad Hoc Ad Hoc Wireless Networks. n Ad Hoc Wireless Networks.
Module 5		1	0 Hours
	WSN MA	s architecture: hardware and software compon C layer strategies; naming and addressing; Routing.	
Reference books	and 2. La 3. Li,	Sivarama Murthy and B S Manoj, "Ad-Hoc Wi d Protocols", PH, 2004. biod. H, "Wireless Adhoc and Sensor Networks", X, "Wireless ad -hoc and sensor Network mbridge University Press,2008.	Wiley, 2008.

Subject Cod	e	Antennasand Propagation	Credits: 3 (3-0-0)	
EC 417			Total hours: 45	
Course Obje	ectives	To impart the basic concepts of radiating struct	tures and their arrays.	
		To give idea about basic propagation.		
Module 1		1	2 Hours	
Antenna fund	damentals ar	nd definitions: Types of Antennas, Radiation Mo	echanism Current distribution on	
thin wire an	tenna, Fund	amental Parameters of Antennas: Radiation Pa	ttern, Radiation Power Density,	
Radiation In	tensity, Dire	ectivity, Gain, Antenna efficiency, Beam effic	ciency, Bandwidth, Polarization,	
Input Imped	ance, radiat	ion efficiency, Antenna Vector effective lengt	th, Friis Transmission equation,	
Antenna Ten				
Module2		1	11 Hours	
wave dipole, Circular loop	Ground eff	Infinitesimal dipole, Small dipole, Region sepa fects. Loop Antennas: Small Circular loop, Cir niform current.	rcular Loop of constant current,	
Module 3		1	12 Hours	
Broadside an	Array antennas: Linear Arrays, Two element array, N Element array, Uniform Amplitude and spacing, Broadside and End fire array, Super directivity, Planar array, Design consideration; Aperture Antennas, Horn Antennas, Micro strip Antennas, Reflector Antennas- Plane reflector, parabolic			
Module 4			10 Hours	
surface of the effects in spa	Factors involved in the propagation of radio waves: The ground wave-Reflection of radio waves by the surface of the earth, Space Wave propagation, Considerations in Space Wave propagation-Atmospheric effects in space wave propagation, Ionosphere and its effects on radio waves, Mechanism of ionosphere propagation, Refraction and Reflection of sky waves by Ionosphere.Reference1.C.A Balanis , Antenna Theory, John Wiley, 1996.			
books		ectromagnetic waves & Radiating Systems- Je	ordan & Balman, Prentice Hall	

Subject Cod	le	Satellite Communication	(Credits:(3-0-0) 3
EC418			-	Total hours: 45
Course		With this paper, the students should have thorough	ughly	known about the principle of
Objectives		earth station, satellite link, communication sate	ellites	, satellite orbits and different
		types of channel accessing mechanisms.		
Module 1		1	1 hou	rs
Satellite orbi	its, Sc	plar day and Sidereal day ,Orbital parameters, Sa	atellit	e trajectory, Period, Velocity
and Position	ofa	satellite, Geostationary satellites, Non-geostation	onary	constellations ,Launching of
		ellites, Hohmann transfer, Effect of earth's	-	-
		and Radiation pressure on the satellite's orbit.		-
Module 2		1	.0 ho	ours
Communicat	tion sa	atellites, Spacecraft subsystems, Payload, Repeat	ter, A	ntenna, Attitude and Control
systems, Tel	emetr	y, Tracking and Command, Power sub system a	nd Th	nermal control Earth stations,
Antenna and	l feed	systems, Satellite tracking system, Amplifiers,	Fixed	and Mobile satellite service
earth stations	s.			
Module 3		1	6 ha	MIRC
Moune 5		1	. п	Jul 5
Communicat	ion li	nk design, Frequency bands used, Antenna par	ramete	ers, Transmission Equations,
Noise consid	leratio	ns, Link design , Very Small Aperture Terminals	(VSA	AT) - VSAT design issues.
Module 4		8	6 hour	°S
Multiple acc	ess te	chniques, Frequency division multiple access, Ti	me di	vision multiple access, Code
division mul	ltiple	access, Access protocols for data traffic Applie	cabili	ty of CDMA to commercial
systems, Der	systems, Demand access in the INTELSAT, TDMA system, SPADE, the INMARSAT system, Earth			e INMARSAT system, Earth
station, Satellite television networks.				
Reference	(1) I	Richharia M., "Satellite Communication Systems'	", Ma	cmillan Press Ltd.
books	. /	· · · · ·	,	
	(2) 1	Ha T.T., "Digital Satellite Communication"		
	(3)T	". Pratt, "Satellite Communications".		

Subject	Microwave Engineering	Credits:(3-0-0) 3		
Code EC419		Total hours: 45		
Course Objectives	To give the basic ideas about the characterist frequency bands To understand the working of various Microw Circuits.			
Module 1	10) Hours		
microwave network suc	c, Features and Applications of Microwaves, networks, Properties of scattering matrices, Pro- ch as section of uniform transmission line, al), T-junctions directional coupler, Magic tee, F	operties and S-matrices for typical 3-port networks (reciprocal and		
Module 2	10	Hours		
analysis, Re	Generation of microwaves by tubes, Limitations of conventional tubes, Klystron amplifiers - analysis, Reflex klystron oscillator-analysis, Magnetrons, Traveling wave tube (TWT), Backward wave oscillator (BWO)-basic principles, Millimeter wave tubes-introduction.			
Module 3	11			
relations, Pa Diode oscill	High frequency limitations of transistors, Microwave transistors, Varators, Manley Rowe relations, Parametric Amplifiers and frequency multipliers, Tunnel diodes, Gunn effect, Gunn Diode oscillators, Avalanche effect, IMPATT & TRAPATT diodes, PIN diodes and their applications, Schottky barrier and backward diodes.			
Module 4	11	Hours		
Planer transmission lines such as Stripline, Microstrip line, Slotline, Technology of hybrid MICs, Monolithis MICs. Comparison of both MICs; VSWR Measurement, microwave power Measurement, Impedance measurement, Frequency measurement, Concept of microwave communication - repeaters.				
Reference books	1. Liao S.Y.,"Microwave devices and New Delhi, 3rd Ed. 2006	Circuits", Prentice Hall Of India,		
	2. Collin. R.E, "Foundation of Microway	ve Engineering", IEEE Press, 2004		

Subject	Radar & Navigation Systems		Credits:(3-0-0) 3
Code			Total hours: 45
EC420			
Course	To give the basic ideas about the working of	radar a	and navigation systems
Objectives			
Module 1		15 ho	ours
The nature o	f the radar, The Radar Equation, Frequency mo	dulate	d CW Radar, multiple-frequency
CW Radar, N	Noving-target-indication (MTI) Radar, Pulse-Do	oppler	Radar, Tracking radar.
Module 2		15 ho	Durs
Radar transı	nitters: Magnetron Oscillator, Klystron Amp	lifier,	Traveling-wave-tube Amplifier
Grid-control	ed Tubes ;		
Radar Receiv	vers: Super heterodyne Receiver, Receiver Noi	se, De	etection of radar signals in noise,
	of information from radar signals. Clutter		e e
	es over land and sea.		
Module 3		15 I	hours
Electronic c	Electronic counter measure, Hyperbola system of navigation, Instrument landing system		
Microwave 1	Aicrowave landing systems, Satellite navigation systems.		
Reference	(1) M.I.Skolnik, "Introduction to Radar Systems", McGraw Hill, 1980		
books	(2) D.K.Barton, "Modern radar systems analysis", Artech House, 1988.		-
	(3) B Edde, "Radar: Principles, Technology, A	pplica	ations", Prentice Hall.

Subject Code	Digital Image Processing	Credits: 3 (3-0-0)
EC 421		Total hours: 45
Course	After attending this course they can apply di	fferent image processing application in
Objectives	various domains and would be able to	undertake advanced techniques for
	implementation and research.	
Module 1		3 hours
Introduction and	Motivation to Digital Image Processing; Hum	an Visual System: Image formation in
the eye; Light and	l electromagnetic spectra; Image Processing A	pplication; Image capturing, Sampling
and Quantization.		
Module2		5 hours
Image Enhanceme	ent in the Spatial Domain	
Intensity transform	mation, Histogram Processing: Equalization,	Matching and use in local and Global
Enhancement; Sp	patial Filtering- Filtering, Smoothening Filter	ering: Linear Filters, Order Statistics
-	g Filtering: Using Gradient and Laplacian.	C .
Module 3		6 hours
	in Filtering and Processing : Image Transfe	
	orm, Convolution, Correlation, 2D Sampling,	Discrete Cosine Transform, Frequency
domain filtering a	nd filters and artifacts.	
Module 4		5 hours
filters, Order filte Model of Degrae	1 : Degradation due to know noise models; Re rs, Adaptive filters for noise removal, Restora dation: Estimating Degradation Function, In g, Constrained Least Square Filtering; Image Ro	ation using frequency domain filtering; nverse Filtering, Mean Square Error
Module 5		5 hours
Dimensional Disc	d Wavelets : Two – Dimensional Orthog crete Fourier Transform (DFT); Discrete Co ransform and Wavelet Transform.	-
Module 6		3 hours
-	cessing : Colour Models: RGB Colour Model, ity Slicing, Gray level to colour transformation	-
Module 7		8 hours
Models; Source c Plane Coding, Lo	on: Statistical and Psychovisual Redundancy; oding theorem; Lossless Compression: Varia ssless Predictive Coding; Lossy Compression yelet Based Coding; Image Compression St	ble-Length coding, LZW Coding, Bit- a: Lossy Predictive Coding; Transform

Module 8		5 hours		
Morphologie	cal Image Processing			
Problems an	d Motivation; Basic Concepts from Set Theory; Basic	asic Morphological Operation: Dilation		
and Erosion	n, Opening and Closing, The Hit-or-Miss Trans	sformation; Morphological Algorithm:		
Boundary E	xtraction, Region Filling, Extraction of connected	components, Convex Hull, Thinning,		
Thickening,	Skeletons, Pruning; Extension to Gray Scale Image	s.		
Module 9	Module 9 5hours			
Image Segm	entation			
Introduction	to segmentation problem: discontinuity and simila	arity; Detection of Discontinuity; Edge		
Linking an	d Boundary Detection; Thresholding; Region 1	Based Segmention; Segmentation by		
Morphologie	Morphological Operations (Watersheds); Colour Segmentation.			
Reference	1. Gonzalez R. C. And Woods R. E., "Digital Image Processing", Second Edition,			
books	Pearson Education			
	2. Anil K. Jain, "Fundamentals of Digital Image P	rocessing"		

Subject Code	Active Filters and Data	Credits: 3 (3-0-0)
EC 422	Converters	Total hours: 45
Course Objectives	To understand the design and analysi	s of various active filters.
	 To develop skills to design various of systems. 	circuits using different data conversion
Module 1		Hours 15
Sallen-key LPF and H and pole locations. In	order function for low-pass, high-pass, band –pass PF. Active filters: Filter transfer function, Butterw verse Chebyshev and Cauer Filter. Delay Filter.	orth and Chebyshev filters response
Module2		Hours 15
	, Impedance converters, Gm-C filters: Elementary ters: First-order building blocks, Second order sect	
Module 3		Hours 15
Current-steering DAC A/D converter : Gene Design issues, Compa	 onverter: General considerations, Static non-idealitie Binary weighted DAC, Thermometer DAC, Destal considerations, static and dynamic non-Idealities rator and Latch, Effect of non-idealities, Interpolation ADC; Pipeline ADC. Over sampling ADC – 1 M.E. Van Valkenburg, Analog Filter Design 2. Behzad Razavi, Principles of Data Conversion 1995 Rudy J. van de Plassche, CMOS Integrated A 	ign issues, Effect of Mismatches. s. Flash ADC – Basic architecture, ive and Folding architectures. Noise shaping, Sigma-Delta modulator , Oxford University Press, 1995. on System Design, Wiley-IEEE Press,

Subject Code	Embedded Systems	Credits: 3(3-0-0)	
EC 423		Total hours: 45	
Course Objectives	To give ideas about Embedded Syste	ems and System Development	
	• To Impart knowledge about R	eal Time Operating Systems and	
	Microcontrollers		
Module 1		Hours 12	
	d systems: Processor Embedded into a system,		
	software, Examples, Embedded System on C	1 0	
	cess, Classification of Embedded Systems, Sk	ills required for an Embedded System	
Designer.			
Module2		Hours 11	
8051 and Advanced Proc	essor Architectures: Memory Organization and	d Real world Interfacing, Processor and	
; ;	struction level Parallelism, Performance Matrix		
5	Selection, Devices and Communication Buse		
Parallel Device Ports, W	reless Device, Real Time Clock, Networked En	nbedded System.	
Module 3 Hours 10		Hours 10	
Deal Time Onerating C	esterna OS Samiasa Process management	Times and Errort Errotions Moment	
	ystems: OS Services, Process management, ' le and I/O Subsystems Management, Interrupt		
0	s Scheduling, Interrupt Latency, OS Security Iss		
Module 4	Scheduning, interrupt Latency, 65 Security 15	Hours 12	
Moune 4		110013 12	
Embedded Software Dev	Embedded Software Development Tools: Host and Target Machines, Linker/Locators for Embedded Software		
	Getting Embedded Software to the Target Systems, Debugging Techniques, Testing on your Host machines		
Ū.	Instruction set Simulators, Laboratory Tools.		
Reference books	1. David Simon, "An Embedded Software Prir	ner", Addison Wesley, 2000.	
	2. Raj Kamal, "Embedded Systems: Architectu	ure, Programing and Design", TMH.	

Subject Code	Low-Power VLSI Circuit	Credits: 3(3-0-0)		
EC 424	Design	Total hours: 45		
Course Objectives	on battery-powered portable comp products.	ver VLSI circuits for growing reliance buting and wireless communications plated to continued progress of high- onic systems.		
Module 1		Hours 10		
Emerging Low power a	ow power VLSI chips, Sources of power dis- pproaches. Device & Technology Impact on g & gate oxide thickness, Impact of techno	Low Power: Dynamic dissipation in		
Module2		Hours 12		
static state power, gate la analysis in DSP system	Simulation Power analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation static state power, gate level capacitance estimation, architecture level analysis, data correlation analysis in DSP systems, Monte Carlo simulation. Probabilistic power analysis: Random logic signals probability & frequency, probabilistic power analysis techniques, signal entropy.			
Module 3		Hours 11		
& Latches design, high o	ansistor and gate sizing, network restructuring apacitance nodes, low power digital cells libra ling, state machine encoding, pre-computation 1	ary. Logic level: Gate reorganization,		
Module 4 Hours 12				
Low power Architecture & Systems: Power & performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, low power arithmetic components. Low power Clock Distribution: Power dissipation in clock distribution, Single driver Vs Distributed buffers, Zero skew V tolerable skew, chip & package co- design of clock network.				
Reference books	 Gary K. Yeap, "Practical Low Power Digita Kaushik Roy, Sharat Prasad, "Low-Power C 2000. Rabaey, Pedram, "Low Power Design Meth- 	MOS VLSI Circuit Design" Wiley,		

Subject Code	Logic Synthesis and	Credits: 3(3-0-0)	
EC 425	Optimization Total hours: 45		
Course Objectives	 To learn about state-of-the-art techniques and algorithms for synthesis and verification of digital systems. To understand the high-level and architectural synthesis, decision and word-level diagrams, combinational logic optimization, and sequential optimization. 		
Module 1	H	ours 12	
	ronic design style, Design of Microelectronic circ nd: Graphs, Graphs Optimization problems and		
Module2	Hours 14		
Ũ	Hardware Modelling Languages, Abstract Mode Combinational level Optimization. Sequential Log	· •	
Module 3	Module 3 Hours 11		
-	thesis and Optimization: Circuit Specification for Data Path Synthesis and Control Path Synthesis.	Architecture Synthesis, Area and	
Module 4	Н	ours 08	
Cell Library Binding: Problem Formulation and Analysis, Algorithms for Library Binding, Rule Based Library Binding.			
	 Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw Hill, 1994. S. Hassoun and T. Sasao, "Logic Synthesis and Verification", Kluwer Academic publishers, 2002. Srinivas Devadas, Abhijith Ghosh and Kurt Keutzer, "Logic Synthesis", Kluwer Academic, 1998. 		

Subject Code: HU 401 & HU 402	Professional Communication-II and Language Lab	Credits: 4 (2-0-3) Total hours: 56
Course Prerequisite	Knowledge of English	
Course Objectives	This course aims at Personality Development	
Course Outcome	At the end, the students should possess a Saleable Image with empl	oyability skills
Module 1	Principles of Soft Skills and Practice	12 hours
	s and Personality, Attitude, Dress Code, Body Language, Individua Vriting and the difference between CV & Resume	l and Group Behaviour,
Module 2	Group Discussion, Extempore, JAM and Survey	16 hours
Module 3	Interview	14 hours
	rview Ethics, Questions and Mock-Interview Sessions	14 nours
Module 4	Business Presentation and Seminars	14 hours
Business Presentation a		14 nours
Texts:	 1.W.B. Martin, <i>Ethics in Engineering</i> Tata McGraw Hill, India 2. Patnaik, Priyadarshi, <i>Group Discussion and Interview Skills</i>, New Delhi: CUP, (Video CD) 3Downes, Colm, <i>Cambridge English for Job Hunting</i>, 2009, New Delhi, CUP (2 Audio CDs) TV News (Headlines Today, ND TV and BBC), Chat-Shows on TV, Magazines like India 	
Reference	Today, Outlook, The Week and English Dailies. Reader's Digest for Expressive Skill, English Films & English Comics	

Academic Hand Book

for

Bachelor of Technology Programme

in

Electrical & Electronics Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester-wise Credit Distribution

Semester	Total Credits
Ι	22
II	22
III	22
IV	21
V	22
VI	23
VII	20
VIII	18
Total Credits	170

I Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA 100		4.0.0	4
1	MA100	Mathematics-I	4-0-0	4
2	PH100	Physics	3-0-0	3
3	ME100	Engineering Mechanics	3-0-0	3
4	CS100	Computer Programming and Problem solving	2-0-3	4
5	HU100	Professional Communication	2-0-2	3
6	ME101	Engineering Drawing	1-0-3	3
7	PH101	Physics Laboratory	0-0-3	2
		Total Credits		22

II Semester Details

Sl. No	Sub. Code	Subjects	L-T- P	Credits
1	MA150	Mathematics-II	4-0-0	4
2	PH150	Material Science	3-0-0	3
3	CY150	Chemistry	3-0-0	3
4	ME150	Elements of Mechanical Engineering	2-0-0	2
5	EE151	Basic Electrical Science	3-0-0	3
6	ME151	Workshop Practices	0-0-3	2
7	CY151	Chemistry- Laboratory	0-0-3	2
8	EE152	Basic Electrical Science Lab	0-0-3	2
9	PE150	Physical Education	1-0-0	1
		Total Credits		22

III Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA200	Mathematics-III	3-0-0	3
2	EE200	Electromagnetic Theory	3-1-0	4
3	EE201	Analog Electronics	3-0-0	3
4	EE202	Circuit Theory	3-1-0	4
5	EE203	Electrical Measurements & Instrumentation	3-1-0	4
6	EE204	Circuit Theory Lab	0-0-3	2
7	EE205	Electrical Measurements and Instrumentation Lab	0-0-3	2
		Total Credits		22

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	MA250	Numerical Methods (Maths 4)	3-0-0	3
2	EE250	Digital Electronics	3-0-0	3
3	EE251	Electrical Power Generation	3-0-0	3
4	EE252	Electrical Machines-I	3-1-0	4
5	HS250	Economics	3-0-0	3
6	EE253	Electrical Machines-I Lab	0-0-3	2
7	EE254	Analog and Digital Electronics Lab	0-0-3	2
8	VE200	Value Education	1-0-0	1
		TOTAL CREDITS		21

IV Semester Details

V Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credit
				S
1	EE300	Electrical Power Transmission and Distribution	3-1-0	4
2	EE301	Electrical Machines-II	3-1-0	4
3	EE302	Control Systems	3-1-0	4
4	EE303	Microprocessors and Microcontrollers	3-0-0	3
5	EE304	Electrical Machines-II Lab	0-0-3	2
6	EE305	Microprocessors and Microcontrollers Lab	0-0-3	2
7	ES300	Environmental Studies	3-0-0	3
		TOTAL CREDITS		22

VI Semester Details

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE350	Switchgear and Protection	3-1-0	4
2	EE351	Power System Analysis	3-1-0	4
3	EE352	Power Electronics	3-1-0	4
4	EE353	Integrated circuits	3-0-0	3
5	EE5**/HU501 and HU 502	Elective – 1	3-0-0	3
6	EE354	Electrical Simulation Lab	0-0-3	2
7	EE355	Control Systems Lab	0-0-3	2
8	EE356	Mini Project/Training		1
		TOTAL CREDITS		23

VII Semester	Details
---------------------	---------

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE400	Electrical Drives	3-0-0	3
2	HS400	Management	3-0-0	3
3	EE5**	Elective – 2	3-0-0	3
4	EE5**	Elective – 3	3-0-0	3
5	EE401	Power Electronics & Drives Lab	0-0-3	2
6	EE402	Seminar	3-0-0	2
7	EE403	Programme Major Project-I	0-0-4	4
		TOTAL CREDITS		20
ĺ				

VIII Semester	Details
----------------------	---------

Sl. No	Sub. Code	Subjects	L-T-P	Credits
1	EE450	Power System Operation and Control	3-0-0	3
2	EE5**	Elective – 4	3-0-0	3
3	EE5**	Elective – 5	3-0-0	3
4	EE5**	Elective – 6	3-0-0	3
5	EE452	Programme Major Project-II	0-0-6	6
		TOTAL CREDITS	1	18

Subject Code	Mathematics-III	Credits: 3 (3-0-0)
MA 200		Total hours 42
Objectives	This Mathematics course provides requisite and	relevant background
	necessary to understand the other important engineerin	g mathematics courses
	offered for Engineers and Scientists. Important topics o	f applied mathematics,
	namely complex analysis, power series solutions, fourie	r series and transforms
	and partial differential equations.	
Module 1	Complex Analysis	18 hours
Complex Numbers, g	eometric representation, powers and roots of complex nu	umbers, Functions of a
complex variable, An	alytic functions, Cauchy-Riemann equations; elementary	functions, Conformal
mapping (for linear	transformation); Contours and contour integration, Cauc	chy's theorem, Cauchy
integral formula; Pov	ver Series and properties, Taylor series, Laurrent serie	s, Zeros, singularities,
poles, essential singul	arities, Residue theorem, Evaluation of real integrals and	improper integrals.
Module 2	Power Series Solutions	9 hours
Differential Equation	as Power Series Method - application to Legendre	e equation, Legendre
Polynomials, Frobeni	ous Method, Bessel equation, Properties of Bessel function	tions, Sturm-Liouville
BVPs, Orthogonal fur	ctions.	
Module 3	Partial Differential Equations	15 hours
	basic concepts, second order PDE and classification, D'A	
Duhamel's principle		
equations, Laplace, Wave, and Heat equations using separation of variables. Vibration of a circular		
membrane. Heat equa	tion in the half space.	
Texts/References	4. E. Kreyszig, Advanced engineering mathemati	cs (8th Edition), John
	Wiley (1999).	
	5. W. E. Boyce and R. DiPrima, Elementary Diffe	erential Equations (8th
	Edition), John Wiley (2005).	
	6. R. V. Churchill and J. W. Brown, Co.	mplex variables and
	applications	
	(7th Edition), McGraw-Hill (2003).	

Subject Code EE200	Electromagnetic Theory	Credits: 4 (3-1-0) Total hours: 56	
Course Objective	To understand the concepts of coordinate systems and realize the electromagnetic fields, charges and currents. To calculate electromagnetic field distribution and impart knowledge on vector fields - electrostatic and magneto static fields, electrodynamics and electromagnetic waves.		
Module 1		20 hours	
Gauss law, diver field intensity du ring, infinite pla Fields: Charged Magnetic flux a	Electric Fields: Coulomb's law and Electric Field Inter- rgence theorem, definition of potential difference, potential e to various forms of uniformly distributed charges, point ne sheet, dielectrics and capacitance, Poisson's law; Intro- particles in motion, Biot-Savart law, Ampere's Circuita nd Magnetic flux density due to infinite line, sheet carryin als, Lorentz force equation.	ial gradient, dipole, Electric charge, infinite line, circular duction to Steady Magnetic l law, curl, stokes theorem,	
Module 2		12 hours	
equations in poin	ields and Maxwell's Equations: Faraday's law, displa nt form, in integral form, in derivative form, EMF equation onductors, pointing theorem, skin effect.		
Module 3 10 hours		10 hours	
	es: Transmission Line Equations, Solutions to equations i tion, wave reflection at discontinuities, transmission lines	-	
Module 4 14 hours			
characteristics, I Wave propagation	between parallel planes, Transverse electric and transver Linear Elliptical and Circular Polarization, Wave equation on in conductors and dielectric, Depth of penetration, R conductor and dielectric, Poynting Vector and flow of powe	ons for conducting medium, eflection and Refraction of	
Reference books	 William H. Hayt Jr., JA Buck, "Engineering Electromagnetics" MGH, 7th Edition, 2013. Kraus, Fleisch, "Electromagnetics with Applications" MGH, 5th Edition, 2010. Nannapaneni Narayan Rao, "Elements of Engineering Electromagnetics" Pearson, 6th Edition, 2006. Karl E. Lonngren, Savov and RJ Jost, "Fundamentals of Electromagnetics with MATLAB" PHI, 2nd Edition, 2007. 		

Subject Cod	e Analog Electronics	Credits: 3(3-0-0)	
EE201		Total hours:42	
Course Objectives	like Current Mirrors, Amplifiers, Differential	To develop the skill of analysis and design of various Analog circuit building blocks like Current Mirrors, Amplifiers, Differential Amplifiers using BJT and MOSFET. To understand the concept of Negative and Positive feedback.	
Module 1		Hours 12	
schemes; Loa coupled and t MOSFET Ar	troduction, Input and output impedance, Operated line and Bias stability, Analyses and design or ransformer coupled multistage Amplifiers; Therr nplifier: Analysis and Design of Common Sour of gurations – Thermal runaway in MOS Amplifi	of CC, CE and CB configurations; RC nal runaway in BJT Amplifiers. ce, Common Drain and Common Gate	
Module2		Hours 12	
Cascade type Common Mo dissipation, (ges and Current Mirrors: MOS Current Mirror e. Differential Amplifiers: MOS Differential p de Rejection, Differential pair with Active load. Class A, B, AB, C, D, E& S Power Amplifier d Relative performance.	air, Small and Large Signal analysis, Power amplifiers:Push pull stage, Heat	
Module 3 Hours 08		Hours 08	
· ·	sponse of Amplifiers: Hybrid π equivalent circ T Model, Miller effect.Noise in Amplifiers: Type rcuits.		
Module 4		Hours 10	
Topologies Configuration margins; Osc	I Stability: Introduction to Negative feedback – B - Voltage shunt, Voltage series, Current as; Loop gain – Stability of feedback circuit, Ny- cillators : Basic principles of Oscillators, Anal- cley and Crystal Oscillators.	series and Current shunt Feedback quist stability criterion, Phase and Gain	
Reference books	 A S Sedra& K C Smith, "Microelectronic Circuits", Oxford University Press.1998. BehzadRazavi, "Fundamentals of Microelectronics", John Wiley & Sons .2008. Robert Boylestad& Louis Nashelsky ," Electronic Devices & Circuit Theory", PHI., 1995. 		

Subject Cod EE202	e Circuit Theory	Credits: 4 (3-1-0) Total hours: 56	
Course Objectives	To develop an understanding of the fundamental elements of electric circuits. To develop the ability to apply the basic theorems to analyze a DC and AC electric circuit. Use mathematical methods such as Laplace and Fourier transforms and some linear algebra techniques and differential equations to solve circuits problems. Synthesize a network with stable condition.		
Module 1		Hours: 10	
current, node transformatio	d AC circuits analysis:Kirchhoff's laws (KCL and KVL), DC a voltage method, super node and super mesh analysis for D.C ar on, star-delta conversion.Complex Waves: RMS and average values to non-sinusoidal excitations.	nd A.C. circuits. Source	
Module 2		Hours: 12	
Maximum po compensation	eorems and topology:Thevenin'stheorem, Norton's theorem, Sower transfer theorem, Millman's theorem, Tellegen's theorem, R in theorem. Concepts of Graph theory- Cut set and Tie set us ilibrium equations, Duality.	eciprocity theorem and	
Module 3		Hours: 12	
Selectivity, E Coupled Circ circuits. Dot	n AC Circuits:Series and parallel resonance, frequency respon- bandwidth, Characteristics, properties of resonance circuits, current cuits:Self and mutual inductance, Coefficient of coupling, Tuned convention, Analysis of coupled circuits. In Electric circuits: DC and AC transients in R-L, R-C and	nt locus diagrams. d circuits, Single tuned	
	quations and Laplace Transforms.		
Module 4	Module 4 Hours : 10		
and ABCD Functions: N and general p	tworks: Two-port network concept, Representation in T and π parameters, image impedances, Interconnection of Two-po atural frequency of a network variable and a network, Network for properties, concept of complex frequency, poles, zeros and frequency.	rt networks. Network unctions with examples ncy response.	
Module 5 Hours : 12			
criterion of	alisation and synthesis: Concept of poles and zeros-Hurwit stability of network functions-Synthesis of one port LC netw thesis of RL and RC one port networks-Foster and Cauer method	orks-Foster and Cauer	
Reference books	5. W. E. Van Valkenberg Network analysis PHI 1990		

Subject Code EE203	Electrical Measurements and Instrumentation	Credits: 4 (3-1-0) Total hours:56		
Course Objectives	and use them for measurement of electrical quan	Students will be able to understand about the operation of an indicating instrument and use them for measurement of electrical quantities. To obtain adequate knowledge of comparison methods of measurement and also various transducers and data acquisition system.		
Module 1		Hours:14		
characteristics construction, op Direct Deflecti electrostatic an	bles of measurements, units, dimensions, standards a of instruments: qualities and errors of measurements eration, torque equation, calibration and application of D', ng Instruments: Moving coil, moving iron, dynamo d rectifier type meters, shunts and multipliers, variou truction, operation, torque equation and comparison).	and its analysis, principle, Arsonval Galvanometer. meter, induction, thermal,		
Module2		Hours:12		
Foster slide wir localization of dynamometer ty energy meters transformer: con	f Current, Voltage and resistance, Wheatstone bridge, K e bridge, bridge current limitations, insulation resistance, cable fault by Murray and Varley loop tests. measurer ype wattmeter, error and compensation, ampere hour me (induction type), calibration, phantom loading, current nstruction, theory operation, phasor diagram, characteristic vector meter, frequency meters, power factor meters.	earth resistance, earth tester ment of power and energy: eter, single and three phase t transformer and potential		
Module 3		Hours: 10		
method of use, applications of	eter: Crompton potentiometer, Vernier potentiometer, use of potentiometer for measurement of resistance, curr DC potentiometers. A.C. Potentiometers: applications of d measurement of inductance & capacitance and frequency	AC potentiometers, various		
Module 4		Hours: 10		
meter, magneti hysteresis meas Illumination, s luminous intens	surements: Classification, magnetometer measurement, c potentiometer, Hall effect devices, B.H. curve and urement, Hibbert's magnetic standard, core loss measure tandards of luminous intensity, measurement of lumino ity, MSI, Rousseau's construction, integrating sphere, ill	permeability measurement, ement.Illumination: Laws of ous intensity, distribution of lumination photometers		
Module 5 Hours:10				
Cathode ray os generator circui				
Reference books	2 EW Calding "Electrical Magnumenta & Magnuming Instruments" 5th Edition Decur			

Subject Code EE204	Circuit Theory Lab Credits: 2 (0-0-3) Total hours:45hr		
Course Objective	Laboratory exercises and assignments based on experiments and PSPICE and/or MATLAB simulation to supplement EE200.		
	Experiments lists		
	1. Verification of Reciprocity and Milliman's theorem.		
	2. Find Z and Y parameters for a given circuit.		
	3. ABCD parameters for a given circuit.		
	4. Series and parallel resonant circuits.		
	5. Measurement of Self and Mutual Inductance.		
	6. MATLAB Simulation model for DC, AC network transient analysis.		
	7. MATLAB Simulation model to plot poles and zeros of a network.		
	8. PSPICE simulation model to verify Mesh and Nodal analysis to find branch voltages and currents		
	9. PSPICE Simulation model to find response for a network with DC, AC voltage sources.		
	10. Modelling of electrical circuits		
Reference	 William H. Hayt, Jack E. Kemmerly, Steven M. Durbin, "Engineering Circuit Analysis," TMH, 6th Edition, 2002. 		
books	 Muhammad H.Rashid, "Inroduction to PSPICE using ORCAD for Circuits and Electronics", PHI, 2008. 		

Subject Code EE205	Electrical Measurements and Instrumentation Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs	
Course Objective	Laboratory exercises and assignments to supplement EE253.		
	Experiments lists1. Calibration of 1-ph Energy meter using phantom loading.2. Measurement of low resistance using Kelvins Double bridge.3. Measurement of low resistance using Wheatstone bridge4. Measurement of self-inductance using Anderson- bridge5. Measurement of capacitance using Schering bridge6. Measurement of inductance using Maxwell- bridge7. Measurement of pressure using Piezoresistive transducer.8. Measurement of strain using Piezoresistive transducer		
	9. Calibration of power factor meter10. Measurement of power using two wattmeter method		
Reference books	 (1) A. K Sawhney, "Electrical and Electronic Measurements and Instrumentation", DhanpathRai& Co.,2007 (2) E.W. Golding, "Electrical Measurements & Measuring Instruments", 5edition , 		
	Reem Publications,2009 (3) W.DCooper, "Modern Electronics Instrumentation", Prentice Hall of India, 1996		

Subject Code		Credits: 3(3-0-0)	
MAT250	Numerical MethodsTotalhours: 42		
Course Objective	To get familiarized with the numerical solution of systems, Numerical solution of ordinary differential equations.		
Module 1		Hours : 10	
methods, Jacobi an	linear system: Gauss elimination and Gauss-Jordan methods d Gauss-Seidel iterative methods, sufficient conditions for dominant Eigen value and eigenvector.	-	
Module 2		Hours: 12	
Newton- Raphson r	f nonlinear equation: Bisection method, Secant method, R method- order of convergence, interpolation curve fitting, me iation and integration and numerical solution of ordinary diffe	thod of least squares,	
Module 3		Hours: 11	
method, Taylor's i	solution of ordinary differential equations: Euler's methor method and Runge-Kutta method for simultaneous equator methods, Milne's and Adams' methods.		
Module 4		Hours: 12	
dimensional heat f	solution of partial differential equations: Liebmann's meth flow equation, Bender - Schmidt recurrence relation, Cran ensional wave equation		
1. M.K. Jain, S. R. K Iyengar and R.K. Jain, "Numerical Methods Scientific and Engineering Computation," New Age Publishers, Edition, 2012.			
Reference Books2. Erwin Kreyszig, "Advanced Engineering Mathematics," 8th 1 Wiley India Pvt. Ltd. (Reprint 2010).		matics," 8 th Edition,	
	 G.D Smith, "Numerical solution of Partial Dif Oxford University Press. 	ferential Equations,"	
	4. Peter V. ONeil, "Advanced Engineering Mathematics," 5 th Edition, Thomson, Book/Cole. (2003).		
	 B. S. Grewal, "Higher Engineering Mathematics," 42nd Edition. Khann Publications, 2013. 		

Subject Code	;	Digital Electronics	•	Credits: 3-0-0 (3)
EE250	EE250 Total hour		Fotal hours:42	
Course Objectiv	ves	This subject exposes the students to Digital Fundamentals.After studying this subject the student will be able to Design, Analyze and Interpret Combinational and Sequential Digital Circuits.		
Module 1			Hours	10
QuineMc-Cluske	y M	d Boolean Algebra, Simplification of fur ethod, Boolean Function Implementation, Combinational Digital Circuits, Hazards in C	Minimi	ization and Combinational
Module2			Hours	10
Shift Registers, S Module 3 Design and Anal Analysis and De Minimization and Design, Race cor Practical Design	bhift l lysis esign d De nditio	Single Mode and Multimode Counters, Rippl Register Counters and Random Sequence Gen of Sequential Circuits: General model of Se of Synchronous Sequential Circuits; Finit sign of the Next State Decoder. Asynchrono ns and Cycles. Dects: Timing and Triggering consideration Hold time, Clock skew.	equentia equentia e Sate ous Sequ	urs 12 I Networks, State Diagram, Machine, State Reduction, uential Logic: Analysis and
Module 4			Ho	urs 10
Output Character gates, MOS Inve				

Subject Code EE251	Electrical Power GenerationCredits: 3 (3-0-0) Total hours: 56		
Course Objectives	Electrical Power plays significant role in day to day life of entire mankind. This course concerns the generation of power along with the economic aspects. Principle of operation, Performance of electric power generation plants (Hydel, Thermal and nuclear).		
Module 1		Hours: 9	
Generation of electrical Nonconventional sources	energy by conventional methods, Comparison s of energy.	of different sources of power.	
•	ion: Classification of hydro plant, Selection urbine and modelling of turbine. Plant layou		
Module 2		Hours : 9	
Re-heaters, economizers	ine diagram of the plant. Boilers: working an , air-heaters, draft system, feed water heaters rs. Speed governing and governors. Station aux	and evaporators, cooling water	
Module 3 Hours : 9			
power plant, nuclear fu	on: Principle of energy production by nuclear uels and fertile materials, nuclear reaction ntrol of fission, Reactor operation, different	construction. Chain reaction,	
Module 4		Hours:9	
Economics of Power Generation: Cost of electrical energy, Methods of determining depreciation, straight line, diminishing value and sinking found method. Types of Tariffs influence of load and power factor on tariff, economics of power factor improvement. Commissioning and Testing of Transformers and Alternators: Transformer connections, arrangement of transformer, commissioning and testing of transformers and alternators, supply system to station auxiliaries.			
Module 5		Hours : 9	
Problems with conventional energy, possible options for use as non-conventional sources. Solar Energy: solar thermal & photovoltaic conversion of solar energy, applications of solar energy. Wind energy: Betz limit, wind energy conversion devices: classification, characteristics, and applications. Hybrid systems, safety and environmental aspects.			

Reference books	 Soni, Gupta, Bhatnagar and Chakrabarti, "A text book on Power Systems Engineering," DhanpatRai and Sons, New Delhi, 1997. C.L.Wadhwa, "Generation, Distribution and Utilization of Electrical Energy," Wiley Eastern Ltd, N.D.1992.
	 M.V. Deshpande, "Elements of Electrical Power station Design Pitman," NewDelhi, TMH, 1990. G. D.Rai, "Non-conventional Energy Sources", Khanna Publishers, New
	Delhi, 2007.

Subject Code EE 252	Electrical Machines-I	Credits: 4 (3-1-0) Total hours: 56	
Course Objectives	Understand the basic concepts about the dc machines and transformers. Learn the various tests for studying the performance of the machines. Learn about the various tests on transformers and its performance.		
Module 1		Hours 15	
methods of l commutation,	or- Construction, principle of operation, windi imiting effects of armature reaction, commut operating characteristics of shunt, series, com cteristics, power flow diagram, testing of d.c gene	ation process, methods of improving pound generator O.C.C, internal and	
Module 2		Hours 15	
speed regulati field control r	rinciple of operation, torque equation, characteris on, starters, speed control methods – voltage c nethods, braking – regenerative braking, rheostat e test, Swinburne's test, Hopkinson's test, retarda	ontrol, armature resistance control and ic braking and plugging, testing of d.c	
Module 3		Hours 15	
diagrams, equ core losses, e	ners - construction, principle of operation, emf ivalent circuit, losses, testing of transformers – 1 fficiency, voltage regulation, all-day efficiency, equal voltage ratios, sumpner test, auto transfo	oad test, OC and SC test, separation of parallel operation of transformers with	
Module 4		Hours 11	
	ers –construction, operation, different connection ott connection, on -load and off-load tap changers	—	
	1. A.E Fitzgerald, Charles Kingsley, Stephen D Umans"Electrical Machinery" 6 th Edition, Tata McGraw Hill, 2003.		
Reference	rence 2. Clayton, Hancock, "Performance & Design Of DC Machines" CBS, 3 rd Edition, 2001		
books	3. S.J Chapman, "Electric Machinery Fundamentals" McGraw Hill, 4 th Edition, 2010.		
	 I.J.Nagarath, D.P Kothari, "Electric Machines" Tata McGraw Hill, 4th Edition, 2010. 		
	2010.		

Subject Code	Economics	Credits: 3(3-0-0)
HS 250		Total hours: 45
Course Outcome	The fundamental objective of this course aims at providing a com the broad area of economics and its scenario. The course aspires the light of economic decision makings, and facilitates tohave grip	to bring the students into
Module 1	Introduction to Economics	2 hours
	1, Optimization and Equilibrium in market demand and supply, Com	
asset allocation.	i, optimization and Equinoritan in market demand and suppry, con	iparative statistics and
Module 2	Utility, Choice, Budget Constraint and Consumer Preference	6 hours
	structing a Utility Function, Budget constraint in case of two good	
and impact of Taxes,	Subsidies, and Rationing. Indifference curve, Marginal Rate of Sul indifference curve from utility functions, Marginal Utility vs MRS	• •
Module 3	Demand, Revealed Preference & Slutsky Equation	6 hours
Douglas Preferences Preferences, The Sub	Goods, Income Offer Curves and Engel Curves, Perfect Substitute , The Idea of Revealed Preference, From Revealed Preference stitution Effect, The Income Effect, Rate of Change and change of I	to reference,Recovering Demand.
Module 4	Consumer Surplus, Market Demand & Equilibrium	6 hours
to Market Demand, T and Demand, Market	te Good, Constructing Utility from DemandFrom, Change inConsum The Inverse Demand Function, The Extensive and the Intensive Mary Supply, Market equilibrium, Inverse Demand and Supply Curves	gin, Elasticity, Elasticity
Module 5	Technology and Profit Maximization	3 hours
Substitution, Diminis	Describing Technological Constraints, Properties of Technology shing Technical Rate of Substitution, Returns to Scale, Profits, Th f Firms, Short-Run Profit Maximization, Profit Maximization is eturns to Scale	e Organization of Firms,
Module 6	National Income Accounting	2 hours
National Income and	Related concepts, Nominal or real GDP, Methods of measuring NI.	
Module 7	Determinants of Equilibrium Output and IS – LM Model	8 hours
	and Equilibrium output, Consumption function and aggregate de Full employment, Asset and Goods Market, Equilibrium and adjustm	-
Module 8	Money and Fiscal policy and International Linkages	8 hours
Exchange rate, Bala exchange rates	policy, crowding out, composition of output and policy mix, I nce of Trade and capital mobility, Mundell-Fleming model, Ca	Balance of Payment and pital Mobility and fixed
Module 9	Aggregate Demand, Supply and Growth	4 hours
	nd policies, Aggregate Supply, Fiscal and monetary policy under Al- antity theory and neutrality of Money.	ternative supply
Books Koutsoyian Rudiger Do	R.: Intermediate Microeconomics, W.W. Norton & Co., New work nis, A.: Modern Microeconomics, 2 nd ELBS/Palgrave Macmillan, L rnbusch and Stanley Fisher: Macroeconomics, McGraw Hill. rt J. "Macroeconomics, New York, John Wiley.	

Subject	Value Education	Credits: 1 (1-0-0)
Code:		Total hours: 14
VE200		
Course	It aims at Holistic Development	
Objectives		
Module 1	Ethics in Engineering	4 hours
Concepts of	Values and Ethics, History and Purposes, Utilitarianism, Duties, I	Rights, Responsibility,
	ty, Moral Autonomy, Obligations of Engineering Profession and mora	- ·
Module 2	Engineer's Moral responsibility	3 hours
•	foral responsibility for Safety and Human Rights, Risk Assessmen lity, Engineers-Employers Liaison, Whistle-Blowing and Its Moral Just	
Module 3	Computer Ethics	3 hours
Social Impact	of Computer, Gender-Issues and Privacy, Cyber Crime, Ethical use o	f Software
Module 4	Intellectual property	4 hours
Revocation of	ypes, Rights and Functions, Patents, Trademark, Grant of Patent in F Patents, Compulsory Licensing, Acquisition of Inventions by the Go on of Patents, WTO	
Texts:	1. Vinod V. Sople, Managing Intellectual Property: The PHI,2006	Strategic Imperative,
	2. Govindarajan, Natarajan&Senthil Kumar, Engineering Ethic	
	3. Robin Attfield, A Theory of Value and Obligation, London:	
	4. Jones and barlett, "Cyber Ethics: Morality and Law in Cyber Case Studies from Newspapers	er space
	Case Stadies from rewspapers	
Reference		

Subject Code EE 253	Electrical Machines- I Lab	Credits: 2 (0-0-3) Total hours:45
Course Objectives	Laboratory exercises and assignments based on hardware to supplement EE205.	
	 Open circuit and short circuit test on single phase Direct load test on single phase transformer Sumpner's test on single phase transformer Scott connection of two single-phase transform Parallel operation of two different KVA 1-pha Magnetization characteristics of dc shunt genera Performance characteristics of dc shunt genera Performance characteristics of dc series genera Swinburne's test on dc shuntmotor Speed control of dc shunt motor Load characteristics of dc compound n Performance characteristics of dc compound n Field test on dc series motor 	ners se transformers rator tor enerator ttor
Deference	 A.E Fitzgerald, Charles Kingsley, Stephen D Uma Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design Of DC 2001 S.J Chapman, "Electric Machinery Fundamentals" Mc 	Machines" CBS, 3 rd Edition, Graw Hill, 4 th Edition, 2010.
Reference books	 I.J.Nagarath, D.P Kothari, "Electric Machines" Tat 2010. 	a McGraw Hill, 4 th Edition,

Subject Code EE254	Analog and Digital Electronics Lab	Credits: 2 (0-0-3) Total hours: 45
Course Objectives	Laboratory exercises and assignments based on hardware and SPICE simulation to supplement EE251 and EE252.	
	 Testing of Diode clipping (Single/Double ended peak detection Testing of Clamping circuits: positive clamping Testing of a transformer less Class – B push determination of its conversion efficiency. Testing of Half wave, Full wave and Bridge without Capacitor filter. Determination of rip efficiency. Wiring and Testing for the performance of BJT for f0 ≤ 10 KHz Testing for the performance of BJT – Hartley of RF range f0 ≥100KHz. Testing for the performance of BJT - Crystal Osc Study of BASIC Gates Study of Full & Half Adder & Subtractor using C Study of Multiplexer Study of Demultiplexer Study of Shift Register 	/negative clamping. pull power amplifier and Rectifier circuits with and ople factor, regulation and T-RC Phase shift Oscillator &Colpitts Oscillators for illator for f0 > 100 KHz Gates
Reference books	 M.Morris Mano, "Digital Electronics", Prentice H Edition, 2001. J.F. Wakerly, "Digital Design Principles and Practic 3. R.J.Tocci, "Digital Systems – Principles & Applica New Delhi, 10thEdition, 2008. A S Sedra& K C Smith, "Microelectronic Circuits" Press.2005 Donald A. Neamen, "Electronic Circuit Analysis at 2003, 2nd Edition 	ces", PHI, 1999. tions", Prentice Hall India, , Oxford University

Subject Code	Electrical Power Transmission	Credits: 4 (3-1-0)			
EE300	and Distribution	Total hours: 56			
	This course is an extension of electric power generation course. It deals				
Course Objectives	with basic theory of transmission lines modellin	g and their performance			
Course Objectives	analysis. Also this course gives emphasis on	mechanical design of			
	transmission lines, cables and insulators.				
Module 1	Но	urs : 12			
Basic structure of power	r system, transmission voltages, and bundled cond	luctors, transmission line			
parameters: resistance, in	nductance and capacitance calculations - single pha	use and three phase lines,			
double circuit line, effe	ct of earth on transmission line capacitance. perfe	ormance of transmission			
lines: representation of	lines, classification of transmission lines, short tra	ansmission line, medium			
(Nominal-T, Nominal-π,	End condenser method) length transmission line	, long transmission line,			
evaluation of ABCD para	ameters, surge impedance and SIL of long lines, wa	we length and velocity of			
propagation of waves,	incident, reflected and refracted waves, represen	tation of Long Lines -			
Equivalent T and $\Pi \mod \Phi$	els.				
Module 2	н	Iours : 14			
Mechanical design of	overhead lines: general consideration, line su	pports, span conductor			
configuration, spacing ar	nd clearances, sag and tension calculations with equa	al and unequal heights of			
towers, effect of wind a	and ice on weight of conductor, stringing chart a	and sag template and its			
applications. Skin effect,	proximity effect, Ferranti effect, corona: The pheno	omenon of corona, corona			
loss, factors and condition	ons affecting coronal loss, corona in bundled cond	ductor lines. Interference			
between power and cor	nmunication lines. Overhead line insulators: insu	lator materials, types of			
-	ibution over insulator string, improvement of str	ing efficiency, insulator			
failure, testing of insulate	ors. Capacitance grading and static shielding.				
Module 3	Н	Iours : 12			
	assification of cables, types of cables, construct	•••			
	materials, calculations of insulation resistance and stress in insulation. Capacitance of single and 3-				
	rading of cables - capacitance grading, desc	-			
	nission lines: choice of voltage, selection of conduc	ctor size, choice of span,			
number of circuit, conduc	number of circuit, conductor, configuration. Power system earthing.				
Module 4	Н	Iours : 10			
Power system transients	: circuit closing transient, sudden symmetrical sh	nort circuit of alternator,			
recovery transient due to	o removal of short circuit, travelling or propagatio	on of surges, attenuation,			
distortion, reflection an	d refraction coefficients. Termination of lines	with different types of			
conditions, open circuite	d line, short circuited line, T-Junction, lumped read	ctive junctions. Bewley's			
	g grounds, line design based on direct strokes, st	-			
-	h voltage transmission: need for EHV transm				
conductors, radio noise from EHV lines, shunt compensation static-var systems, series compensation,					
EHV systems in India.					

Module 5		Hours: 8
	n: comparison of various distribution systems, voltage drop sign consideration, load estimation.	in distribution, Kelvin's Law,
1)	Soni, Gupta, Bhatnagar and Chakrabarti, "A text book on DhanpatRai and Sons, New Delhi, 1997.	Power Systems Engineering,"
2)	C.L.Wadhwa,"Generation, Distribution and Utilization Eastern Ltd, N.D.1992.	of Electrical Energy," Wiley
3)	W.D. Stevenson Jr., "Elements of Power System Anal	ysis", McGraw,Hill, 1968.

Subject Co EE 301		Electrical Machines-I	I	Credits: 4 (3-1-0) Total hours: 56
		(Induction Machines &		Total nouis. 30
		Synchronous Machines)		
Course		To learn the basic concepts about the	he differe	nt types of induction and
Objective	es	synchronous machines. To understand operations.	the spee	ed control and the starting
Module 1			Hours 1	15
rotor MMF, i slip character	rotor firistics,	- construction, principle of operation, type requency, rotor current and production of maximum torque, no-load and blocked r lirect on line starters, star-delta and auto tra	torque, sli otor tests,	p, equivalent circuit. torque- losses and efficiency, circle
Module 2			Hours	s 15
•		tors, induction generator. Single phase in ircuit, starting methods, applications.	duction m	otors, double field revolving
Module 3			Hours	s 15
armature read ZPF methods power, transi	ction, v s, two ent, su	uction, principle of operation, winding favoltage regulation, methods of predetermin reaction theory, power-angle characteristi b transient and steady state reactance, par ion and mechanical input.	nation of r	regulation – EMF, MMF and ronization and synchronizing
Module 4			Hours	s 11
increased loa	nd with	r -principle of operation , method of s constant excitation, effect of changing e es, power developed, power circles, huntin	xcitation v	with constant load. V curves
		E Fitzgerald, Charles Kingsley, Stephen Edition, Tata McGraw Hill, 2003.	D Umans	s "Electrical Machinery" 6 th
		ayton, Hancock, "Performance & Design 2001	Of DC M	Machines" CBS, 3 rd Edition,
Reference books		J Chapman, "Electric Machinery Fundamentals" McGraw Hill, 4 th Edition, 2010. . S Bimbhra, "Electrical Machinery" 7th Edition, Khanna Publishers, 2008.		

Subject Code	Control Systems	Credits: 4 (3-1-0)	
EE 302		Total hours: 42	
Course Objectives	To be familiar with basic control configurations and modelling of physical systems and analyze their time an	1	
Module 1]	Hours 12	
Physical syste	modelling: Introduction of Open loop and Closed loop ms, Mechanical and Electrical systems, Transfer functions, Signal flow graphs, Mason's Gain formula, Feedback cha	ns, Block diagrams, Block diagram	
Module 2	2 Hours 12		
Time response Analysis: Standard test signals, Time response of First and Second order systems, Steady-state Errors and Error constants and Dynamic Error coefficients, Effect of addition of poles and zeroes on response of system, Response with P, PI and PID controllers, Performance Indices. Control system components, Stepper motors, Tacho-generators, DC and AC Servomotors.			
M 11 2			
Module 3	[Hours 10	
Concept of sta	bility: Necessary conditions and Routh Criterion, Relativ struction, Gain margin and Phase margin, Addition of pole	e stability analysis, Concept of Root	
Concept of sta	bility: Necessary conditions and Routh Criterion, Relativ struction, Gain margin and Phase margin, Addition of pole	e stability analysis, Concept of Root	
Concept of sta locus and Con Module 4 Frequency do	bility: Necessary conditions and Routh Criterion, Relativ struction, Gain margin and Phase margin, Addition of pole	e stability analysis, Concept of Root s and zeroes on root locus. Hours 12 ency and Time domain correlation,	
Concept of sta locus and Con Module 4 Frequency do	bility: Necessary conditions and Routh Criterion, Relativ struction, Gain margin and Phase margin, Addition of pole main Analysis:Frequency response specifications, Frequ	e stability analysis, Concept of Root s and zeroes on root locus. Hours 12 ency and Time domain correlation,	
Concept of sta locus and Con Module 4 Frequency do Bode plot, Pol Module 5 Compensation of State, State	bility: Necessary conditions and Routh Criterion, Relativ struction, Gain margin and Phase margin, Addition of pole main Analysis:Frequency response specifications, Frequ	e stability analysis, Concept of Root s and zeroes on root locus. Hours 12 ency and Time domain correlation, from Open loop Transfer Functions. Hours 10 ion.State variable Analysis: Concept inuous-time systems, State equation,	
Concept of sta locus and Con Module 4 Frequency do Bode plot, Pol Module 5 Compensation of State, State Solution of Sta Reference	bility: Necessary conditions and Routh Criterion, Relativestruction, Gain margin and Phase margin, Addition of pole main Analysis:Frequency response specifications, Frequency ar plot, Nyquist criterion, Closed loop frequency response Techniques: Design of Lead, Lag, Lead-Lag Compensate Variables and State Model, State representation of Cont	e stability analysis, Concept of Root s and zeroes on root locus. Hours 12 ency and Time domain correlation, from Open loop Transfer Functions. Hours 10 ion.State variable Analysis: Concept inuous-time systems, State equation,	
Concept of sta locus and Con Module 4 Frequency do Bode plot, Pol Module 5 Compensation of State, State Solution of Sta	bility: Necessary conditions and Routh Criterion, Relativestruction, Gain margin and Phase margin, Addition of pole main Analysis:Frequency response specifications, Frequency response ar plot, Nyquist criterion, Closed loop frequency response Techniques: Design of Lead, Lag, Lead-Lag Compensate Variables and State Model, State representation of Control te equations, Concept of Controllability and Observability	e stability analysis, Concept of Root s and zeroes on root locus. Hours 12 ency and Time domain correlation, from Open loop Transfer Functions. Hours 10 ion.State variable Analysis: Concept inuous-time systems, State equation, New Age Int., 4th Edition.	

Subject Code	Microprocessors and	Credits: 3(3-0-0)	
EE303	Microcontrollers	Total hours:42	
Course Objectives	To introduce the student with knowledge about architecture, interfacing andprogramming with 8086 microprocessors and 8051 microcontrollers. Also to give a brief introduction to ARM 7 and ARM 9 micro controllers. After studying this subject, the student should be able to designMicroprocessor/Microcontroller based system.		
Module 1	Hours 10		
Introduction: History of Microprocessors, Basics of computer architecture, CISC and RISC; 8085 Microprocessor Family Overview, 8085 Architecture, Assembly Language Programming (ALP), and Program development.			
Module2	Hours 12		
8086 Microprocessor: Main features, pin Diagram Description, Internal Architecture, 8086 Microcomputer System, Program development steps,Implementing Standard Program Structure in 8086 ALP, Strings, Procedures, Macros.			
Module 3		Hours 10	
Interfacing: Input and Output Modes and Interfacing, Interrupts, Hardware Interrupt Applications, 8254 Programmable Timer/Counter, 8255 Programmable Peripheral Interface, 8259 Priority Interrupt Controller, DMA controller, 8279 Programmable Keyboard/ Display Interface, ADC, DAC Interfacing.			
Module 4		Hours 10	
Intel 8051 Microcontroller: Architecture, Memory Space, Data Types and Directives, Register Banks and Stack, Assembly Language Programming, Introduction to ARM processors –features of ARM 7 and 9 processors.			
Reference books	 Hall D.V., "Microprocessors and Interfacing", McGraw Hill Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085", Penram International Publishing, Fifth edition Muhammad Ali Mazidi, Janice GillispieMazidi and Rolin D Mckinlay," 8051 Microcontroller and Embedded systems", Pearson Education. 		

Subject Code EE 304	Electrical Machines Lab-II	Credits: 2 (0-0-3) Total hours: 45
Course Objectives	Laboratory exercises and assignments based on hardware to supplement EE254.	
	 Load characteristics of single phase capacitor stat Direct load test on 3phase squirrel cage induction No load and block rotor test on three phase induc Circle diagram of 3-phase induction motor- performed Voltage regulation of an alternator by emf and mutual Synchronization of the alternator with infinite but Voltage regulation of an alternator by zpf method V' and inverted 'V' curves of a synchronous mot 	n motor tion motor ormance evaluation. mf method. s bar l
Reference books	 A.E Fitzgerald, Charles Kingsley, Stephen D Umans "Electrical Machinery" 6th Edition, Tata McGraw Hill, 2003. Clayton, Hancock, "Performance & Design Of DC Machines" CBS, 3rd Edition, 2001 S.J Chapman, "Electric Machinery Fundamentals" McGraw Hill, 4th Edition, 2010. I.J. Nagarath, D.P Kothari, "Electric Machines" Tata McGraw Hill, 4th Edition, 2010. 	

Subject Code	Microprocessor and	Credits: 2(0-0-3)
EE305	Microcontrollers Lab	Total hours:3hrs/week
Course Objectives	To give hands on experience on 8085/8086 and 8	051 programming
List of Experiments		
Experiment No. 1		
8085 and 8086 kit fami	iliarization and basic experiments	
Experiment No. 2		
Programming exercise	sorting, searching and string	
Experiment No. 3		
Interfacing with A/D ar	nd D/A converters	
Experiment No. 4		
Interfacing with stepper	r motors	
Experiment No. 5		
keyboard interfacing to	8086	
Experiment No. 6		
8255 interface to 8086		
Experiment No. 7		
Assembly language pro	gramming of 8051	
Experiment No. 8		
Timer programming of	8051 ,using interrupts	
Experiment No. 9		
LCD interfacing to 805	1	
Experiment No. 10		
Mini-Project		

Subject Code ES300	Environmental Studies	Credits: 3 (3-0-0) Total hours: 44
Course Objective	Understanding environment, its constituents, importance human developmental activities vs environment, climate international environment related developments, need for protection and conservation activities.	change, national and
Module 1		Hours: 2
Multidisciplinary awareness.	nature of environmental studies:Definition, scope and import	ance, Need for public
Module 2		Hours: 8
and their effects of ground water, flo Use and exploitant Food resources : modern agricultur resources : Grow energy sources, G landslides, soil er	nd over-exploitation, deforestation, case studies, Timber ex on forest and tribal people; Water resources : Use and over-ut ods, drought, conflicts over water, dams-benefits and problem ion, environmental effects of extracting and using mineral r World food problems, changes caused by agriculture and tre, fertilizer-pesticide problems, water logging, salinity, ing energy needs, renewable and non renewable energy so Case studies; Land resources : Land as a resource, land deg osion and desertification; Role of an individual in conservation esources for sustainable lifestyles.	ilization of surface and ns; Mineral resources : esources, case studies; overgrazing, effects of case studies; Energy urces, use of alternate radation, man induced
Module 3		Hours : 10
and decomposers ecological pyram Following ecosy	cept of an ecosystem, Structure and function of an ecosystem being Energy flow in the ecosystem, Ecological succession, Food hids, Introduction, types, characteristic features, structure extem, Forest ecosystem, Grassland ecosystem, Desert s, streams, lakes, rivers, oceans, estuaries).	chains, food webs and and function of the
Module 4		Hours: 12
•	its conservation: Introduction – Definition : genetic, s eographical classification of India, Value of biodiversity	· ·

Module 5	Hours: 12
----------	-----------

National and International Environment related developments

Environmental ethics : Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, nuclear, accidents and holocaust, Environment related Acts, Issues involved in enforcement of environmental legislation, Public awareness, Wasteland reclamation, Consumerism and waste products, UN Frame Convention Climate Change, Kyoto protocol, concept of carbon credits, latest CoP meet Agenda; Filed Work(equal to 5 lecture hours): Visit to a local area to document environmental assets river/forest/grassland/hill/mountain/sacred groves/sacred forests, Visit to a local polluted site-Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes, etc.

	1. Textbook for Environmental Studies For Undergraduate Courses of all Branches of		
	Higher Education (online book -UGC Website), Erach Bharucha, University Grants		
	Commission, India.		
	2. Anil Agarwal, Dying Wisdom, Publisher: Centre for Science and Environment, Edi:1st,1997		
	ISBN-13 9788186906200; ISBN-10 8186906207		
	3. R. Rajagopalan, Environmental Studies from Crisis to Cure, Oxford IBH Pub., 2005.		
Reference books	4. Benny Joseph, Environmental Science and Engineering, Tata McGraw Hill, 2006.		
DUOKS	5. Erach Bharucha, Text Book for Environmental Studies, Pub., Universities Press, 2005.		
	6. Masters, Gilbert M., Introduction to Environmental Engineering and Sciences, Prentice		
	Hall India, 1991		

Subject Code	Switchgear and Protection	Credits: 4 (3-1-0)	
EE350		Total hours: 56	
Course	Course This course introduces all varieties of circuit breakers and relays for protection of		
Objectives	Objectives generators, transformers and feeder bus bars from over voltages and other hazards.		
	It emphasis on neutral grounding for overall protectio		
Module 1		Hours: 10	
• •	of fuses, application of HRC fuses. Neutral Grounding		
•	. effects of ungrounded neutral on system performance.	0	
	e, reactance and arc suppression coil or peterson coil. arc		
Module 2		Hours:10	
	rs: Arcs, Interruption, RRRV, current chopping, inter	• •	
	ching. Types of circuit breakers (minimum and bulk		
circuit breakers	, vacuum and SF6 circuit breakers), Circuit Breaker ratin	ngs, Auto reclosure.	
Module 3		Hours: 14	
Protective rela	ying: Need for power system protection, evolution of	of protective relays, zones of	
protection, pro-	tective relays and schemes. Electromagnetic relays, mi	icroprocessor based protective	
	rrent protection, distance protection, auto re-closing. Pil		
protection, pro	tection of generators, static relays, microprocessor ba	ased relays, advantages, over	
current relays,	directional relays, distance relays.		
Module 4		Hours: 12	
Protection of g	enerator: Protection against abnormal condition, stator	and rotor protection. restricted	
earth fault and	l inter-turn fault protection. Protection of transforme	ers: Incipient fault, differential	
	centage differential protection, restricted earth fault	protection, Buchholtz relay	
Protection.			
Module 5		Hours: 10	
Protection agai	nst over voltages: Causes of over voltage ground wires,	surge absorbers and diverters,	
insulation coor	dination:BIL, impulse ratio, standard impulse test wave	, volt-time characteristics. Bus	
bar protection:	Frame leakage scheme, translay scheme, circulating c	current scheme introduction to	
protection again	nst surges.		
	1) Ravindranath, Chander, "Power System Protect	ion and Switchgear," Wiley	
	Eastern, 1994.		
	2) C. L. Wadhwa, "Electrical Power Systems," 2nd Ed		
	3) Arun G. Phadke, S H Horowitz, "Power System	Relaying, 2nd Edition, John	
	Wiley, 1995.		
Referenc 4) Badriram, D. N. Vishwakarma, "Power System Protection and Switchgear,"			
e books	TMH, 1995.	·	
	5) J. L. Blackburn and T. J. Domin, "Protective Relaying: Principles		
	Applications," CRC Press, 2006.	hlishara 1007	
6) S. S. Rao, "Switch gear and protection," Khanna publishers, 1997.			
	 T. S. MadhavaRao, "Power system protection: Static Relays," Tata McGraw Hill, 1989 		
8) Y. G. Paithangar, "Fundamentals of power system protection," PHI			
	oj 1. 0. rannangar, rundamentais or power system p		

Subject Code EE 351	Power System Analysis		Credits: 4 (3-1-0) Total hours: 56
Course Objectives	To learn the fundamentals of power system for designing a system that meets specific need. To analyse the phasor techniques in the analysis of power systems. To know the necessity of load flow in a regulated system. To examine the need of various analysis like fault analysis, short circuit analysis stability analysis, steady state and transient analysis.		
Module 1		Hours 10	
Modelling of power system components: representation of power system components, single phase representation of balanced three phase networks, single line diagram, per unit quantities, impedance diagram, reactance diagram, steady state model of synchronous machine, power transformer, representation of loads, formulation of bus impedance and admittance matrix.			
Module 2		Hours 12	
Power flow Analysis: Network model formulation, load flow problem, Gauss Seidel, Newton Raphsonand fast decoupled methods, comparison of load flow methods, control of voltage profile: excitation control, VAR generators, tap changing transformers, load flow for DC links.			
Module 3		Hours 10	
Symmetrical fault Analysis: Transients on a transmission line, Short circuit analysis of synchronous machine, symmetrical fault analysis in the network, fault analysis through impedance matrix, circuit breaker rating, selection of circuit breakers, current limiting reactors			
Module 4	Module 4 Hours 12		
Unsymmetrical fault analysis: Symmetrical components, Concept of sequence impedances and sequence networks of synchronous machine, transmission lines, transformers, power system, LG, LL, LLG and open circuit faults analysis through sequence components, Digital methods for fault analysis			
Module 5	Module 5 Hours 12		2
Stability Analysis Angle stability dynamics of a synchronous machine, swing equation, power angle equation, steady state and transient stability, equal area criterion, numerical solution of swing equation, multi machine stability analysis, Voltage stability: Reactive power flow and voltage collapse, mathematical formulation of voltage stability problem, voltage stability analysis.			
Reference books	 D P Kothari,I J Nagrath, "Power System Engineering", Tata Mc,Graw 2nd Edition C.L.Wadhwa, "Electrical Power Systems", NewAge International Publishers, 6th Edition W.D.Stevenson Jr. "Elements of Power System Analysis", TMH, 1968. I.J.Nagrath,D.P.Kothari, "Modern Power System Analysis", TMH, 4th Edition ,2011 		

Subject Co	de Power Electronics	Credits: 4 (4-0-0)	
EE 352	I ower Electromes		
Course Objective	Understand the principles of operation of various control strategies of various p	Learn the static and dynamic characteristics of power semiconductor devices. Understand the principles of operation of power electronic converters. Study the various control strategies of various power converters. Study the design parameters for control circuitry requirement of various converters.	
Module 1		Hours 12	
Introduction- power diodes, types of power semiconductor switches and V-I characteristics, Thyristors: structure, static and dynamic characteristics, device specifications and ratings, methods of turning on (gate firing circuits), methods of turning off (commutation circuits), IGBTs- basic structure and V-I characteristics. MOSFETs - basic structure and V-I characteristics.			
Module 2		Hours 12	
Phase Controlled Rectifiers: single phase, half wave rectifier with R, RL and RLE loads, full wave half controlled and fully controlled converters with R, RL and RLE loads, input side harmonics and power factor, effect of source inductance. Three phase-half wave rectifier with R and RL loads. Full wave half controlled and fully controlled converters with R, RL loads, single-phase and three-phase dual converters.			
Module 3		Hours 10	
converters: s	A.C. Voltage controllers: operation of controllers for R, R-L loads, current and power factor. Cyclo- converters: single phase mid-point and bridge configuration with R, R-L loads, circulating current mode of operation		
Module 4	Module 4 Hours 12		
Choppers: principle of operation, time ratio control and current limit control, step-up and step-down choppers with R, RL and RLE loads. Switching regulators: buck regulators, boost regulators, buck-boost regulators. Switched mode power supply: principle of operation and analysis.			
Module 5 Hours 10		Hours 10	
Inverters: principle of operation, series inverter, parallel inverter, single phase bridge inverters. Three phase bridge inverters- 120^{0} and 180^{0} degrees mode of operation, single, multiple and sinusoidal pulse width modulation.			
Reference books	 M.H. Rashid, "Power Electronics - Circuits, Devices and Applications", PHI, 3rd Edition, 2003. Ned Mohan, Undelandand P Robin, "Power Electronics Converters, Applications and Design", John Wiley & Sons, 3rd Edition, 2007 G.K.Dubey, "Thyristorised Power Controllers", Wiley Eastern Ltd, 1993. .P.S.Bimbhra, "Power Electronics", Khanna Publishers, New Delhi, 2002 		

Subject Code	Integrated Circuits	Credits: 3(3-0-0)
EE353		Total hours:42
Course Objectives	To develop the skill of analysis and design of various circuits using operational Amplifiers. To develop design skills to design various circuits using different data conversion Systems.	
Module 1		Hours 12
Operational Amplifier and its Linear application: Ideal Op Amp circuit Analysis, Inverting and Non-Inverting Configuration, Differentiator, Integrator, The Negative resistance converter, Negative Feedback, Feedback in Op Amp circuit, Loop gain. Circuits with Resistive Feedback: Current-to-Voltage Converters, Voltage-to- Current converters, Current Amplifiers, Difference Amplifiers, Instrumentation Amplifiers and Applications.		
Module2		Hours 08
	Second order filter Transfer function, Butter ation of Inductor using Op-Amps-R-C, Sal r filters, All-pass filter.	
Module 3		Hours 10
Nonlinear circuits: Voltage Comparators, Comparator Applications, Zero-crossing detector, Precision rectifiers, Schmitt trigger (Inverting &Non Inverting), AstableMultivibrator, Triangular wave generator. Non idealities of Op-Amps and their effects. NE555 Timer circuits: Internal architecture, Schmitt trigger, AstableMultivibrator, MonostableMultivibrator, Saw-Tooth Wave generator.		
Module 4		Hours 12
Digital to Analog (D/A) Converters: Types of D/A converters, Accuracy, Resolution and Conversion speed, Offset error, Gain error, Integral and Differential Nonlinearity. Analog to digital (A/D) converters: A/D conversion techniques and their Nonlinearity's.		
Phase Locked Loop: Block schematic and Analysis of PLL, Lock range and Capture range, Typical applications of PLL, Basic Principles of operation of VCO and timer (555) and their applications.		
	rence books 1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", McGraw Hill Book Company 1998.	
3.Sed	edra A.S. & Smith K.C., "Microelectronic Circuits", Oxford University Press 1998	
4.Rar	amakanthGaykward, "Op Amps and Linear Integrated Circuits",	
Pear	son Education, 1999.	

Subject Code
EE354

CourseLaboratory exercises and assignments based on hardware and MATLAB simulationObjectiveto supplement EE352.

Experiments lists

1) Simulation of 1- Φ half wave controlled rectifier with R and R-L load using MATLAB.

2) Simulation of 1- Φ full wave controlled bridge rectifier and semi-controlled bridge rectifier with R and R-L load.

3) Simulation of 3- Φ full wave controlled rectifier with R and R-L load.

4) Simulation of a basic series inverter.

5) Simulation of parallel inverter.

6) Simulation of dual converter.

7) Simulation of step down/buck chopper and step up/boost chopper.

8) Simulation of 120° and 180° modes of operation of inverter.

9) Simulation of sinusoidal pulse width modulation.

10) Simulation of hysteresis band pulse width modulation.

11). Simulation of speed control schemes for DC and AC motors.

12. Mathematical modeling of Power Electronic Systems.

Reference books

Subject Code EE355	Control Systems Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs		
Course Objective	Laboratory exercises and assignments based on h to supplement EE302.	s and assignments based on hardware and MATLAB simulation 2.		
	Experiments lists			
motor 2. Detern 3. Detern 4. Chara 5. Chara 6. Desig 7. Timer 8. Freque 9. Desig 10. Simul	mination and analysis of transfer function for Speed c mination and analysis of transfer function of DC serv mination and analysis of transfer function of AC serv cteristics of Stepper motor cteristics of Synchrotransmitter / receiver n of PI and PID controller esponse analysis of first and second order systems us ency response analysis of second order system using n of lag-lead compensator ink model for servo system ink model for speed control of motors	o-motor o-motor ing MATLAB/SIMULINK		
Reference books	 I.J. Nagrath, M. Gopal, "Control Systems Eng 4th Edition K. Ogata, " Modern Control Engineering", PH M.Gopal, "Control Systems, Principles and Edition. 	II, 3rd Edition.		

Subject Co EE 400	le Electrical Drives	Credits: 3 (3-0-0) Total hours: 56
Course Objectives	Understand the classification and characteristics of types and operations of DC drives. Analyse the var induction motor drives	•
Module 1		Hours 10
Introduction: Electrical drives, parts of electrical drives, selection of power rating for drives, dynamics of electrical drives, fundamental torque equation, components of load torques, speed-torque characteristics of various types of motors and loads, condition of steady state stability. DC shunt motor and series motor speed-torque characteristics in different quadrants		
Module 2		Hours 10
Controlled rectifier fed DC drives:1-phase fully and half controlled converter fed dc separately shunt and dc series motor, mathematical analysis of 1-phase converter fed dc motors, 1-phase dual converter- waveforms, operations with and without circulating current. Steady state analysis of three phase fully and half controlled DC motor drive. Power factor considerations of converters, power factor improvement of phase controlled converters.		
Module 3		Hours 8
performance	trolled fed DC drives: Single-quadrant chopper contr parameters for separately excited and series motor driv per controlled drives. Closed loop control of dc drives.	
Module 4		Hours 10
motor drives, effect of harm (CSI) fed ind Rotor side co	e control of 3-phase induction motors by AC voltage co constant v/f control, constant flux control, constant slip-sp nonics and its control, PWM control, flux weakening opera action motor drives. Introl of induction motors: static rotor resistance control, as drive, static Kramer's drive and their performance, spee	eed control, torque pulsation, tion, Current Source Inverter slip power recovery scheme,
Module 5 Hours 07		
and CSI. Loa	chronous motor: separate control &self-control of synchronic commutated CSI fed synchronous motor, speed torque ch ion of synchronous motor drives, solar and battery powered	aracteristics, closed loop
Reference books1. G.K.Dubey, "Fundamentals of Electrical Drives", Narosa Publications, 19952. M.H. Rashid, "Power Electronics - Circuits, Devices and Applications", PHI, 2002.3. G.K.Dubey, "Thyristorised Power Controllers", Wiley Eastern Ltd, 1993.		

Subject Code HS 400	Management		Credits: 3 Total hours: 45
Course Outcome	Develops the ability to understand and analyse the broad aspe financial dynamism	ct of man	agement and its
Module 1	Principles of Accounting	5 ho	ours
	, Assumptions, Classifications of Accounts- Journal, Cash Boo	k, Ledger,	Final Accounts-
Manufacturing Ac	count, Trading Account, P & L Account, Balance Sheet.		
Module 2	Financial Statement Analysis	5 ho	ours
	ofit and Loss Account, Economic vs Accounting Profit, Change ash flow statement.	s in Finan	cial Position,
Module 3	Ratio Analysis	6 h	ours
Nature of Ratio A	nalysis, Liquidity Ratio, Leverage Ratio, Activity Ratio, Profit	ability Rat	io, DuPont
Analysis, Compar	ative statement and Trend Analysis, Inter-firm Analysis.		
Module 4	Working Capital	6 h	ours
Concept of working	ng Capital, Operating and Cash conversion Cycle, Permanent a	nd Variabl	e working
Capital, Balance v	vorking capital position and Issues.		
Module 5	Time Value of Money	5 ho	ours
Time preference f	or money, Future value, Annuity, Perpetuity, Sinking fund fact	or, Present	value, Annuity,
Perpetuity, capital	recovery factor, Multiple period Compounding.		
Module 6	Capital Budgeting	8 ho	ours
Nature and type o	f Investment decision, Net Present value, (NPV), Internal Rate	of Return	(IRR), Payback
period, Profitabili	ty Index, Nature and Behavior of Cost, Breakeven point, multi	ple produc	ts analysis,
decision points.			
Module 7	Financial System	6 ho	ours
Introduction to In	dian Financial System, Financial Institutions and Financial Mar	kets.	
Module 8	Industrial Engineering & Project Management	4 ho	ours
Work Study, Time	e Study, Industrial Psychology, Project Management (PERT, C	·	
Text Books	I.M Pandey, <i>Financial Management</i> , 10 th edition, Vikish Publication Brealey Y Myers, <i>Principles of Corporate Finance</i> , McGraw-Hill Rajiv and Anil: <i>Financial Management</i> , 2 nd Edition, Oxford University Press L.M Bhole: <i>Financial Institutions and Markets</i> , Tata McGrow-hill		

Subject Code EE401	Power Electronics and Drives Lab	Credits: 2 (0-0-3) Total Hours:45 Hrs	
Course Objective	Laboratory exercises and assignments based on hardware and MATLAB simulation to supplement EE303.		
	Experiments	ilists	
	 Static characteristics of SCR. Static characteristics of MOSFET and IGI 	ЗТ	
	3. SCR turn - on circuit using synchronized		
	 4. SCR digital triggering circuit for a singl AC voltage controller 		
	5. Series inverterwith R & R L loads		
	6. Parallel inverter with R & R L loads		
	7. Buck Converter		
	8. Boost converter		
	9. Single – phase controlled full wave rectifi		
	10. AC voltage controller using TRIAC and I		
	11. MOSFET or IGBT based single-phase ful load	I-bridge inverter connected to R	
	12. Speed control of universal motor using AC voltage controller		
	 Speed control of a separately excited D.C.motor using an IGBT or MOSFET chopper 		
	14. Speed Control of D.C. motor using single semi converter		
	1. M.H. Rashid, "Power Electronics - Circuits, Devices and Applications", PHI, 2002.		
Reference books	 Mohan Undeland Robin, "Power Electronics - Converters, Applications and Design", John Wiley & Sons,2002 P.S.Bimbhra, "Power Electronics", Khanna Publishers, New Delhi, 2002. 		
	4. G.K.Dubey, "Thyristorised Power Controllers", Wiley Eastern Ltd, 1993.		

Subject Co EE 450	de Power System Oper Control	ration and Credits: 3 (3-0-0) Total hours: 45		
Course Objective	s and describe their main functions state estimation. To acquaint stand automatic control. To acqu	To explain the performance of supervision and control systems of electric power and describe their main functions. To acquaint students with the principles of state estimation. To acquaint students with the problem of system control centre and automatic control. To acquaint students with the performance of electronic systems of control and equipment's of electrical networks		
Module 1		Hours 10		
characteristic neglecting le power, conce	cs, cost curves, incremental fuel co osses, ELD including losses, trar	tics of power generation units, input output est curves, formulation of ELD problem, ELD assession loss coefficients in terms of real hods for ELD, Lambda iteration method, non		
Module 2		Hours 07		
Unit Commitment (UC): Problem formulation and constraints, UC solution methods, priority list method, dynamic programming, reliability in optimal uc problems, security constraints.				
Module 3		Hours 10		
steady state		erator, load, LFC in single area and two area, vsis of integral control, tie line bias control,		
Module 4		Hours 08		
Power System Security (PSS): Factors affecting PSS, concept of system security, contingency analysis, Lyapunov method, pattern recognition, security enhancement				
Module 5		Hours 10		
State estimation in power system and load forecasting: state estimation, least squares estimation, maximum likelihood criterion, detection and identification of bad data, state estimator linear model, load forecasting techniques, short term and long term load forecasting techniques				
Reference books	 2nd Edition C.L.Wadhwa, "Electrical Publishers, 6th Edition W.D. Stevenson Jr., "McGraw, Hill, 1968. 	"Power System Engineering", Tata Mc,Graw, Power Systems", ,New Age International 'Elements of Power System Analysis", "Modern Power System Analysis", Tata ,2011		

Elective Subjects

Subject Co EE 501	^{de} Data Structures and Algorithms	Credits: 3 (3-0-0) Total hours:45	
Course Objectives	Following this course, students will be able to: Assess how the choice of data structures and algorithm design methods impacts the performance of programs. Choose the appropriate data structure and algorithm design method for a specified application. Solve problems using data structures such as linear lists, stacks, queues, hash tables, binary trees, heaps, tournament trees, binary search trees, and graphs and writing programs for these solutions. Solve problems using algorithm design methods such as the greedy method, divide and conquer, dynamic programming, backtracking, branch and bound and writing programs for these solutions.		
Module 1		6 Hours	
Introduction to data structures and objectives, basic concepts Arrays: one dimensional, multi- dimensional, Elementary Operations			
Module 2	7 Hours		
Stacks: Representation, elementary operations and applications such as infix to postfix, postfix evaluation, parenthesis matching; Queues: simple queue, circular queue, dequeue, elementary operations and applications			
Module 3		8 Hours	
Linked lists: Linear, circular and doubly linked lists, elementary operations and applications such as polynomial manipulation			
Module 4		10 Hours	
Trees: Binary tree representation, tree traversal, complete binary tree, heap, binary search tree, height balanced trees like AVL tree and 2-3 tree, tries and other operations and applications of trees			
Module 5		15 Hours	
Graphs: Representation, adjacency list, graph traversal, path matrix, spanning tree; introduction to algorithm analysis and design techniques, algorithms on sorting: selection sort, bubble sort, quick sort, merge sort, heap sort, searching, linear and binary search			
Reference books	 8) Alfred V Aho, John E Hopcroft, Jeffrey D. Ullman, "Data structures & Algorithms", Addison Wesley. 2003 9) Horowitz and Sahni , "Data Structures and Algorithms using C/C++", 2003 9. Michael T. Goodrich, Roberto Tamassia, "Data Structures and Algorithms in Java", 4th Edition, John Wiley & Sons, Inc. 		

Subject Cod EE502	e Electronic Instrum	nentation	Credits: 3(3-0-0) Total hours:45		
Course Objectives	To understand the basic principles of instruments and measurements and various practical issues related to measurement.				
Module 1		Hou	urs 14		
	Measurement of voltage, current, power, noise, resistance, capacitance, inductance, time, frequency charge and pulse energy				
Module2		Hou	ırs 7		
0 0	Designing for EMC: EMC regulations, typical noise path, methods of noise coupling, and methods of reducing interference in electronic systems.				
Module 3		E	Iours 10		
	etic radiation, shielding a receptor configurations, coaxial cable versu	0			
Module 4		E	Iours 14		
Safety grounds, signal grounds, single-point ground systems, multipoint-point ground systems, hybrid grounds, functional ground layout, practical low frequency grounding, hardware grounds, grounding of cable shields, ground loops, shield grounding at high frequencies, guarded instruments. Protection Against Electrostatic Discharges: Static generation, human body model, static discharge, ESD protection in equipment design.					
Reference books	 Clyde F JrCoombs, "Electronic Instrument handbook", Amazon, 1999 Joseph J. Carr, "Elements of Electronic Instrumentation and Measurements", 3rd Ed, Prentice Hall, 1995 Kim R. Fowler, "Electronic Instrument Design", Oxford University Press, 1996. Henry W.Ott, "Noise Reduction Techniques in Electronic Systems", 2nd Ed; John Wiley & Sons, 1988. 				

ation concepts (AM, FM, PM), TDN	Hours 12 signal analysis, noise considerations. A and FDM concepts, Classification of , amplitude modulation, demodulation		
tion capacity, transmission modes, ation concepts (AM, FM, PM), TDM and C), tuned amplifiers, oscillators	signal analysis, noise considerations. A and FDM concepts, Classification of , amplitude modulation, demodulation		
ation concepts (AM, FM, PM), TDM and C), tuned amplifiers, oscillators	A and FDM concepts, Classification of , amplitude modulation, demodulation		
	receivers, monochrome i v transmitter		
ata communication	Hours 12		
	aveform coding techniques, pulse code noise, signal to noise ratio, FSK, PSK,		
rallel interface	Hours 09		
urations and protocols, OSI referenc g in the internet, routing algorithms, p	e model, Internet protocol, IP protocol: backet switching.		
Module 5 Satellite ,Mobile and optical fibreHours 12communication			
Orbital patterns, geostationary satellites, frequency band allocation, digital telephony, PSTN and cellular telephony, Optical fibre communication: Mode of signal transmission, signal sources and detectors, attenuators and channel capacity.			
channel capacity.	 Wayne Tomasi, "Electronic Communication Systems", Pearson Education, 4th Edition, 2002 Kennedy, "Communication Systems", 4th edition. Gary Miller, "Modern Electronic Communication", 7th Edition. Andrew S. TanenBaum, "Computer Networks", 3rd Edition. William C. Y. Lee, "Mobile Cellular Telecommunication", 2nd Edition. 		
	 Education, 4th Edition, 2002 Kennedy, "Communication Systems", 4th edition. Gary Miller, "Modern Electronic Communication", 7th Edition. Andrew S. TanenBaum, "Computer Networks", 3rd Edition. 		

Subject Code EE 504	Digital Signal Processing	Credits: 3 (3-0-0) Total hours: 56		
Course Objectives	Basic concepts of discrete time signals and systems, interconnection of the systems and filtering. Transform analysis of LTI systems; system functions; All pass systems, minimum phase systems, linear systems with generalized linear phase; structures for discrete time systems, lattice structures; FIR and IIR filter design techniques; The discrete fourier transform, computational aspects and fast algorithms; miscellaneous topics.			
Module 1		8 hours		
and systems, in convergence of	Review of signals and systems: Motivation and introduction to the course, Basic concepts of signals and systems, interconnection of the systems and filtering, Z – transform and the Region of convergence of the system, Complex convolution theorem, and system described by difference equations, Frequency response of LTI systems and system functions.			
Module2		10 hours		
Coefficient Diffe				
-	echniques: Design of IIR filters and differe filter by windowing, FIR filter by the Kaiser	-		
Module 4		9 hours		
The Discrete Fourier Transform and Computational Aspects: Orthogonal transform, discrete Fourier transform (DFT), Relation between Fourier transform and DFT, Circular Convolution, DFT properties, Computation of DFT, Linear Convolution using the DFT, Fast computation of DFT.				
Module 5		8 hours		
Quantization Pro	DSP Algorithm implementation and Finite Wordlength Effect: Number representation and overflow, Quantization Process and Errors, fixed and floating point numbers, coefficient quantization, A/D conversion noise analysis, Low sensitivity digital filters, Limit Cycle oscillations in IIR digital filters.			
Reference books	 A. V. Oppenheim and Schafer, "Discrete time Signal processing," 3rd Edition, PHI. S. K. Mitra, "Digital Signal Processing," 3rd Edition, TMH. 			

Subject Code EE505	Digital Computer Organization and Architecture (COA)	Credits: 3 (3-0-0) Total hours:45		
Course Objectives				
Module 1	Module 1 6 Hours			
Introduction to computer architecture and organization: digital components, Von Neumannmachine architecture, Flynn classification register transfer language: micro operations, data transfer operations, arithmetic, logic and shift micro operations and their hardware implementations as a simple arithmetic and logic unit.				
Module 2	Module 2 13Hours			
CPU Organization: Addressing techniques, instruction set design, example for zero address, one address, two address and three address machines, stack, accumulator and general purpose register organization. Arithmetic algorithms: Arithmetic and Logic Unit, adders, multiplication, add and shift method, Booth's Multiplier, m -array multiplier, division, restoring and non restoring method.				
Module 312 Hours				
organization	Pipelining: Pipeline structure, pipeline performance measures, pipeline types, memory organization, memory device characteristics, RAM organization, virtual memory, paging and segmentation, high speed memories.			
Module 4		14 Hours		
Control unit design, hardwired and micro programmed control unit design, implementation techniques, memory hierarchies, input-output design, IO interface, bus structure, modes of data transfer, interrupts, input output processor, serial communication.				
Referenc	1. J.L. Hennessy and D.A. Patterson, "Computer Architecture: A Quantitative Approach", 4th Edition, Elsevier.			
Referenc e books	 M. Morris Mano, "Computer System A Corl Hamachar "Computer Organization 			
	 Carl Hamacher, "Computer Organization", McGraw-Hill, 5th Ed. J.P Hayes, Computer Architecture & Organization, McGraw-Hill. 			

Subject Code EE 506	Advanced Control System	S Credits: 3 (3-0-0) Total hours: 45		
Course Objectives	To incite a wide knowledge on the description and stability of non-linear system. To examine the conventional technique of non-linear system analysis. To solve the analysis discrete time systems using conventional techniques. To understand the analysis of digital control system using state-space formulation. To look at the formulation and analysis of multi input multi output (MIMO) system			
Module 1	Hours 11			
Discrete control system: Introduction to discrete time control system, block diagram of a digital control system, sampling process, data reconstruction and hold circuits, zero and first order hold, review of z- transforms and inverse z- transforms, solution of difference equations, pulse transfer function, pulse transfer function with dead time, system time response, realization of pulse transfer functions, stability studies.				
Module 2		Hours 10		
time invariant di	State variable analysis of discrete system: Concept of controllability and observability for a linear time invariant discrete time control system, condition for controllability and observability, state feedback, condition for arbitrary pole placement, design via pole placement, state observers.			
Module 3		Hours 12		
Non Linear system: Characteristics of non- linear systems, types of non-linearity, phase plane analysis, construction of phase trajectory, Isocline method and delta method ,singular points and classification, describing function analysis, basis of describing function approach, describing functions of common non- linearity namely dead zone saturation, ideal relay, combined dead- zone and saturation, relay with hysteresis				
Module 4		Hours 12		
Stability of non-linear systems: Liapunov Methods, Liapunov stability, definition of stability, asymptotic stability and instability, quadratic forms and sign definiteness of scalar function, Liapunov stability theorems, Liapunov stability analysis of LTI continuous and discrete time systems methods of construction of Liapunov function for non-linear systems.				
Reference books	 M.Gopal, "Control System Principles and Design", TataMcGraw Hill, 4th edition I. J. Nagrath, M. Gopal, "Control Systems Engineering" New Age International, 4th Edition K. Ogata, "Modern Control Engineering", PHI, 3rd Edition K. Ogata, "Discrete Time Control Systems", Pearson Education, 2nd Edition 			

Subject Code	Travelling Waves on	Credits: 3 (3-0-0)		
EE507	Transmission System Total hours: 45			
Course Objectives	To understand the various types of travelling waves on transmission system.			
Module 1	Module 1 Hours : 12			
The line equations: The ideal (no-loss) line, the distortion-less line, line with small losses, exact solution of the infinite line, line of finite length, attenuation and distortion of traveling waves. Reflection of traveling waves: behaviour of a wave at a transition point, dissimilar voltage and current waves, typical cases, current-limiting reactors. Successive reflections: the reflection lattice, construction and use of the lattice-diagram, charging of a line from various sources, reflection between a capacitor and a resistor, effect of short lengths of cable, effect of insulator capacitance.				
Module 2		Hours : 10		
traveling waves surge tests on	Traveling waves on multi conductor systems: The general differential equations of traveling waves, transition points on multi conductor circuits, multi velocity waves, surge tests on transmission lines, physical concept of multi velocity waves, two-conductor system, multi conductor system.			
Module 3	Module 3 Hours : 10			
tower, tower gr	nd-wires: Direct stroke to a tower, effect of ref counding. The counterpoise: Multi velocity wa nterpoise, successive reflections on the insulated	ves on the counterpoise,		
Module 4		Hours: 13		
Induced lightning surges: The field gradient, induced surges with ideal ground wires. Arcing grounds: normal frequency arc extinction - single-phase and three-phase, oscillatory-frequency arc extinction, high-frequency effects, interruption of line-charging currents, cancellation waves, initiated waves, steady-state waves, recovery voltage, restriking phenomena.				
 Reference books 1) L. V. Bewley, "Traveling Waves on Transmission Systems," John Wiley and Sons, 1951. 2) H. H. Skilling, "Electric Transmission Lines," TMH, 1951. 3) F. Woodruff, "Principles of Electric Power Transmission," John Wiley and Sons, 1952. 				

Subject Code EE 508	Utilisation of Electrical Energy	gy Credits: 3 (3-0-0) Total hours:45		
Course Objectives	Understand concept of illumination systems, heating and welding systems. Learn the requirements of traction systems.			
Module 1 Hours 14				
Electric traction: requirements of an ideal traction system, systems of traction, requirements of ideal traction motors, comparison and control of traction motors, mechanics of train movement, tractive effort for acceleration ,train resistance, gradient, coefficient of adhesion, speed time curves, specific energy consumption.				
Module 2		Hours 12		
Electric heating: advantages, classification of heating equipment's, methods of heat transfer, resistance heating, design of heating element, induction heating, eddy current heating, dielectric heating.				
Module 3		Hours 12		
Electric welding: resistance welding, arc welding. Electrolytic processes: Faraday's laws of electrolysis, calculation of current required and related definitions, factors governing the character of deposits, preparation of work for electroplating, electro-extraction and refining of copper and aluminium.				
Module 4		Hours 7		
Illumination: definition, illumination standards, laws of illumination, lighting calculations, polar curves, Rousseau's construction, illumination measuring devices, various illumination devices.				
Df	1. Partab, Art and Science of Utilization of 2. E.O. Taylor, Utilization of Electric Energy			
 Reference books 2. E. O. Taylor, Utilization of Electric Energy. 3. C. L Wadhwa , Generation ,Distribution and Utilization of Electrical Energy. 				

Subject Code EE509	Introduction to Dutubuse		•	Credits: 3 (3-0-0) Total hours: 45	
Course Objecti		This course covers the relational database systems RDBS - the predominant system for business, scientific and engineering applications at present.			
Module 1	Module 1		6 Ho	ours	
Introduction & database users a		ase systems, views of data, data or.	model	s, database system architecture,	
Module 2			10 H	lours	
•	•	R model), E-R diagrams, introcional calculus, tuple relational calc		n to relational databases, keys,	
Module 3			15 H	lours	
query, union, in	SQL: A relational database language, data definition in SQL. SQL queries: The form of a basic SQL query, union, intersect, and except, aggregate operators, specifying constraints, view and joins in SQL, specifying constraints, introduction to nested queries.				
Module 4 14 Hours			lours		
-	Functional dependencies, non-loss decomposition, first, second, third normal forms, Boyce Codd normal form, transaction concepts, transaction recovery, ACID properties, Concurrency.				
Storage: overview of physical storage media, magnetic disks, RAID, tertiary storage,file organization, organization of records in files, indexing and hashing, database security.					
	1) Korth, Sill	perschatz, "Database System Co	ncepts	s", 4 th Ed., TMH, 2003.	
books (Elmsari an Wesley, 20 	d Navathe, "Fundamentals of D 004.	atabas	se Systems", 4 th Ed., A.	
(-	Raghu Ramakrishnan, Johannes Gehrke, "Database Management Systems", ^{Jrd} Edition, , McGraw- Hill, 2003.			
(4) J D Ullma	D Ullman, "Principles of database systems", 2001.			

Subject Coo EE 510	le	Computer Networks	Credits: 3 (3-0-0) Total hours: 45	
Course Object	tives	ves This course focuses on understanding the design of computer networks, assimilating hubs into a personal network.		
Module 1			8 Hours	
Introduction to computer networks, overview of OSI reference model. Topology design, problems and protocols, practical local area network design and implementation. IEEE LAN standards, logical link control protocols, HDLC, ALOHA, SLOTTED ALOHA, FDDI, client server model and related softwares. Computer networks and internet, network edge, network core, network access, delay and loss.				
Module 2			16 Hours	
allocation, new	Transport layer services, UDP, TCP, new transport layer protocols, congestion control and resource allocation, new versions of TCP, network layer services, routing, IP, routing in internet, router, IPV6, multicast routing.			
Module 3	Module 3 10 Hours			
•		error detection and correction, multiple accelers links, mobility, PPP, ATM, MPLS, VLA	•	
Module 4	Module 4 11 Hours		11 Hours	
authentication,	Multimedia networking, streaming stored audio and video, real-time protocols, security, Cryptography, authentication, integrity, key distribution, network management, firewalls, brief functioning of upper layers, e-mail and other application.			
Reference books	3. Andrew. S. Lanenbaum, Computer Networks, Prentice Hall of India, 5 Edn, 2002.			

Subject Code EE 511	Embedded Systems	Credits: 3(3-0-0) Total hours:45		
Course Objectives	To give ideas about embedded system To impart knowledge about real time	ms and system development. e operating systems and microcontrollers		
Module 1	Iodule 1 Hours 10			
power supply,	Introduction to embedded systems: embedded system examples, parts of embedded system- processor, power supply, clock, memory interface, interrupt, I/O ports, buffers, programmable devices, ASIC,etc. interfacing with memory and I/O devices. memory technologies – EPROM, Flash, OTP, SRAM,DRAM, SDRAM etc.			
Module2		Hours 8		
assembly. Prod Embedded syste debugging. har	vcles, specifications, component selection, scher uct enclosure design and development. em Development Environment – IDE, cross con dware testing methods like boundary scan, In Cir es like I^2C , SPI, AMBA, CAN etc.	mpilation, simulators/emulators, hardware		
Module 3		Hours 12		
processes and the	Operating systems: concept of firmware, operating system basics, real time operating systems, tasks, processes and threads, multiprocessing and multitasking, task scheduling, task communication and synchronisation, device drivers.			
Module 4		Hours 15		
System design examples : system design using ARM/PSoC/MSP430 processor				
Reference books				

Subject Co EE512	de []	High Voltage DC (HVDC) Transmission	Credits: 3 (3-0-0) Total hours: 45		
	CourseThe course aims at use of high voltages as the key to efficient transmission and distribution of electrical power. To have an overview about different forms of insulation and their behaviour, over voltage conditions and protection of equipment's. To analyse the malfunctioning of converters and protection.				
Module 1			Hours: 8		
technical pe Transmissior	Historical development of HVAC and HVDC links, comparison, economics of power transmission, technical performance, reliability, limitations, application of dc transmission, description of DC Transmission System, types of DC links and converter station, planning for HVDC transmission. modern trends in DC transmission.				
Module 2			Hours : 10		
analysis of analysis of	HVDC conver Graetz circuit,	tion, thyristor devices, thyristor valve rters; pulse number, choice of convert convertor bridge characteristics, chara is of converters.	er configuration, Simplified		
Module 3			Hours:8		
control, sta	-	ntrol hierarchy firing angle control, c opping of dc link, power control, ments.	-		
	ulto and musto.	ation interdention conservation for lts and			
over voltage reactor and protection	Converter faults and protection: introduction, converter faults, protection against over currents over voltages in a converter station, surge arrests, protection against over voltages. smoothing reactor and dc line; introduction, smoothing reactors, dc line, transient over voltages in dc line, protection of dc line, dc breakers, monopolar operation, effects of proximity of ac and dc transmission lines.				
Module 5			Hours : 10		
Reactive power control; introduction, reactive power requirements in steady state, sources of reactive power, static var systems, reactive power control during transients, harmonics and filters; introduction, generation of harmonics, design of ac filters, dc filters, carrier frequency and RI noise, multi terminal dc systems; introduction, potential applications of MTDC systems, types of MTDC systems, control and protection of MTDC systems, control and protection of MTDC Systems study of MTDC systems.					
Reference books	2) J. Arrilla	aga, "HVDC transmission," IET, 1998. imbark, "Direct Current Transmission," k, 1971.	Vol. I, Wiley Interscience,		

Subject Code	Flexible AC Transmission Systems	Credits: 3 (3-0-0)		
EE513	FRANCE AC Transmission Systems	Total hours: 56		
Course Objectives	To enhance the transmission capability of transmission compensation using static controllers. To understand transmission and the associated problems. To review to shunt control. To study the operation of controllers for capability.	d the concept of flexible AC he static devices for series and		
Module 1		Hours : 10		
FACTS concepts and general system consideration: Power flow in AC Systems. Definition of FACTS, power flow control, constraints of maximum transmission line loading. Benefits of FACTS transmission line compensation: uncompensated line, shunt compensation. series compensation, phase angle control.				
Module 2		Hours:9		
Static shunt compensators: SVC: Static Var Compensator, and STATCOM: static synchronous compensator. operation and control of TSC:Thyristor Switched Capacitor, TSR: Thyristor Switched Reactor, TCR: Thyristor Controlled Reactor, and STATCOM, compensator control, comparisons between SVC and STATCOM.				
Module 3		Hours:9		
Static series compensation: TSSC: Thyristor Switched Series Capacitor, SSSC: static Synchronous Series Compensator, Static voltage and phase angle regulators TCBR: Thyristor Controlled Braking Resistor, TCPAR: Thyristor Controlled Phase Angle Regulator. Operation and control applications.				
Module 4		Hours:9		
principle of F	er Flow Controller: circuit arrangement, operation a and Q control, independent real and reactive powe o interline power flow controller.			
Module 5		Hours:8		
Introduction to APF technology, solutions for mitigation of harmonics, classification of power filters- passive filters, active filters, hybrid filters; active filters applications depending on power quality issues; selection of power filters; categorization of active power filter, converter based categorization, topology based categorization, supply system based categorization, selection considerations of APFS; technical and economic considerations.				
 (a) File File of the option of the option of the file of the option of the op				

Subject Co	de Soft Computing Tookyigur	Credits: 3 (3-0-0)
EE514	Soft Computing Technique	S Total hours: 45
Course Objective Module 1	This course presents the basics of neural network networks with single layer and multilayer feed fuzzy sets and fuzzy logic system component network system application to electrical engineer to biological and artificial neuron models, operations of	forward networks. Also deals with s. The neural network and fuzzy ing is also presented. Hours : 10
activation fu ANN archite learning rules	nction, history of artificial neural systems developme ctures, neural dynamics (activation and synaptic), neu	ent, Mcculloch-Pitts neuron model, ral processing,, learning strategies,
Module 2		Hours: 10
Neural Netw networks- in algorithms: d of the single	n model, features, and decision regions, discrimination orks: feed forward network, feedback network, single antroduction, perceptron models: discrete, continue iscrete and continuous perceptron networks, perceptron e layer perceptron model (XOR Problem), Application elta rule, Back Propagation Algorithm (BPA), learning	and multilayer feed forward neural ous and multi-category, training n convergence theorem, limitations tions; credit assignment problem,
Module 3		Hours: 8
association architecture Counter proj MADALINE	nemories: Hebbian learning, general concepts of assoc rules, hamming distance, Bidirectional Associativ of Hopfield network: discrete and continuous versio pagation networks, Full CPN, Forword only CPN, networks. Neural network applications: process iden casting. Applications of neural networks.	e Memory (BAM) architecture, ons, storage and recall algorithm. Training Phases, ADALINE and
Module 4		Hours: 12
uncertainty, o membership systems: Ma defuzzificatio Design of co	to classical sets - properties, operations and re- operations, properties, fuzzy relations, cardinalities, me value assignment, development of rule base and decisi mdani max-min and max-product composition sche onmethods:centroid of area, bisector of area, mean, s ontrol rules: trapezoidal MF, triangular MF and Gau fuzzy logic control and fuzzy classification. Applicatio	embership functions. Fuzzification, ion making system, fuzzy inference eme, defuzzification to crisp sets, smallest, and largest of maximum. ussian MF. Rule base fuzzy logic
Module 5		Hours: 5
	to Type-2 FLC: The structure of Type-2 FLC, Ty cy MFs (Trapezoidal membership function, Triangular I	· · ·
Reference books	 J. M. Zurada, "Introduction to artificial neural r Simon Haykin, "Neural Networks A Comprehe J. S. R. Jang, C. T. Sun , E. Mizutani, "Neu Computational Approach to Learning and Macl Timothy J Ross, "Fuzzy Logic with Engineerin 	ensive Foundation," PHI, 1999. no-Fuzzy and Soft Computing A hine Intelligence," PHI, 2002.

Subject Cod EE515	e Renewable Energy System	S Credits: 3 (3-0-0) Total hours:45			
Course Objectives	To explain concept of various forms of renewable energy and to outline the utilization of renewable energy sources for both domestic and industrial applications				
Module 1		Hours: 10			
energy system Solar Energy: concentrating cooking etc, I	o renewable energy, various aspects of energy co as, environment and social implications Solar radiation its measurements and prediction collectors, applications, heating, cooling, desaling principle of photovoltaic conversion of solar energy applications: battery charger, domestic lighting, st tion schemes.	, solar thermal flat plate collectors, nation, power generation, drying, gy, types of solar cells and fabrication.			
Module2		Hours: 9			
turbulence, w wind resource	Atmospheric circulations, classification, factors ind speed monitoring, Betz limit, aerodynamics of assessment, wind energy conversion devices: cl Hybrid systems, safety and environmental aspect	of wind turbine rotor, site selection, assification, characteristics, and			
Module 3		Hours: 9			
characteristic combustion, alcohol prod	Biomass resources and their classification, chen s of biomass, biomass conversion processes, gasification, pyrolysis and liquefaction. Biocher action from biomass.Chemical conversion pro- ation, types of Biogas Plants, applications	thermo chemical conversion: direct mical conversion: anaerobic digestion,			
Module 4		Hours:9			
applications, pathways, sto	d Fuel Cells: Thermodynamics and electrochemi production methods,Biophotolysis: Hydrogen gen rage gaseous, cryogenic and metal hydride and tr pus types, construction and applications.	neration from algae biological			
Module 5	Module 5 Hours: 8				
systems, ocea energy conve	Of Energy: ocean energy resources: principles of n thermal power plants, and principles of ocean w rsion, microhydelpower, site selection, construction of geothermal energy sites, site selection and geo	vave energy conversion and tidal ion, environmental issues.Geothermal			
Reference books	 G. D.Rai, "Non-conventional Energy Sources", Khanna Publishers, Delhi, 2007. S.P.Sukhatme, "Solar Energy", TMH, New Delhi, 2006. Godfrey Boyle, "Renewable Energy: Power for a sustainable future", Oxford University press, Second edition. 				

Subject Co EE 516	de Static Relays Credits: 3 (3-0-0) Total hours: 45				
Course Objec	swi and	To understand the causes of abnormal operating conditions (faults, lightning and switchingsurges) of the apparatus and system. To understand the characteristics and functions of static relays and protection schemes and to give an insight on Static Relay protection schemes.			
Module 1			Hours 09		
performance of	Power system protection and its requirements, conventional Vs static relays, steady state and transient performance of signal deriving elements signal mixing techniques and measuring techniques, construction and characteristics function of static relays, static relay components.				
Module 2			Hours 12		
relays, differen	Phase comparator directional units, amplitude comparator directional units, poly phase directional relays, differential relays: operating characteristics, restraining characteristics, types of differential relays, analysis of electromagnetic and static differential relays, static relay scheme.				
Module 3	Module 3Hours 12				
current relays.	Distance	relays: standard three zone protection	relays, time current relays, time over on, characteristics and types, switched e characteristics, static distance relay		
Module 4			Hours 12		
Pilot wire and carrier current schemes, pilot relaying scheme, selection of suitable static relaying scheme for transmission lines. Implementation of over current, directional, impedance and mho relays using Microprocessor/Microcontroller.					
Reference books	N 2. V II 3. R	New Delhi, 1991.2. Van.C.Warrington, "Protective Relays, Their Theory and Practice", Vols. I & II, Chapman & Hall Ltd. London, 1994.			

Subject Code EE517	Photovoltaic and its applications		Credits: 3 (3-0-0) Total hours: 45		
Course Objectives	1. Learn the fundamentals of solar energy conversion systems, available solar energy and the local and national needs, solar engineering applications, emerging technologies,				
	2. Understand the interdisciplinary approach for designing stand-alone PV systems, predicting performance with different systems, Implementing design with cost analysis.				
Module 1		Hour	s: 5		
sources, environm	Solar energy: solar insolation vs world energy demand, current energy consumption from different sources, environmental and health effects. Sustainable Energy: production and storage, resources and utilization.				
Module2		Hour	s: 10		
collectors; heat st applications of sto Thermoelectric sy Bismuth telluride	Solar thermal conversion: Low, medium and high temperature collectors, types of solar energy collectors; heat storage, storage media, steam accumulator, other storage systems, heat exchangers and applications of stored energy. Thermoelectric systems: Thermoelectricity, Peltier effect, Seebeck effect; Thermoelectric materials, Bismuth telluride, automotive thermoelectric generators, radioisotope thermoelectric generator; thermoelectric power generators, thermoelectric refrigerators and heat pumps.				
Module 3					
gap theory, absor- cell properties and depletion layer, el and other losses, metal-semiconduc solar cell applica circuits, load mat alone PV systems DC to AC conv	Photovoltaic (PV): Fundamentals of solar cells: types of solar cells, semiconducting materials, band gap theory, absorption of photons, excitation and photoemission of electrons, band engineering, Solar cell properties and design, p-n junction photodiodes, depletion region, electrostatic field across the depletion layer, electron and holes transports, device physics, charge carrier generation, recombination and other losses, I-V characteristics, output power, single junction and triple-junction solar panels, metal-semiconductor heterojunctions and semiconducting materials for solar cells. solar cell applications: pv cell interconnection, module structure and module fabrication, equivalent circuits, load matching, efficiency, fill factor and optimization for maximum power; design of standalone PV systems, system sizing, device structures, device construction, installation, measurements; DC to AC conversion, inverters, on-site storage and grid connections; Solar cell manufacturing processes: material resources, chemistry and environmental impacts; low cost manufacturing				
Module 4		Ho	ours: 10		
Optical engineering: Optical design, anti-reflection coatings, beam splitters, surface structures for maximum light absorption, operating temperature Vs. conversion efficiency, types of solar energy concentrators, fresnel lenses and fresnel reflectors, operating solar cells at high incident energy for maximum power output.Cost analysis and environmental issues: Cost analysis and pay back calculations for different types of solar panels and collectors, installation and operating costs;					

environmental and safety issues, protection systems, performance monitoring.			
Module 5	Iodule 5 Hours: 10		
Thin film solar cells: Single crystal, polycrystalline and amorphous silicon solar cells, cadmium telluride thin-film solar cells, conversion efficiency; current trends in photovoltaic research and applications; nanotechnology applications, quantum dots, solution based processes solar cell production.Photo electrochemical cells for hydrogen production: photo electrochemical electrolysis, photoelectron chemical cells for hydrogen production, solar hydrogen efficiency, hydrogen storage, hydrogen economy.			
Reference books	 (1) Jasprit Singh, "Semiconductor Devices, Basic Principles", Wiley, (2001) (2) Jenny Nelson "The Physics of Solar Cells", Imperial College Press (2003) (3) Stephen J. Fonash "Solar Cell Device Physics", 2nd edition , Academic Press (2010) 		

Subject Code EE 518	Power System Restructuring	Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	To provide in-depth understanding of operation of deregulated electricity market systems and examine topical issues in electricity markets and how these are handled world-wide in various markets. To analyse various types of electricity market operational and control issues using new mathematical models				
Module 1		Hours 08			
electricity mark	Introduction: Market models, entities, key issues in regulated and deregulated power markets, electricity markets, California market, New England ISO, Midwest ISO, Nordic pool, power market in China. components of restructured system				
Module 2		Hours 10			
based unit com	d planning activities of a generation company: e amitment design, security constrained unit commutomatic Generation Control.				
Module 3		Hours 10			
system operation	Transmission system: transmission pricing in o on, congestion management in open access trans pen access, coordination strategies, power wheel	mission systems, FACTS in congestion			
Module 4	Module 4 Hours 07				
	methods open access distribution, changes in d maintaining distribution planning	istribution operations, the development			
Module 5		Hours 10			
Power Market Development: Electricity Act, 2003, key issues and solution, developing power exchanges suited to the Indian market, challenges and synergies in the use of it in power, competition, Indian power market, Indian energy exchange, Indian power exchange, infrastructure model for power exchanges, congestion management, day ahead market, online power trading.					
Reference books	 Loi Lei Lai, "Power System Restructuring and Deregulation", John Wiley & son LTD, New York, 2001. Mohammad Shahidehpour, HatimYamin, "Market operations in Electric power systems", John Wiley & son LTD, Publication, 2002. LorrinPhilipson, H. Lee Willis, "Understanding Electric Utilities and Deregulation" Taylor & Francis, New York 2006. MohammadShahidehpour, MuwaffaqAlomoush, "Restructured Electrical Power Systems", Marcel Dekker, INC., New York, 2001. 				

Subject Coo	de	Distribution automation and		Credits: 3 (3-0-0)
EE 519		Smart Grid		Total hours: 45
Course Objectives	5	To understanding the distribution automation an	d sm	art grid architecture, working.
Module 1		4	hour	`S
	•	m Planning and forecasting techniques, load ch y, distribution transformers, types, distribution su		
Module2		12	2 hou	irs
U 1		power loss calculations, distribution feeder cost pacitors, distribution system automation, automa		• • •
Module 3		12	2 hou	ırs
		art grid, smart grid functions, advantages, Indian architecture, components, architecture of sm		
Module 4		1	2 ho	urs
renewable er hybrids, sync	nergy chrop	utational intelligence techniques, distribution ger technologies, Micro grids, storage technolog phasor measurement Units (PMUs), Wide Are ower grid system.	gies,	Electric vehicles and plug in
Module 5		5	hou	irs
Renewable In	ntegra	ation, Electric Vehicles and plug - in hybrids, ind	ian s	mart grid. Case studies
Reference books	1. 2. 3. 4. 5.	 Pabla, A. S, "Electric Power Distribution Education, 2011. M. V. Deshpande, "Electrical Power Sy Education, 2001. Gil Masters, "Renewable and Efficient Ele Press, 2004. 	", 6 ¹ stem	th Edition, Tata McGraw-Hill Design", Tata McGraw-Hill Power System", Wiley-IEEE

Subject Code		Credits: 3 (3-0-0)			
5 EE520	Power Quality	Total hours: 45			
Course	To study the various issues affecting power quality, their production, monitoring and				
Objectives	suppression. To understand about the concepts				
	mitigation techniques. To be familiarise with vario	-			
Module 1		Hours : 12			
transients: shor interruption. Ve voltages, power locating harmo	Introduction to power quality: terms and definitions: overloading, under voltage, over voltage. Concepts of transients: short duration variations such as interruption, long duration variation such as sustained interruption. Voltage sag, voltage swell, voltage imbalance, voltage fluctuation, over voltages, under voltages, power frequency variations. Harmonics: harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics: harmonics Vs transients. Effect of harmonics, harmonic distortion, voltage and current distortion, harmonic indices, inter harmonics,				
	nonic distortion evaluation, devices for controlling har				
filters. IEEE and	IEC standards of power quality,	_			
Module 2		Hours: 10			
Introduction	to APF technology, solutions for mitigation of ha	armonics, classification of power			
filters- passive	filters, active filters, hybrid filters; active filters	applications depending on power			
quality issues;	selection of power filters; categorization of acti	ve power filter: converter based			
categorization,	topology based categorization, supply system	based categorization, selection			
considerations	of APFS; technical and economic considerations.				
Module 3		Hours: 10			
Introduction t	o active power filter control strategies. shunt a	active filter basic compensation			
principle, Clar	k's transformations, parks transformations, active	e power filter control strategies,			
signal condition	oning, current control techniques for derivation	of gating signals, generation of			
gating signals	to the devices of the APF, hysteresis current control	ol scheme and adaptive hysteresis			
current contro	scheme, derivation of compensating signals, cor	npensation in frequency domain,			
compensation	n time domain.				
Module 4		Hours: 13			
Control strategies Instantaneous active and reactive power (p-q) control strategy, Instantaneous active and reactive current (I _d -I _q) control strategy, and perfect harmonic cancellator. Introduction to Dc link voltage regulation: Dc link voltage regulation with PI Controller, Type-1 fuzzy logic controller, Type-2 fuzzy logic controller, and neural networks.					
	1) H. Akagi, "Instantaneous Power Theory and A	pplications to Power Conditioning,"			
	IEEE Press, 2007.	0,			
Def	2) G.T. Heydt, "Electric Power Quality," 2nd Edition, West Lafayette, IN, Stars in a				
Reference books	 3) M.H.J Bollen, "Understanding Power Quali Interruptions," NewYork: IEEE Press, 1999. 	ity Problems: Voltage Sags and			

Subject Code EE521	Real Time Control of System	f Power Credits: 3 (3-0-0) Total hours: 45		
Course Objectives		To learn basics of SCADA and to develop skills to work on SCADA features. Aims to build good understanding about the basics of industrial automation using SCADA, PLC and HMI.		
Module 1		Hours: 8		
Industrial Automa	ion, field bus and Ethernet. HMI Sys	working standards. Vertical Integration of stems: Necessity and Role in Industrial el PCs, Integrated displayers (PLC & HMI).		
Module 2		Hours : 14		
Supervisory Control and Data Acquisition (SCADA), introduction to SCADA: grid operation and Control. remote terminal unit (RTU) and communication practices: Major Components. Sub- load dispatch center (SUB-LDC): Work Stations, FEPS: Function of FEPS (Front End Processors), Routers. Real time software: classification of programs. computer control of electrical power systems. southern regional load dispatch center (SRLDC): functions and responsibilities of SRLDC. Developer and runtime packages, architecture, tools, tag, internal & external graphics, alarm logging, tag logging, structured tags, trends, history, report generation, VB & C Scripts for SCADA application.				
Module 3	Hours : 11			
	it, Programming language, commun	SCADA system and DCS, architecture, nication facilities, operator interface,		
Module 4		Hours: 12		
Applications of SCADA & DCS, Case studies of process plants using SCADA & DCS, advanced features / options in SCADA & DCS, role of PLC in DCS and SCADA, comparison, field devices (Transducers, drives etc.) in DCS/SCADA.				
Reference books	 John W. Webb, Ronald A. Reis, "Programmable Logic Controllers," Prentice Hall of India, New Delhi, 1995. Michael P. Lukas, "Distributed Control Systems," Van NostrandReinfold Company, 1995. Hassan Bevrani, "Robust Power System Frequency Control Power Electronics and Power Systems," Springer, 2009. T. Cegrell, "Power System Control - Technology," Prentice Hall International Ltd., 1986. 			

Subject Code EE 522	Optimization Techniques	Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	Students will be able to state the different types of optimization problems, their formulation and solution techniques. Students will be able to understand the mechanisms of various traditional and modern optimization techniques. Students will be able to apply the optimization techniques for practical applications				
Module 1 Lines	ar models	Hours 12			
formulation, may	Introduction to optimisation ,classification of optimisation problems, linear programming, problem formulation, maximization and minimization problems, graphical method, simplex method, Big M, two phase method, duality in linear programming, dual simplex method, sensitivity analysis				
Module 2 Netw	ork models and Dynamic programming	Hours 09			
decision processo	naximum flow and minimum cost problems es, linear programming as a case of dynamic resource allocation, production scheduling.				
Module 3 Nonl	odule 3 Nonlinear programming-UnconstrainedHours 12				
U U	optimization, region elimination methods, poin riable optimization, direct search methods and				
Module 4 Nonli	Module 4 Nonlinear programming-Constrained Hours 12				
Constrained optimization, Kuhn Tucker conditions, transformation methods, Lagrangian multiplier methods, penalty function methods, gradient projection method, Applications of non-linear programming in Engineering design					
Reference books	 S.S.Rao , "Engineering Optimization", New Age International Publishers,Third edition,2013 Fletcher, "Optimization techniques", John Wiley and Sons. K.V.Mittal, "Optimization Methods", Wiley Eastern, 2003. H.A.Taha, "Operations Research", Pearson, 2007. Kalyanmoy Deb, "Optimization for Engineering Design",PHI 				

Subject Code EE 523	Simulation and Modelling of Po Converters	OWER Credits: 3 (3-0-0) Total hours:45		
Course Objectives	To study the basics of static and dynamic models of power electronic switches. And learn usage of the software tools like MATLAB, PSPICE & PSIM for various power electronic devices. Understand the different types of power electronic converters using the simulation tools.			
Module 1		Hours 12		
—	ation of continuous time dynamic systems , hydraulic and pneumatic systems. Introduction to	-		
Module 2		Hours 12		
	near equations, methods to the solution of electric uction to machine modelling : induction, DC, a			
Module 3	Module 3 Hours 12			
	odelling of single phase and three-phase converter electronic converters in power distribution system	-		
Module 4		Hours 9		
Interaction between	en power electronic converters and rotating mach	ines		
Reference books	 N. Mohan, T.M. UdelandandP. Robbins, "Power Electronics: Converters, Applications, and Design," J. Wiley, New York, 1994. P.C. Krause, "Analysis of electric machinery", McGraw Hill, New York, 1986. Louis G Birta and GilberArbez, "Modelling and Simulation(Exploring Dynamic System behavior)" Springer Verlag, 2007 M. B. Patil, V. Ramanarayanan, V. T. Ranganathan "Simulation of Power Electronic Circuits", Narosa publications <u>Muhammad H. Rashid, Hasan M. Rashid "Spice for Power Electronics and Electric Power", 2nd Edition, Taylor & Francis</u> 			

Subject Code EE 524	Poly-phase Systems and component Transformatio	Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	An overview of poly-phase circuits combined fault analysis and system working in unbalanced load conditions.				
Module 1		Hours 10			
and 4 wire system	Balanced poly phase circuits: generation of poly phase voltages, phase sequence, three phase 3 wire and 4 wire systems, wye and delta connections, the n-phase star and mesh, power calculations in balanced systems, general n-wire balanced systems, harmonics in wye and delta systems.				
Module 2		Hours 10			
phase sequence, the (n,1) watt meters	connections, neutral shift, the wye-delta system, phase sequence effects, methods of checking voltage phase sequence, three wattmeter/two wattmeter methods of measuring three phase power, the use of $(n,1)$ watt meters for measuring n-wire power, power factor in unbalanced three phase systems, extensions to non-sinusoidal behaviour.				
Module 3		Hours 08			
symmetrical com	symmetrical components: A brief histor aponent systems, resolution of three ve equences in symmetrical systems, sequence	ctors into symmetrical components,			
Module 4	Module 4 Hours 10				
outline of short c	balanced faults: sequence networks, conne ircuit calculations, analysis of transformer of ents, measurement of sequence power quantit	connections, measurement of sequence			
Module 5		Hours 07			
Multiphase systems: resolution of multiphase systems into symmetrical components, 2-phase and 4- phase systems, Irregular systems, analysis of poly phase circuits, Impedances of symmetrical poly phase systems, Harmonics.					
Reference books					

Subject Code EE 525	Power system Dynamics	Credits: 3 (3-0-0) Total hours: 45			
Course Objectives	To investigate and understand the stability of power system, with the main focus on stability theories and power system modelling. To study the steady and transient stability problems. To examine the power system modelling using simulation tools.				
Module 1	dule 1 Hours 10				
Modelling: Dynamic modelling requirements, angle stability, equal area criterion, critical fault clearing time and angle, numerical integration techniques.					
Module 2		Hours 10			
Synchronous machines: Park's transformation, flux linkage equations, formulation of normalized equations, state space current model, simplified models of the synchronous machine ,turbine, generator, steady state equations and phasor diagrams.					
Module 3		Hours 10			
-	Dynamics of Synchronous machines: Mechanical relationships and electrical transient relationships, adjustment of machine models, Park's equation in the operational form.				
Module 4		Hours 08			
Dynamics of Induction machines: Induction motor equivalent circuits and parameters, free acceleration characteristics, dynamic performance, effect of three phase short circuit and unbalanced faults.					
Module 5		Hours 07			
Stability: Transient and dynamic stability, linear model of unregulated synchronous machine and its oscillation modes, distribution of power impacts, effects of excitation on stability, supplementary stabilization signals.					
Reference books	 Elgerd, O.I., "Electric Energy Systems Theory", TMH, New Delhi, 2nd edition ,1991. Anderson, P.M. and Fouad, A.A., "Power System Control and Stability", Galgotia Publ., New Delhi, 2003. Krause, P.C, "Analysis of Electric Machinery" McGraw,Hill International Editions, 2000. K.R. Padiyar, "Power System Stability and Control", Interline, 1996. PrabhaKundur, "Power System Stability and Control", TMH, 1994. 				

Subject Code EE 526	Advanced Power Electronics	S Credits: 3 (3-0-0) Total hours: 45		
Course Objectives	Understand the concept of resonant switch converters, multilevel inverters, pulse width modulation techniques and inductor design.			
Module 1		Hours 15		
DC-DC converters: Basic topologies of buck, boost, buck-boost converters, Cuk, flyback, forward, push- pull, half bridge, full bridge & isolated Cuk converters, input & output filter design, zero voltage and zero current switching, classification of resonant converters, basic resonant circuit concepts, types of resonant converters, converter transfer functions, applications.				
Module 2		Hours 10		
Design concepts : Design of inductors, transformers, selection of core, core loss, copper loss, and skin effect proximity effect, design of capacitors, selection of capacitors for different applications, power semiconductor selection and its drive circuit design, controller design, stability considerations.				
Module 3		Hours 12		
Inverters: Single phase half and full bridge inverters, voltage control of single phase inverters using various PWM techniques, three phase voltage source inverters, 180 ^o and 120 ^o mode of operation, selective harmonic elimination, sinusoidal and space vector modulation PWM techniques, .				
Module 4		Hours 08		
Multilevel Inverters: Introduction, multilevel concept, diode clamped, flying capacitor, H-bridge, cascaded multilevel inverters, applications.				
Reference books	 Ned Mohan, et.al, "Power Electronics converters, Applications and Design", Wiley India, New Delhi, 3rd, Edition 2003 M.H. Rashid, Power Electronics - Circuits, Devices and Applications, PHI, 2002. 			

Subject Code	High Voltage Engineering	Credits: 3 (3-0-0)			
EE 527	Ingh voltage Engineering	Total hours: 45			
Course		Introducing the dynamics of HV generation, transmission and working, HV testing,			
Objectives	Objectives measurement.				
Module 1		6 hours			
Electro static fields: Electric field intensity, electric strength. generation of high dc and ac voltages, cockcroftwalton voltage multiplier circuit, insulation protection, impulse and switching voltages, generation of high impulse currents, applications.					
Module2		10 hours			
High voltage transmission, ratings, protection mechanism, cost advantage, measurement of high ac, dc, impulse voltages, definitions, measurement accuracy, sphere gap method, peak voltmeters method, potential divider method, rod gap method, high speed CRO, digital techniques measurement techniques					
Module 3		10 hours			
Measurement of high currents, impulse currents, dielectric breakdown in gases, liquids, solids, dielectric strength, dielectric partial discharges, corona discharges.					
Module 4		10 hours			
high voltage testing of circuit breakers, insulators, bushings and surge diverters, standards and specifications, high voltage testing of electrical equipment, non-destructive test techniques, high voltage Schering bridge, breakdown mechanism of gaseous liquid and solid insulating materials, introduction, Townsend's first ionization coefficient.					
Module 5		09 hours			
Causes of over voltage, types, over voltages effects on power system components, surge diverters, EMI and EMC protection against over voltages, insulation coordination.					
Reference books	Publishing Company, New Delhi, 2nd Edition, 1994.				

Subject Code:	Professional Communication-II and	Credits: 4 (2-0-3) Total hours: 56	
HU 501&			
HU 502	Language Lab		
Course	Knowledge of English		
Prerequisite			
Course	This course aims at Personality Development		
Objectives	This course and a reisonancy Development		
Course	At the end, the students should possess a Saleable Image with employability skills		
Outcome	, , , , , , , , , , , , , , , , , , ,	I	
Module 1	Principles of Soft Skills and Practice	12 hours	
Definition of	Soft Skills and Personality, Attitude, Dress Code, Body Lang	uage, Individual and	
Group Behav	viour, Personality Test, C.V Writing and the difference between	CV & Resume	
Module 2	Group Discussion, Extempore, JAM and Survey	16 hours	
Topics: Is C	loning Ethical, Shopping Mall vs Retailer, Should Animals be	used for Drug-Test,	
Effects of Ad	lvertisement on Youth, Google vs Social Networking Sites, Ne	ewspaper is the thing	
of Past, Dive	ersity in Indian Culture, Gender Discrimination, Who is Smarte	er: Human Beings or	
Computer an	d so on		
Module 3	Interview	14 hours	
Types of Inte	erview, Interview Ethics, Questions and Mock-Interview Sessio	ns	
Module 4	Business Presentation and Seminars	14 hours	
Business Pre	sentation and Students' Seminar		
Texts:	1.W.B. Martin, Ethics in Engineering Tata McGraw Hill, Indi	a	
	2. Patnaik, Priyadarshi, Group Discussion and Interview Skills, New Delhi: CUP,		
	(Video CD)		
	3Downes, Colm, Cambridge English for Job Hunting, 2009, New Delhi, CUP (2		
	Audio CDs)		
	TV News (Headlines Today, ND TV and BBC), Chat-Show		
Reference	like India Today, Outlook, The Week and English Dailies. Reader's Digest for		
	Expressive Skill, English Films & English Comics		