Academic Handbook

M.Tech. Programme

Academic Affairs

(2013-2014)

NATIONAL INSTITUTE OF TECHNOLOGY GOA

Course Curriculum

for

Master of Technology Programme

in

Computer Science and Engineering

Department of Computer Science and Engineering National Institute of Technology Goa Farmagudi, Ponda, Goa - 403 401

Semester-wise Credit Distribution

Semester	Total Credits
I	18
II	18
III	14
IV	14
Total Credits	64

Summary of Course Contents (First year)

First Semester				
Sl. No	Sub. Code	<u>Subjects</u>	<u>L-T- P</u>	Credits
1	CS600	Advanced Algorithms & Analysis (AAA)	3-0-0	3
2	CS601	Advanced Computer Networks (ACN)	3-0-0	3
3	CS602	Mathematical Foundations of Computer Science (MFCS)	3-0-0	3
4	CS8**	Elective-I	3-0-0	3
5	CS603	Advanced Algorithms & Analysis Laboratory	0-0-3	2
6	CS604	Advanced Computer Networks Laboratory	0-0-3	2
7	CS605	Seminar	0-0-3	2
		Total Credits		18

Second Semester				
Sl. No	Sub. Code	<u>Subjects</u>	<u>L-T- P</u>	Credits
1	CS650	Advanced Database Systems (ADBS)	3-0-0	3
2	CS651	Advanced Computer Architecture (ACA)	3-0-0	3
3	CS652	Object Oriented Software Engineering (OOSE)	3-0-0	3
4	CS8**	Elective-II	3-0-0	3
5	CS653	Advanced Database Systems Laboratory	0-0-3	2
6	CS654	Object Oriented Software Engineering Laboratory	0-0-3	2
7	CS655	VIVA	-	2
8	HU650	Communication Skills and Technical Writing (Audit	1-0-2	-
		Course)		
		Total Credits		18

Summary of Course Contents (Second year)

	Third Semester				
Sl. No	Sub. Code	<u>Subjects</u>	<u>L-T- P</u>	Credits	
1	CS700	Major Project-I	0-0-12	8	
2	CS8**	Elective-III	3-0-0	3	
3	CS8**	Elective-IV	3-0-0	3	
		Total Credits		14	

	Fourth Semester				
Sl. No	Sub. Code	<u>Subjects</u>	<u>L-T- P</u>	Credits	
1	CS750	Major Project-II	0-0-21	14	
		Total Credits		14	

NOTE: The applicant must have a sufficient background in computer science and engineering to complete the degree requirements with reasonable performance. As the students with background other than computer science and engineering have been allowed to apply for M. Tech programme in computer science and engineering, they may not be allowed to get the admission into the programme, if they are not exposed to the prerequisites such as below.

	Prerequisites for the Admission into the Programme
1	Data Structures
2	Design and Analysis of Algorithms
3	Computer Organization and Architecture
4	Discrete Mathematics
5	Computer Networks
6	Database Management Systems

List of Electives

	Program Specific Electives				
SI.	Course		Total Credits		
No.	Code	Course Name	(L-T-P)	Credits	
1	CS800	Foundations of Cryptography	(3-0-0)	3	
2	CS801	Wireless Sensor Networks	(3-0-0)	3	
3	CS802	Advanced Compiler Design	(3-0-0)	3	
4	CS803	Distributed Computing Systems	(3-0-0)	3	
5	CS804	Design of Secure Protocols	(3-0-0)	3	
6	CS805	Mobile Computing	(3-0-0)	3	
7	CS806	Machine Learning	(3-0-0)	3	
8	CS807	Health Informatics	(3-0-0)	3	
9	CS808	Soft Computing	(3-0-0)	3	
10	CS809	Service Oriented Architecture & Cloud Computing	(3-0-0)	3	
11	CS810	Big Data Analytics	(3-0-0)	3	
12	CS811	Pattern Recognition	(3-0-0)	3	
13	CS812	Artificial Neural Networks	(3-0-0)	3	
14	CS813	Computer Vision	(3-0-0)	3	
15	CS814	Game Theory	(3-0-0)	3	
16	CS815	Data Warehousing & Data Mining	(3-0-0)	3	
17	CS816	E-Commerce	(3-0-0)	3	
18	CS817	Advanced Operating Systems	(3-0-0)	3	
19	CS818	Security and Privacy	(3-0-0)	3	
20	CS819	Bioinformatics Algorithms	(3-0-0)	3	
21	CS820	Graph Theory	(3-0-0)	3	
22	CS821	Probability and Statistics	(3-0-0)	3	
23	CS822	Program Analysis and Verification	(3-0-0)	3	
24	CS823	Linear Algebra	(3-0-0)	3	
25	CS824	Number Theory	(3-0-0)	3	
26	CS825	Complexity Theory	(3-0-0)	3	
27	CS826	Human Computer Interface	(3-0-0)	3	

1-Credit Module Courses

	Course		Total Credits	
SI. No.	Code	Course Name	(L-T-P)	Credits
1	CS827	Special Module in Computational Geometry	(3-0-0)	1
2	CS828	Special Module in Parallel Computation	(3-0-0)	1
3	CS829	Special Module in Hardware Systems	(3-0-0)	1
4	CS830	Special Module in Theoretical Computer Science	(3-0-0)	1
5	CS831	Special Module in Artificial Intelligence	(3-0-0)	1
6	CS832	Special Module in High Speed Networks	(3-0-0)	1
7	CS833	Special Module in Concurrency	(3-0-0)	1
8	CS834	Special Module in NLP	(3-0-0)	1
9	CS835	Special Module in Numerical Methods	(3-0-0)	1
10	CS836	Special Module in CSE*	(3-0-0)	1

These courses will usually cover topics that are not generally covered in the regular courses. Interested students can register for these courses for credits, provided, the above semester-wise credit structure is followed. They are evaluated like any other courses and credits earned count towards degree requirements. The syllabi of these courses are not specified. It will be decided by the courses instructor from time to time. These courses can be given anytime in the semester. They are specially designed to take advantage of short time eminent visitors from Industry/Academics.

Audit Course*

Sl. No	Sub. Code	<u>Subjects</u>	<u>L-T- P</u>	Credits
1	HU650	Communication Skills and Technical Writing	1-0-2	1

^{(*} No credits)

^{*} The 1-credit module course CS836 will cover topics of current interest in computer science and engineering.

Proposed Course Contents

Subject Code CS600	Advanced Algorithms & Analysis (AAA)	Credits: 3 (3-0-0) Total hours: 45	
Course Objectives	To study paradigms and approaches used to analyze and design to appreciate the impact of algorithm design in practice.		
Module 1	to appreciate the impact of argorithm design in practice.	5 Hours	
Formal mode	ls of computation, time and space complexity, F	Proof of lower.	
Algorithm desi	gn techniques: Greedy algorithms, divide-and-conquer alg Branch-and-bound, amortization, optimal algorithms.		
Module 2	brunen und bound, unfortizution, optimul urgoriumis.	15 Hours	
	arrays: Selection and median-finding, counting, radix and b		
_	n-Karp and Knuth-Morris-Pratt algorithms) etc.,	dence sorts, string	
•	prithms: Convex hulls, sweep paradigm, Voronoi diagrams. etc.)	
_	graphs : Traversal, topological sort, minimum spanning tro		
	preflow-push algorithms, max flow algorithm etc.,	, ,	
Arithmetic algo	orithms: GCD, modular arithmetic, primality testing e	etc., Numerical	
algorithms, Int	ernet algorithms.		
Module 3		10 Hours	
-	ess: Polynomial time, Verification, NP-Completeness and roofs, NP-Complete problems.	reducibility, NP-	
Module 4	10013, 141 Complete problems.	10 Hours	
	Igorithms: Monte Carlo and Las Vegas algorithm. Randomi		
	n various domains viz., Graph algorithms, Geometric algorithms	<u> </u>	
-	orithms, online algorithms, Number theory and algebra., etc.,	P	
Module 5		5 Hours	
Approximation	Algorithms: PTAS and FPTAS algorithms, Combinatorial alg	orithms- Setcover,	
	Exact exponential algorithms:	,	
,	1. T. Cormen, Charles E. Leiserson and Ronald D Rive	er, Introduction to	
	Algorithms, PHI, 3 rd edition, 2009.		
Reference	2. Aho, Hopcroft and Ullman The design and analy	sis of Computer	
Books	Algorithms, Addison Weseley, 1st edition, 1974.		
	3. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to		
	the Theory of NP-Completeness, Freeman, 1 st edition, 19		
	4. Rajeev Motwani and Prabhakar Raghavan, Randomized Alg	gorithms, Cambridge	
	University, 1 st edition, 1995.		
	5. Vijay V Vazirani, Approximation Algorithms, Springer, 2002.		

Subject Code	Advanced Computer Networks	Credits: 3 (3-0-0)	
CS601	(ACN)	Total hours: 45	
Course Objectives	To understand the theoretical and the practical aspects of the advanced networking principles including the distributed computing. The course involves the future networking principles also.		
Module 1		10 Hours	
reference model; Games, Client/S	Network Architectures: OSI reference model, TCP/IP Applications(WWW, Audio/Video Streaming, Video Server); Traffic Characterization (CBR, VBR); or Control; Flow Control, FTH, DTH, PON, ISDN, Islands.	conference, Networked Switching Paradigms;	
Module 2		8 Hours	
Local Area Netwo	ork Technologies: Fast Ethernet, Gigabit Ethernet, IEEE 80 VLANS.	2.11 WLAN, Bluetooth,	
Module 3		10 Hours	
Internetworking:	Interdomain Routing, BGP, IPv6, Multicast Routing Pr	otocols, Multi Protocol	
	Virtual Private Networks, High speed transport protocoroving QoS in Internet, DiffServ and IntServ Architectu	- · · · · ·	
Module 4		12 Hours	
Caching, Issues of Protocols to Sup	ems: Naming, DNS, DDNS, Paradigms for Common Scaling in Internet and Distributed Systems, Cachin poort Streaming Media, Multimedia Transport Protocolay and P2P Networks.	g Techniques forWeb,	
Module 5	-	5 Hours	
SSH, PGP, TLS,	Applications and Other Networking Technologies: RTP, RTSP, SIP, VoIP, Security Systems, SSH, PGP, TLS, IPSEC, DDoS Attack, Mitigation in Internet, Security in MPLS; Introduction to Cellular, Satellite and Ad hoc Networks.		
Reference	1. Behrouz A. Forouzan, Data Communications and I	<i>Networking</i> , 5 th edition,	
Books	 Tata McGraw Hill, 2013. Larry L. Peterson and Bruce S. Davie, Computer Approach, 4th edition, Morgan Kaufmann, 2007. J. Walrand and P. Varaiya, High Performance Con 2nd edition, Morgan Kauffman, 2000 Markus Hoffmann and Leland R. Beaumont, Architecture, Protocols, and Practice, Morgan Kau 	nmunication Networks, Content Networking:	

Subject Code	Mathematical Foundations of	Credits: 3 (3-0-0)	
CS602	Computer Science (MFCS)	Total hours: 45	
Course	This course introduces the mathematical foundations for	computer science,	
Objectives	viz., Mathematical logic, Combinatorics, Boolean and Automata theory.	linear algebra and	
Module 1		10 Hours	
Functions, Re Basic number	Math– Logic, Proof techniques, (infinite) sets, countable and elations, Cantor's diagonalization, Applications to undecidability, Ir theory: Divisibility, congruences, quadratic residues.		
Module2		6 Hours	
	s— General Counting methods, Recurrence relations, Generating l Exclusion, Posets and Lattices - Permutations, Groups and algebraic		
Module 3		09 Hours	
languages ar	rammars and Languages: Regular languages and finite autonal pushdown automata, Turing machines, Some other compheir equivalence with Turing machines, Undecidability.		
Module 4		10 Hours	
	Sample space, Distributions, Random Variables, Expectation, nd, Chebyshev inequality, Functions of random variables, Applicat	-	
Module 5	· · · · · · · · · · · · · · · · · · ·	10 Hours	
_	ra— Fields, Vector Spaces, Basis, Matrices and Linear Transforma v, Vector and Matrix Norms - Applications to optimization problem		
Reference Books	1. W. Feller, An Introduction to Probability Theory and Its Applications, Wiley; vol. 1 & 2, 1971.		
	2. Jean Gallier, <i>Discrete mathematics</i> , Springer, 2011.		
	3. John Hopcroft, Rajeev Motowani and Jeffrey Ullman, <i>Automata Theory</i> , <i>Languages</i> , <i>and Computation</i> , 3 rd edition, 1974.		
	4. Gilbert Strang, <i>Introduction to Linear Algebra</i> , 4 th Edition, W Press, Wellesley, MA, 2009.	Vellesley-Cambridge	

Subject Code CS603	Advanced Algorithms & Analysis Laboratory	Credits: 2 (0-0-3) Total hours: 42
Course Objectives	To have hands on session with the algorithms.	

Experiments

Experiments include the implementations of the algorithms related to various computational problems in various domains viz., Graph algorithms, Geometric algorithms, cryptographic algorithms, and numerical algorithms etc., using different design paradigms.

- Divide and conquer algorithms.
- Greedy algorithms
- Dynamic programming algorithms
- Branch and bound algorithms

Implementation of the randomized algorithms for various computational problems and comparison with their best deterministic counterparts.

	1. T. H. Cormen, C. L. Leiserson, R. L. Rivest, and C. Stein,	
	<i>Introduction to Algorithms</i> , 3 rd edition, MIT Press, 2009.	
Reference Books	2. Harry R. Lewis and Larry Denenberg, Data Structures and Their	
	Algorithms, Harper Collins, 1 st edition, 1991.	
	3. Michael T. Goodrich and Roberto Tamassia, <i>Algorithm Design</i> :	
	Foundations, Analysis, and Internet Examples, 2 nd edition, John	
	Wiley, 2008.	
	4. M. H. Alsuwaiyel, Algorithm Design Techniques and Analysis,	
	vol. 7, World Scientific, 1999.	
	5. Sara Baase and Allen Van Gelder, Computer Algorithms:	
	Introduction to Design and Analysis, Addison-Wesley, 2000.	

Subject Code	Advanced Computer Networks	Credits: 2 (0-0-3)	
CS604		Total hours: 42	
	Laboratory		
Course	To provide hands on in the topics studied in advanced c	omputer networks	
Objectives	course		
This laboratory	focuses on developing applications inter process communication	ation tools such as	
pipes, FIFOs, m	nessage queues and sockets. Broadly applications will be of the	e following nature:	
1. Develop video	 Developing basic network client server programs to exchange data, stream audio and video 		
2. To deve	lop a chat application		
3. To deve	3. To develop a networked multi-party game		
4. Simulati	imulation of the routing algorithms		
5. Exercise	5. Exercises to explore transport protocols		
6. Simulati	6. Simulation of the distributed systems		
7. Running clock synchronization algorithms			
Reference Books	 Larry L. Peterson and Bruce S. Davie, <i>Computer Ne Approach</i>, 4th edition, Morgan Kaufmann, 2007. W. Richard Stevens, Bill Fenner and Andrew M. Rudo <i>Programming</i>, 3rd edition, Addison Wesley, 2003. Elliotte Rusty Harold, <i>Java Network Programming</i>, 3rd 2004. 	off, UNIX Network	

Subject Code	Seminar	Credits: 2 (0-0-3)
CS605		
Course Objectives	Students will have to choose a topic in CSE's current trends or industry practices, prepare a write up, and present it along with a suitable demonstration.	

Subject Code CS650	Advanced Database Systems (ADBS)	Credits: 3 (3-0-0) Total hours: 45	
Course Objectives	Course To develop an appreciation of emerging database trends as they apply to semi-		
Module 1	·	8 Hours	
distributed da languages, ob bases, cache co	ntabase concepts, overview of client-server architecture and atabases, concurrency control heterogeneity issues, persist ject identity and its implementation, clustering, indexing, coherence.	stent programming client server object	
Module 2		10 Hours	
disk/shared r pipelining, sch estimation, qu	bases: Parallel architectures, performance measures, share memory based architectures, data partitioning, intra-op- neduling, load balancing, query processing- index based, query pery optimization: algorithms, online query processing and of XML indexing, adaptive query processing.	erator parallelism, y optimization: cost	
Module 3		10 Hours	
Advanced transaction models: Save points, sagas, nested transactions, multi-level transactions, Recovery, multilevel recovery, shared disk systems, distributed systems 2PC, 3PC, replication and hot spares, data storage, security and privacy- multidimensional k- anonymity, data stream management.			
Module 4		8 Hours	
ERDs), logica spatial query	Models of spatial data: Conceptual data models for spatial databases (e.g. pictogram enhanced ERDs), logical data models for spatial databases: raster model (map algebra), vector model, spatial query languages, need for spatial operators and relations, SQL3 and ADT. spatial operators, OGIS queries.		
Module 5		9 Hours	
Access Control-Models, Policy. Trust management and Negotiations, Secure data outsourcing, Security in Advanced Database systems, Security in Data Warehouses and OLAP systems, Spatial database security, Security for workflow systems, Database watermarking. 1. AviSilberschatz, Henry Korth, and S. Sudarshan, Database system concepts, 5 th edition, McGraw Hill, 2005. Reference 2. R. Elmasri and S. Navathe, Fundamentals of database systems,			
Books	 Benjamin - Cummings,5th edition, 2007. Ceri S and Pelagatti G, <i>Distributed databases principles and systems</i>, 2nd edition, Mc-Graw Hill, 1999. S. Castino, M. Fugini, G. Martella and P. Samarati (eds), <i>Database Security</i>, Addison Wesley, 1994. Michael Gertz, Sushil Jajodia, <i>Handbook of Database Security: Applications and Trends</i>, Springer, 2008. 		

Subject Code CS651	Advanced Computer Architecture (ACA)	Credits: 3 (3-0-0) Total hours: 45
Course Objectives	To understand the design principles of the modern com	nputing systems
Modulo 1		10 Цония

Module 1 10 Hours

Principles of computer organization: Data representation, data path design- pipelined arithmetic unit design, representation of instructions- instruction set architectures (RISC and CISC), instruction format, design of the control unit; memory hierarchy design-basic memory cell, memory chip, memory unit, cache memory unit design with mapping methods and multi-level cache design, design of memory management unit; I/O methods

Pipelined processor design: overlapped execution of instructions, pipeline hazards, pipeline idealism,

Module 2 13 Hours

Superscalar processor: Parallel pipelines, instruction level parallelism, out of order execution of instructions, semantic constraints: register data flow techniques, memory data flow techniques, control flow techniques, dynamic techniques.

Module 3 11 Hours

High performance computing architectures: Parallel computer models and program parallelism, Classification of machines, SISD, SIMD and MIMD, Conditions of parallelism, data and resource dependencies, hardware and software parallelism, program partitioning and scheduling, grain size latency, program flow mechanism, control flow versus data flow, data flow architecture, demand driven mechanisms, comparison of flow mechanisms.

Module 4 11 Hours

Advanced processor architectures: Multithreaded processors, multi-core processors, multi-processor systems, cache-coherence protocols, directory based protocols. Storage systems: strage area networks, RAID architecture, Graphics processing units.

Reference Books

- 1. John Paul Shen and Mikko H. Lipasti, *Modern processor design Fundamentals of superscalar processors*, Tata McGraw Hill, 2005.
- 2. V. Rajaraman and C. Sivarama murthy, *Parallel Computer: Architecture and Programming*, PHI, 2000.
- 3. K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, McGraw Hill, 1984.
- 4. John L. Hennesy and David A. Patterson, *Computer Architecture- A quantitative approach*, 4th edition, Elsevier, 2007
- 5. Dezso Sima, Terence Fountain and Peter Kacsuk, *Advanced Computer Architectures: A design space approach*, Addison Wesley, 1997.
- 6. John P. Hayes, *Computer Architecture and Organization*, 3rd edition, McGraw Hill, 1998.

Subject Code	Object Oriented Software	Credits: 3 (3-0-0)
CS652	Engineering (OOSE)	Total hours: 45
Course	This course introduces Object-oriented software engineering (OOSE) - which is a	
Objectives:	popular technical approach to analyzing, designing business by applying the object-oriented paradigm and	
Module 1		11 Hours

Introduction to software engineering - software engineering concepts, software engineering development activities, managing software development, project organization and communication; Introduction to UML - UML notations - package diagrams, component diagrams, deployment diagrams, use-case diagrams, activity diagrams, class diagrams, sequence

diagrams, interaction overview diagrams, composite structure diagrams, state machine diagrams, timing diagrams, object diagrams, communication diagrams.

Module 2 12 Hours

Requirements elicitation - functional and nonfunctional requirements, completeness, consistency, clarity and correctness, realism, verifiability and traceability; requirements elicitation activities – identifying actors, scenarios, use-cases; maintaining traceability and documentation. Analysis modeling – analysis object models and dynamic models, entity, boundary and control objects, generalization and specialization; analysis activities – from use cases to objects, managing and documenting analysis.

Module 3 11 Hours

System design concepts – subsystem and classes, services and subsystem interfaces, coupling and cohesion, layers and partitions; system design activities – from objects to subsystems; addressing design goals – mapping subsystems to processors and components, identifying and storing persistent data, providing access control, designing the global control flow, identifying services and boundary conditions; managing and documenting system design; object design – specifying interfaces.

Module 4 11 Hours

Mapping models to code – model transformation, refactoring, forward engineering, reverse engineering, transformation principles; mapping activities; managing implementation; testing concepts – faults, erroneous states and failures; testing activities – component inspection, usability testing, unit testing, integration testing, system testing; managing and documenting testing. Rationale management, configuration management, project management, software lifecycle.

Bernd Bruegge and Allen H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and Java, 3rd edition, Pearson Education, 2009. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen and Kelli A. Houston, Object-Oriented Analysis and Design with Applications, 3rd edition, Addison-Wesley. Mike O'Docherty, Object-Oriented Analysis and Design: using UML, Wiley Publication, 2005. Alan Dennis, Barbara Haley Wixom and David Tegarden, Systems Analysis and Design with UML 2.0 - An Object-Oriented Approach, 4th edition, Wiley, 2012.

Subject Code	Advanced Database Systems	Credits: 2 (0-0-3) Total hours: 42
CS653	Laboratory	
Course Objectives	To have hands on session of the Database concepts	

- 1. Database schema design
- 2. Database creation,
- 3. SQL programming and report generation using a commercial RDBMS like ORACLE/SYBASE/DB2/SQL-Server/INFORMIX.
- 4. Students are to be exposed to front end development tools, ODBC and CORBA calls from application Programs.
- 5. Internet based access to databases and database administration.
- 6. A project on distributed databases (decided by the instructor.)
- 7. Implementation of Role based model for a database system.
- 8. Database security exercises.

	•
	1. AviSilberschatz, Henry Korth, and S. Sudarshan, Database system
	concepts, 5 th edition, McGraw Hill, 2005.
Reference	2. Ralf HartmutGuting and Markus Schneider, Moving objects databases,
Books	Morgan Kaufman, 2005.
	3. R. Elmasri and S. Navathe, <i>Fundamentals of database systems</i> , 5 th edition
	Benjamin - Cummings, 2007.
	4. Raghu Ramakrishnan, Database management systems, McGraw-Hill,
	2000.
	5. Ceri S and Pelagatti G, <i>Distributed databases principles and systems</i> , 2 nd
	edition, Tata Mc-Graw Hill, 1999.

Subject Code CS654	Object Oriented Software Engineering (OOSE)	Credits: 2 (0-0-3) Total hours: 42	
	Laboratory		
Course Objectives	The participants are expected to analyze application s information systems using the Unified Modeling Language (U designed systems are to be implemented using object-clanguage such as Java.	UML). Furthermore, the	

Select domain of interest (e.g. e-Commerce) and identify multi-tier software application to work on (e.g. e-Ticketing). Analyze, design and develop this application using OOSE approach:

- 1. Develop an IEEE standard SRS document. Also develop risk management and project plan (Gantt chart).
- 2. Identify use cases and develop the use case model.
- 3. Identify the business activities and develop an UML Activity diagram.
- 4. Identity the conceptual classes and develop a domain model with UML Class diagram.
- 5. Using the identified scenarios find the interaction between objects and represent them using UML Interaction diagrams.
- 6. Draw the state chart diagram.
- 7. Identify the user interface, domain objects, and technical services. Draw the partial layered, logical architecture diagram with UML package diagram notation.
- 8. Implement the technical services layer.
- 9. Implement the domain objects layer.
- 10. Implement the user interface layer.
- 11. Draw component and deployment diagrams.

Suggested Software Tools: ArgoUML, Eclipse IDE, Visual Paradigm for UML, StarUML, and Rational Software Architect.

Reference	1. Bernd Bruegge and Allen H. Dutoit, Object-Oriented Software Engineering
Books	Using UML, Patterns, and Java, 3 rd edition, Pearson Education, India, 2009.
	2. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
	Conallen and Kelli A. Houston, Object-Oriented Analysis and Design with
	Applications, 3 rd edition, Addison-Wesley, 2007.
	3. Mike O'Docherty, Object-Oriented Analysis and Design: using UML, John
	Wiley & Sons, 2005.
	4. Alan Dennis, Barbara Haley Wixom and David Tegarden, Systems
	Analysis and Design with UML 2.0 - An Object-Oriented Approach, 4 th
	edition, Wiley, 2012.

Subject Code CS655	VIVA	Credits: 2
Course Objectives	Students will have to attend for a viva-voce in presence of all the department for the evaluation of the subjects studied in the first semesters) with a suitable demonstration.	•

Subject Code		Communication Skills and	Credits: 0 (1-0-2)	
HU650 (Audit Course)		Technical Writing	Total hours: 45	
Course Objectives		This course is meant for developing Professiona	al Communication and	
		Technical Writing Skills among the students. The	e Lab hours will give	
		emphasis on Technical Presentation and Seminar	(on different emerging	
		topics) followed by question-answer and discussion.		
Module 1			12 hours	
Introduction to	Communic	cation-Definition-Types-Classifications, Writing Exerc	cises-Paragraph- Précis-	
Summary/Exec	cutive Sumr	mary/Abstract		
Module 2			8 hours	
Technical Reports-Types-		Format-Nuances to be followed		
Module 3			10 hours	
Preparation of Technical I		Document-Reports-Instruction Manuals-Project Propos	al (Prefatory Part- Main	
Part- Terminal	Part- Terminal Section)			
Module 4			15 hours	
Presentation of Technical I		Report (Kinesics, Proxemics, and Professional Ethics)		
Reference 1	rence 1. Raman and Sharma, Communication Skills, New Delhi: OUP, 2011.)11.	
Books: 2	2. Mandel, Steve, Technical Presentation Skills: A Practical Guide for Better Speaking		ide for Better Speaking	
		Edition), Crisp Learning, 2000.		
3	. Wood, Mi	llett, The Art of Speaking, New York: Drake Publishers, 1971.		
4	Lencioni,	Patrick, The Five Dysfunctions of a Team: NJ, John W	iley and Sons, 2006.	

Subject Code CS800	Foundations of Cryptography (FC)	Credits: 3 (3-0-0) Total hours: 45	
Course Objectives	The purpose of the course is to familiarize the students to the arithmetic topics that have been at the centre of interest in applications of number theory, particularly in cryptography. It also includes familiarizing the students with cryptography, cryptographic protocols and the latest elliptic curve systems.		
Module 1		12 Hours	
Mathematic	al preliminaries: Number theory and algebra, Finite fields.		
Module 2		6 Hours	
Symmetric l	key encryption: Stream ciphers and block ciphers.		
Module 3		10 Hours	
Public key o	cryptography, Digital signatures, Attacks, Hash functions,	Authentication schemes,	
Key exchang	ge algorithm, Public key infrastructure.		
Module 4		8 Hours	
Identificatio Non-interac	n schemes, Interactive proofs, Commitment protocols, Z	Zero knowledge proofs,	
Module 5	nve proofs.	9 Hours	
Secret sharing schemes, Digital cash, Electronic voting, Elliptic of			
	ns, Identity based encryption.	curve, Empue curve	
Reference Books	 Neal Koblitz, Number theory and cryptography, Springer, 2007. Hans Delfs, Helmut Knebl, Introduction to Cryptography: Principles and Applications, Springer, 2002. Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996. Rudolf Lidl, Herald Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, 1994. Ivan Niven, Herbert S. Zukerman, Hugh L.Montgomery, An Introduction to the Theory of Numbers, John Wiley, 1991. 		

Subject Code	Wireless Sensor Networks	Credits: 3 (0-0-3)	
CS801	(WSN) Total hours: 45		
Course Objectives:	A wireless sensor network (WSN) is a network of spatially distributed autonomous sensors those monitor physical or environmental conditions and cooperatively pass their data through the network to a main location. This course introduces the wireless sensor networks technology and discusses challenges in the design and management of wireless sensor networks.		
Module 1		9 hours	
healthcare, pipeline m	, WSN applications - structural health monitoring, precision agriculture, active volcano, to and operating systems.		
Module 2		11 hours	
	reless MAC protocols – energy efficiency, scalability, reliability, network layer – routing metrics, flo		
management, time syr techniques, range-base	agement, power management – local power manage nchronization in WSN – basics and protocols, load localization, range-free localization, event-drives and challenges, security attacks, protocols and mediate of the security attacks.	ocalization – ranging n localization, WSN	
Module 4		14 hours	
addressing basics, PAN to Arduino, serial flow ZigBee security.	ramming, radio basics, introduction to ZigBee - N addresses, channels, basic ZigBee chat, advanced v control, building WSN with Zigbee and Arduino	ZigBee, introduction , IEEE 802.15.4 and	
Reference Books	 Ian F. Akyildiz, Mehmet Can Vuran, Wireless Communications and Networking, Wiley, 2011 Robert Faludi, Building Wireless Sensor Networks, Arduino, and Processing, O'Reilly Med Ibrahiem M. M. El Emary, S. Ramakrishm Networks: From Theory to Applications, CRC Waltenegus Dargie, Christian Poellabauer, Fun Wireless Sensor Networks: Theory and Practice 	tworks: with ZigBee, lia, 2010. Itan, Wireless Sensor Press, 2013. Indamentals of	

Subject Code	Advanced Compiler Design	Credits: 3 (3-0-0)
CS802	(ACD)	Total hours: 45
Course Objectives	Describe the steps and algorithms used by language to the underlying formal models such as finite state a automata and their connection to language definite expressions and grammars, Discuss the effectiveness understand the advancements in compiler construction	utomata, push-down ion through regular of optimization. To
Module 1		6 Hours
	o compiler design, Model of a Compilers, Translators, Inter- omputer Architecture vs Compiler Design, Lexical analyzer, mata.	
Module2		6 Hours
Introduction to	context free grammars, BNF notation, Syntax Analysis.	
Module 3		8 Hours
techniques. Module 4	al LR, LALR grammar and parsers, error recover strategies	10 Hours
Symbol table		10 110015
schemes for primprovement DAG represe	syntax-directed translation schemes, intermediate code go orogramming language constructs, runtime storage allocation and instruction selection: Issues, basic blocks and flow graph intation of programs, code generation from DAG, peep allysis and redundancy elimination, specifications of machine	eneration, translation on. Code generation, as, register allocation, o hole optimization,
schemes for primprovement DAG represedependence and Module 5	programming language constructs, runtime storage allocation and instruction selection: Issues, basic blocks and flow graph intation of programs, code generation from DAG, peep	eneration, translation on. Code generation, as, register allocation, o hole optimization, e. 15 Hours

	2009.5. Randy Allen and Ken Kennedy, <i>Optimizing Compilers fo Architectures</i>, Morgan Kaufmann, 2001.	r Modern
Subject Code	Distributed Computing Systems	Credits: 3 (3-0-0)
CS803	(DCS)	Total hours: 45
Course Objectives	This course covers abstractions and implementation technic distributed systems. It focuses on server design, network prestorage systems, security, and fault tolerance.	1
Module 1		10 Hours
	Distributed Systems and applications, Distributed vs paralle ystems, Message Passing mechanisms IPC and RPC.	l systems, models of
Module2		12 Hours
stamps, tok complexity, Algorithms.	usion using time stamp, election algorithms, Distributed mutual en & quorums, centralized & distributed algorithms, producinking philosophers problem, Implementation & performance	of of correctness & e evaluation of DME
Module 3		11 Hours
	tion algorithms, global states, global predicates, termination	
	computation, disjunctive predicates, performance evaluation	n of leader election
	on simulated environments.	
Module 4		12 Hours
	File Systems and Services, Shared data, Synchronization	
	y Control. Distributed databases, Name service, Timing & Coor	dination, Replication,
Security and	Fault Tolerance.	
Reference Books	 Vijay K Garg, Elements of Distributed Computing, Wiley & Pradeep Sinha, Distributed Operating Systems- Concep 2000. 	ts and Design, PHI,
	3. A.S. Tanenbaum, M.V. Steen, <i>Distributed Systems – Princ</i> PHI, 2003	
	4. George Couloris, Jean Dollimore, Time Kindberg, A. Concepts & Design", Addison Wesley, 2003.	Distributed Systems:
	5. Nancy Lynch, Distributed Algorithm, Morgan Kaufmann P	ublishers, 1996.

Subject Code CS804	Design of Secure Protocols	Credits: 3 (3-0-0)
	(DSP)	Total hours: 45
Course	In this course, we investigate the paradigm of practice-oriented provable	
Objectives	security in the context of public key cryptography. Centre the notion of security definition of a cryptographic to problem of designing protocols that can be proven intractability of certain computational problem(s) or to atomic primitive(s). Several such cryptographic protocols course.	ask. Next comes the secure assuming the he security of some
Module 1		8 Hours

Introduction to Cryptography: Basics of Symmetric Key Cryptography, Basics of Assymetric Key Cryptography, Hardness of Functions . One-way functions, one-way trapdoor functions. Notions of Semantic Security (SS) and Message Indistinguishability (MI): Proof of Equivalence of SS and MI, Hard Core Predicate, Trap-door permutation.

Module 2 6 Hours

Formal Notions of Attacks: Attacks under Message Indistinguishability: Chosen Plaintext Attack (IND-CPA), Chosen Ciphertext Attacks (IND-CCA1 and IND-CCA2), Attacks under Message Non-malleability: NM-CPA and NM-CCA2, Inter-relations among the attack model. Random Oracles: Provable Security and asymmetric cryptography, hash functions One-way functions: Weak and Strong one way functions

Module 3 9 Hours

Provably secure Pseudo-random Generators (PRG): Blum-Micali-Yao Construction, Construction of more powerful PRG, Relation between One-way functions and PRG, Pseudo-random Functions (PRF). Building a Pseudorandom Permutation. Provable security under different attacks of block ciphers, stream ciphers. Symmetric Encryption.

Module 4 10 Hours

Message authentication: MAC, Authenticated encryption. Public key encryption: the notions of indistinguishability and semantic security including the question of equivalence of definitions, security against chosen plaintext and chosen ciphertext attacks. Some concrete public key encryption and identity-based encryption schemes and their security.

Module 5 12 Hours

Digital signatures and the notion of existential unforgability under chosen message attacks. Key agreement protocols and secure channels. The random oracle assumption. The quantitative measure of security including the questions of tightness in security reduction and concrete security. Shamir's Secret Sharing Scheme, Formally Analyzing Cryptographic Protocols. Case Studies.

Reference Books	 Hans Delfs, Helmut Knebl, Introduction to Cryptography: Principles and Applications, Springer, 2002. Wenbo Mao, Modern Cryptography, Theory and Practice, Prentice Hall, 2003. 	
	3. Oded Goldreich, Foundations of Cryptography, Cambridge	
	University Press, Vol-I and Vol-II, 2007.	
	4. Shaffi Goldwasser and Mihir Bellare, Lecture Notes on Cryptography,	
	Available at http://citeseerx.ist.psu.edu.	
	5. Jonathan Katz, Yehuda Lindell, <i>Introduction to Modern Cryptography:</i>	
	Principles and Protocols, Chapman & Hall/CRC Cryptography and	
	Network Security Series, 2007.	

Subject Code	Mobile Computing (MC)	Credits: 3 (3-0-0)		
CS805		Total hours: 45		
Course Objectives:	This course briefly introduces the basic concepts, principles and developments in mobile computing. This includes major mobile communication technologies, mobile computing algorithms and support for mobility in current communication systems and Internet.			
Module 1		10 Hours		
History of wireless con	nmunications, market for mobile communica	tions, open research topics,		
simplified reference i	model, wireless transmission technologies	 frequencies for radio 		
	ntennas, signal propagation, multiplexing, m	odulation, spread spectrum,		
cellular networks.	cellular networks.			
Module 2		11 Hours		
Medium access control	- techniques and algorithms, telecommunicat	tion systems – GSM, GPRS,		
DECT, TETRA, UM	ΓS, CDMA, 3G, satellite systems – GE6	O, LEO, MEO, routing,		
localization, handover,	wireless LAN – IEEE 802.11, HIPERLAN, B	luetooth.		
Module 3		12 Hours		
Mobile network layer -	- Mobile IP, DHCP, mobile ad-hoc network	ks, mobile transport layer –		
indirect TCP, snooping	TCP, mobile TCP, security issues in mobile of	computing.		
Module 4		12 Hours		
Support for mobility i	n current communication systems and Inte	rnet - wireless application		
protocol, file systems, r	nobile web applications, mobile native applic	eations, web 2.0, Voice over		
IP.				
Reference Books	1. Jochen Schiller, <i>Mobile Communica</i> Limited, 2003.	tions, Pearson Education		
	2. Roopa Yavagal, Asoke K Talukder, <i>Mobile Computing</i> — <i>Technology, Applications and Service</i> , McGraw-Hill Professional, 2006.			

Subject Code	Machine Learning (ML) Credits: 3 (3-0-0) Total hours: 45			
CS806				
Course	Machine learning is concerned with the question of how to make computers			
Objectives	learn from experience. Machine learning techniques are used to create spam			
	filters, to analyze customer purchase data, to understand n			
	detect fraudulent credit card transactions. This course			
	fundamental set of techniques and algorithms that constitute machine learning			
	as of today, ranging from classification methods like decision trees and support			
	vector machines, over structured models like hidden Markov models, to			
Madula 1	clustering and matrix factorization methods for recommen			
Module 1		8 Hours		
	odels of learning. Learning classifiers, functions,			
-	odels, value functions, behaviors and programs from e	experience. Bayesian,		
	teriori, and minimum description length frameworks.	10.11		
Module 2		12 Hours		
	nation, sufficient statistics, decision trees, neural netw			
	sian networks, bag of words classifiers, N-gram models;			
	, probabilistic relational models, association rules, nearest	t neighbor classifiers,		
locally weighted	l regression, ensemble classifiers.			
Module 3		14 Hours		
Computational	learning theory, mistake bound analysis, sample comp	plexity analysis, VC		
dimension, Occ	cam learning, accuracy and confidence boosting. Dime	ensionality reduction,		
	n and visualization. Clustering, mixture models, k-means c	lustering, hierarchical		
	butional clustering.			
Module 4		11 Hours		
Reinforcement	learning; Learning from heterogeneous, distributed, d	lata and knowledge.		
	ations in data mining, automated knowledge acquisition,			
	sis, text and language processing, internet-based information			
computer intera	ction, semantic web, and bioinformatics and computational	biology.		
Reference Boo	1. Bishop, C., Pattern Recognition and Machi	ne Learning, Berlin:		
	Springer-Verlag, 2006.	G ,		
	2. Tom Mitchell, <i>Machine Learning</i> , McGraw Hi	ll, 1997.		
	3. Hastie, Tibshirani, Friedman, <i>The Elements of</i>	f Statistical Learning,		
	Springer, 2001.			
	4. Sergios Theodoridis, Konstantinos Kon <i>Recognition</i> , Academic Press, 2009.	utroumbas, Pattern		

Subject Code	Health Informatics (HI)	Credits: 3 (3-0-0)
CS807	Ticatin informatics (III)	Total hours: 45
Course Objectives:	This course introduces the field of health infor	rmatics - which is an
	intersection of biomedical science, patient car	re, public health and
	information technology.	
Module 1		10 Hours
Overview of health inf	ormatics, computer architectures and software engi	neering for healthcare
and biomedicine, stand	ards in health informatics.	
Module 2		12 Hours
Healthcare data, inform	nation and knowledge, health information exchange	l ge. health information
	mation infrastructure, biomedical decision mal	•
bioinformatics.	manda mirasiractare, cromearear accision ma	sing, introduction to
Module 3		12 Hours
Electronic health reco	ord systems, telemedicine, patient monitoring sy	ystems, public health
informatics, patient-cer	ntered care systems.	
Module 4		11 Hours
Wiodule 4		11 Hours
Evidence-based medic	ine and clinical practice guidelines, ethics in heal	th informatics, health
information technology	policy, future of health informatics.	
Reference Books	1. Edward H. Shortliffe, James J. Cimino, Bi	omedical Informatics:
	Computer Applications in Health Care and E 2012.	Riomedicine, Springer,
	2. Robert E Hoyt, Nora Bailey, Ann Yoshihashi	, Health Informatics:
	Practical Guide For Healthcare And Informa	tion Technology
	Professionals, lulu.com, 2012.	

Subject Code CS808	Soft Computing (SC)	Credits: 3 (3-0-0) Total hours:45
Course Objectives	To deal with the uncertainty that is inherent in any particle and the uncertainty is natural in the real world also and he efficiently.	C
Module 1		10 Hours

Introduction to artificial neural networks (ANNs): artificial neuron as a computational model of a biological neuron, activation functions, learning laws, architectures for neural networks, Perceptron: learning law, convergence theorem. Multilayer feed forward neural networks: Structure, error back propagation learning, delta learning law, generalized delta rule, learning factors, convergence theorem, momentum factor in learning, conjugate based learning method, bias-variance dilemma

Module 2 8 Hours

Deep learning: feedback neural networks, recurrent neural networks, convolution neural networks, Boltzan machine; Competitive learning models: principal component analysis, self-organizing map (SOM); Pulsed neural networks

Module 3 13 Hours

Basic concepts of fuzzy logic: crisp set-properties, relations and operations, fuzzy set theory, membership, types of membership functions, uncertainty, fuzzification, Decision making using the fuzzy sets, fuzzy inference systems, defuzzification methods, Application of fuzzy systems, Introduction to Type-2 fuzzy logic systems: The structure, inference system with different fuzzy membership functions: Fuzzy clustering method: soft clustering, fuzzy K-means clustering method: Neuro-fuzzy systems: fuzzy logic with adaptive learning, adaptive neuro-fuzzy inference systems: Fuzzy-neuro systems: Fuzzy perceptron and learning method for the same, fuzzy back propagation network,

Module 4 14 Hours

Evolutionary computing: optimization problem solving - finding best solution, minimum seeing algorithms, natural optimization methods, Genetic algorithms: Overview, a simple genetic algorithm, binary genetic algorithm, continuous parameter genetic algorithm. Advanced operations and techniques in genetic search, genetics-based machine learning – introduction and application, genetic algorithms in scientific methods. Genetic algorithms for combinatorial optimization, theoretical foundations of genetic algorithms, SASEGASA – parallel genetic algorithm. Introduction to genetic programming, applications of genetic programming, databased modeling with genetic programming. Other evolutionary computing methods such as: ant colony optimization, swarm optimization.

Satish Kumar, Neural networks: A classroom approach, Tata McGraw Hill, 2011. B. Yegnanarayana, Artificial Neural Networks, Printice Hall India, 1999. J. S. R. Lang, C. T. Sun and E. Mizutaju, Neuro-fuzzy and soft computing, Pearson Education, 1996. David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

	L	urning, Addison-Wesley, 198	9.	
		chael Affenzeller, Stephan		
		netic Algorithms and Gen actical Applications, CRC Pre	8	dern Concepts and
Subject Cod CS809		Service Oriented		Credits: 3 (3-0-0) Total hours: 45
	8	nd Cloud Compi	ating (SOAC)	
Course	Т	s course introduces the fields of	•	
Objectives:	2	Service-oriented architecture pattern based on discrete piece services to other applications. Cloud computing – which is a are retrieved from the internet	s of software providing app	lication functionality as ces in which resources
Module 1				12 hours
	•	ciples of service orientation, ser OAP, activity management and	•	
Module 2				8 hours
service mode	eling, security	for building SOA – SOA dervice modeling applications, and manageability patterns, messerns.	SOA patterns for perform	nance, scalability and
Module 3				10 hours
	ted desi	n, services composition, service	decion guidalinas businas	
	nental V	S-* extensions, SOA platforms.	e design guidennes, busines	ss process design, WS-
Module 4	nental V	S-* extensions, SOA platforms.	c design guidennes, busines	ss process design, WS- 15 hours

Introduction to cloud computing, major models - software as a service, platform as a service, and

infrastructure as a service, adopting SOA with cloud computing, data in the cloud - Cassandra, MangoDB, intelligence in the cloud, cloud security and governance.

Reference 1. Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall, 2005. **Books** 2. Arnon Rotem-Gal-Oz, SOA Patterns, Manning Publications Company, 2012. 3. Michael Rosen, Boris Lublinsky, Kevin T. Smith, Marc J. Balcer, Applied SOA: Service-Oriented Architecture and Design Strategies, John Wiley & Sons, 2012. 4. Richard Hill, Laurie Hirsch, Peter Lake, Siavash Moshiri, Guide to Cloud Computing: Principles and Practice, Springer-Verlag, London, 2013. 5. Douglas K. Barry, Web Services, Service-Oriented Architectures, and Cloud Computing, The Savvy Manager's Guide, Morgan Kaufmann Publishers, 2nd Edition, 2003.

Subject Code	Big Data Analytics (BDA)	Credits: 3 (3-0-0)
CS810		Total hours: 45
Course	Big data refers to a collection of large and complex d	ata sets those are difficult to
Objectives:	process using traditional data processing application capture, curation, storage, search, sharing, transfer, and course introduces concepts and techniques to overcommer laws from large data sets to reveal relationships, or predictions of outcomes and behaviors.	alysis and visualization. This ome these challenges and to dependencies, and to perform
Module 1		11 Hours
Introduction – sma	ll and big data, statistics and machine learning, statist	tical data mining; Providing
structure to unstruct	ured data - machine translation, autocoding, indexing, te	erm extraction; Identification,
	d reidentification; ontologies and semantics; introspe	
	bility; immutability and immortality; measurement; big da	9
Module 2	• • • • • • • • • • • • • • • • • • • •	12 Hours
Big data techniques	s – data range, denominator, frequency distributions, n	nean and standard deviation
•	on, resource evaluation, reformulate a question, quaction, algorithm selection, results review; failure, legalitic	
	t - correlation coefficient, scatterplots; paired-variable	
	netrizing ranked data – scales of measurement, Stem-	
	y-variable assessment – principle component analysis;	¥ •
	on coefficient; predictive contribution coefficient.	rogistic regression, oraniary
Module 4	· L	11 Hours
	modeling in R, importing data into R, Hadoop - differ	
Distributed File System (HDFS) - fundamentals and architecture, MapReduce - fundamentals and		
architecture, Hadoop security, Hadoop programming in Java, Integrating R and Hadoop - RHIPE,		
•	ytics with R and Hadoop, importing and exporting data f	
	large data analysis platform, automating data processing	
Reference Books	1. Jules J Berman, Principles of Big Data: Prepar	
	Complex Information, Morgan Kaufman-Elsevier,	
	2. Bruce Ratner, Statistical and Machine-Learning I	
	Better Predictive Modeling and Analysis of Big D 2011.	paia, 2 Edition, CKC Press,
	3. Michael Milton, <i>Head First Data Analysis: A lea</i>	rner's quide to hig numbers
	statistics, and good decisions, O'Reilly Media Inc.,	-
	4. <i>Big Data Now: 2012 Edition</i> , O'reilly Media Inc., 2	

2013.

Subject Code	Pattern Recognition (PR)	Credits: 3 (3-0-0)
CS811	Tattern Recognition (TR)	Total hours:45
Course	To build intelligent systems based on the learning framew	ork.
Objectives		
Module 1		12 Hours
Pattern classification: Bayesian decision theory, minimum-error-rate classification, classifiers, discriminant functions, decision surfaces, normal (Gaussian) density, continuous and discrete values features, Bayesian networks (graphical models)		
Module 2		8 Hours
Methods for parameter estimation: maximum likelihood estimation, maximum a posteriori estimation, Bayesian estimation, Gaussian mixture models Sequential pattern classification: Hidden Markov models for dynamic patterns		
Module 3	Mussification. Thaten Markov models for dynamic patterns	10 Hours
Non-parametric method for density estimation: Parzon window and K-nearest neighbor method Methods for dimensionality reduction: Fisher's discriminant analysis, Principal component analysis		
Non metric methods: Decision trees, classification and regression trees (CART), recognition of strings		
Module 4		o muis
Discriminant analy	rsis: Models for decision surfaces, linear discriminant ar	nalysis-perception model,
•	nared error based learning, support vector machines	
•	models for regression, polynomial regression, Bayesian reg	
Module 5		7 Hours
Pattern clustering (unsupervised learning): Criterion functions for clustering, methods for clustering-		
hard and soft clustering, K-means, GMM, hierarchical clustering methods, cluster validation methods		
Reference Books	 Richard O. Duda, Peter E. Hart and David G. Stork, <i>Pattern Classification</i>, 2nd Edition, John Wiley & Sons, 2012. Christopher M. Bishop, <i>Pattern Recognition and Machine Learning</i>, Springer, 2006. Sergios Theodoridis and Konstantinos Koutroumbas, <i>Pattern Recognition</i>, 	
	4 th Edition, Academic Press-Elsevier, 2009	is, I unein Necogniion,

Subject Code	Artificial Neural Networks	Credits: 3 (3-0-0)
CS812	(ANN)	Total hours:45
Course Objectives	To study a computational model of the human neural systeknown the exact functioning of the same.	em though it is still not
Module 1		8 Hours
Biological neuron, artificial neuron as a computational model of a neuron, activation functions, architectures for ANNs, linear neural networks, Hebbs learning law,		
Module 2		14 Hours
Non-linear neural networks: Perceptron- learning law, convergence theorem; multilayer feed forward neural networks-structure, activation functions, error back propagation learning, delta learning law, generalized delta rule, learning factors, convergence criteria, momentum factor in learning, conjugate gradient method for learning, universal approximation theorem, cross validation method for selecting the architecture, bias-variance dilemma		
Module 3		8 Hours
Statistical learning theory, principle of empirical risk minimization, Radial basis function networks: RBF networks for function approximation, RBF networks for pattern classification, Support vetcor machines: SVM for linearly separable classes, SVM for linearly non-separable classes, SVM for nonlinearly separable classes using kernels, multi-class pattern classification using SVMs,		
Module 4		8 Hours
Feedback neural networks: Problem of pattern storage and retrieval, discrete Hopfiled networks, dynamical systems, energy function of hopfield model, energy analysis of hopfiled model.		
Module 5		7 Hours
Introduction to deep neural networks, convolution neural networks, recurrent neural networks, Boltzman machine.		
Reference Books	 B. Yegnanarayana, Artificial Neural Networks, Learning Pvt. Ltd, 2009. Sathish Kumar, Neural Networks: A Classroom Ap Tata McGraw Hill, 2011. Simon S. Haykin, Neural Networks and Learning M Prentice Hall, 2009 	pproach, 3 rd Edition,

Subject Code CS813	Computer Vision (CV)	Credits: 3 (3-0-0) Total hours:45
Course Objectives	To expose the students to fundamental and advanced topics in computer vision	
	with a focus on image statistics, machine learning techniques, and applied vision	
	for graphics also.	
Module 1		10 Hours

Module 1 10 Hours

Introduction and overview, pinhole cameras, radiometry terminology. Sources, shadows and shading: Local shading models- point, line and area sources; photometric stereo. Color: Physics of color; human color perception, Representing color; A model for image color; surface color from image color.

Module 2 13 Hours

Image Processing: Linear filters: Linear filters and convolution; shift invariant linear systems-discrete convolution, continuous convolution, edge effects in discrete convolution; Spatial frequency and Fourier transforms; Sampling and aliasing; filters as templates; Normalized correlations and finding patterns. Edge detection: Noise; estimating derivatives; detecting edges. Texture: Representing texture; Analysis using oriented pyramid; Applications; Shape from texture. The geometry and views: Two views.

Module 3 12 Hours

Stereopsis: Reconstruction; human stereo; Binocular fusion; using color camera. Segmentation by clustering: Human vision, applications, segmentation by graph theoretic clustering. Segmentation by fitting a model, Hough transform; fitting lines, fitting curves;

Module 4

3D reconstruction, model based vision- face recognition, face detection, image/scene classification, motion tracking, surveillance, content based image and video retrieval

Reference Books Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011. David A Forsyth and Jean Ponce, Computer Vision, A Modern Approach, Pearson Education, Limited, 2011 Schalkoff R. J., Digital Image Processing and Computer Vision, John Wiley & Sons Australia, Limited, 1989 Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 3rd Eidtion, Pearson Eductaion India, 2009 Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis, and Machine Vision, 4th Edition, Cengage Learning, 2014

Subject Code		Credits: 3 (3-0-0)
CS814	Game Theory (GMT)	Total hours: 45
Course Objectives		
Module 1		7 Hours
	nd Outline of the Course, Definitions, Utilities, Rativledge, Classification of Games.	onality, Intelligence,
Module 2		14 Hours
Non-Cooperative Game Theory: Extensive Form Game, Strategic Form Games with Illustrative Examples, Dominant Strategy Equilibria, Pure Strategy Nash Equilibrium with Illustrative Examples and Key Results, Mixed Strategy Nash Equilibrium with Illustrative Examples and Key Results such as the Nash Theorem, Computation of Nash Equilibria and introduction to algorithmic theory, Matrix Games: Saddle Points, Minimax Theorem, Bayesian Games, Bayesian Nash Equilibrium, Evolutionary Game Theory (ESS Strategies), Repeated Game.		
_	an Nash Equilibrium, Evolutionary Game Theory (ESS	Strategies), Repeated
_	an Nash Equilibrium, Evolutionary Game Theory (ESS	Strategies), Repeated 12 Hours
Game. Module 3 Mechanism D Illustrative Exa and Revelation Clarke-Groves	esign: The Mechanism Design Environment, Social Clamples, Implementation of Social Choice Functions, Inc. Theorem, Gibbard-Satterthwaite and Arrow Impossibilit (VCG) Mechanisms, Bayesian Mechanisms (dAGVA), Ison Optimal Auction, Further Topics in Mechanism Design	12 Hours noice Functions with centive Compatibility y Theorem, Vickrey-Revenue Equivalence
Game. Module 3 Mechanism D Illustrative Exa and Revelation Clarke-Groves	esign: The Mechanism Design Environment, Social Chaples, Implementation of Social Choice Functions, Inc. Theorem, Gibbard-Satterthwaite and Arrow Impossibilit (VCG) Mechanisms, Bayesian Mechanisms (dAGVA), Inc.	12 Hours noice Functions with centive Compatibility y Theorem, Vickrey-Revenue Equivalence
Module 3 Mechanism D Illustrative Exa and Revelation Clarke-Groves Theorem, Myer Module 4 Correlated Stra	esign: The Mechanism Design Environment, Social Chaples, Implementation of Social Choice Functions, Inc. Theorem, Gibbard-Satterthwaite and Arrow Impossibilit (VCG) Mechanisms, Bayesian Mechanisms (dAGVA), Ison Optimal Auction, Further Topics in Mechanism Design tegies and Correlated Equilibrium, The Nash Bargaining erable Utility Games), The Core, The Shapley Value, Other	12 Hours noice Functions with centive Compatibility by Theorem, Vickrey-Revenue Equivalence a 12 Hours Problem, Coalitional

Subject Code	Data Warehousing and Data	Credits: 3 (3-0-0)	
CS815	Mining (DWM)	Total hours: 45	
Course	Following this course, students will be able to 1) Lea	irn the concepts of	
Objectives	3) Discover interesting patterns from large amounts of extract patterns to solve problems, make predictions Evaluate systematically supervised and unsupervised mo	database technology, 2) Understand data mining principles and techniques, 3) Discover interesting patterns from large amounts of data to analyze and extract patterns to solve problems, make predictions of outcomes. 4) Evaluate systematically supervised and unsupervised models and algorithms with respect to their accuracy, 5) Design and implement of a data-mining	
Module 1	•	12 Hours	
Introduction to d	ata warehousing huilding a data warehouse manning the d	lata warehouse to a	

Introduction to data warehousing, building a data warehouse, mapping the data warehouse to a multiprocessor architecture, OLAP technology for data mining, data warehouse, multidimensional data model, data warehouse architecture, data warehouse implementation, OLAP guidelines, multidimensional versus multi relational OLAP, categories of tools, DBMS schemas for decision support data extraction, cleanup and transformation tools for metadata, development of data cube technology, from data warehousing to data mining, data generalization, efficient methods for data cube computation, further development of data cube and OLAP Technology, attribute-oriented induction.

Module 2 8 Hours

Introduction to data mining tasks, objectives (classification, clustering, association rules, sequential patterns, regression, deviation detection).

Module 3 8 Hours

Data and preprocessing (data cleaning, feature selection, dimensionality reduction), Curse of Dimensionality

Module 4 8 Hours

Classification (decision-tree based approach, rule-based approach, instance-based classifiers, Bayesian Approach: Naive and Bayesian networks, classification model evaluation).

Module 5 9 Hours

Clustering (partitional methods, hierarchical methods, graph-based methods, density-based methods, cluster validation methods), anomaly/outlier detection (introduction to various types of outliers, statistical-based, density-based and other methods for outlier detection).

Reference	1. Jiawei Han and Micheline Kamber, Data mining: Concepts and techniques,
Books	3 rd Edition, Morgan Kaufmann publishers, 2012.
	2. Raph Kimball and Margy Ross, <i>Data warehouse toolkit</i> , 3 rd Edition, John
	Wiley & Sons Publications, 2013.
	3. Gordon Linoff and Michael. J. Berry, Data mining techniques: Marketing,
	sales, customer support, 3 rd Edition, John Wiley & Sons, 2011.

Subject Code	Credits: 3 (3-		
CS816	E-Commerce (EC)	Total hours: 45	
Course Objectives	To provide principles of e-commerce from a business per	rspective.	
Module 1	·	11 Hours	
	tools for e-commerce, current trends in e-commerce application ernet commerce, enterprise level e-commerce.	ations development,	
Module 2		12 Hours	
•	ryption, electronic payment systems, search engines, inte e auctions, data mining for e-commerce.	lligent agents in e-	
Module 3		12 Hours	
Web metrics, reco	ommended systems, knowledge management, mobile e-com	merce, legal, ethical	
Module 4		10 Hours	
Seminars and min	i projects.		
Reference Books	 Henry Chan, Raymond Lee, Tharam Dillon and El Commerce-Fundamentals and application, John Wiley of G. Winfield Treese and Lawrence C. Stewart, Dest Internet Commerce, Addison-Wesley Professional, 2003 M. L. Brodie and Dieter Fensel, Ontologies: A Silver B Management and ECommerce, Springer, 2004. Olaf Zimmermann, Mark Tomlinson and Stefan Peu Web Services", Springer, 2004. 	& Sons 2007. igning Systems for 3. ullet for Knowledge	

	Advanced Operating Systems	Credits: 3 (3-0-0)				
CS817	(AOS) Total hours: 4					
Course Objectives	To provide comprehensive and up-to-date coverage of the major developments in distributed operating system, multi-processor operating system and database operating system.					
Module 1		8 Hours				
communicati system, lamp	s of distributed systems, system architecture types, issues on networks, primitives, theoretical foundations, inherent limitation ports logical clocks, vector clocks, casual ordering of messages ed computation, termination detection, distributed mutual exclusion	ons of a distributed s, global state, cuts				
Module 2		12 Hours				
issues in de detection, ce protocols.	leadlock detection, introduction, deadlock handling strategies in cadlock detection and resolution, control organizations for dintralized, distributed and hierarchical deadlock detection algor	stributed deadlock ithms, agreement				
Module 3	hared memory, architecture, algorithms for implementing DSM,	10 Hours				
selecting a su associated in classification consistent se	atting algorithm, stability, load distributing algorithm, performatiable load sharing algorithm, requirements for load distributing, assues. Failure recovery and Fault tolerance: Introduction of failures, backward and forward error recovery, recovery in cet of check points, synchronous and asynchronous check point for distributed database systems, recovery in replicated distributions.	task migration and , basic concepts, concurrent systems, ting and recovery,				
Module 4		ited databases.				
1		8 Hours				
matrix mode authenticatio	nd security, preliminaries, the access matrix model and its implemel, advanced models of protection. Cryptography basics, multipen in distributed systems.	8 Hours nentations, safety in ple encryption and				
matrix mode authenticatio Module 5	el, advanced models of protection. Cryptography basics, multipn in distributed systems.	8 Hours nentations, safety in ple encryption and 7 Hours				
matrix mode authenticatio Module 5 Multiprocess	el, advanced models of protection. Cryptography basics, multip	8 Hours nentations, safety in ple encryption and 7 Hours nentations, safety in ple encryption and the ple encryption and the problem, thms.				

Subject Code	Security and Privacy (S&P)	Credits: 3 (3-0-0)	
CS818		Total hours: 45	
Course Objectiv	This course introduces the concepts of security and pri	vacy.	
Module 1		10 Hours	
Introduction: Bas protocols.	sic concepts: number theory, Formal analysis and design of al	gorithms and	
Module2		10 Hours	
Provable Security Definitions and I	y, Cryptosystems; Privacy: Foundations of Privacy, Different Early Uses.	ial Privacy:	
Module 3		10 Hours	
Privacy Regulat	ions, Noiseless Differential Privacy, Privacy preserving Data	Mining techniques.	
Module 4		15 Hours	
models, anonym textual data. O	ng data publishing: Fundamental Concepts: anonymization ization method for trasaction data, trajectory data, social ne-Time Data Publishing, Multiple-Time Data Publishing cess control of outsourced data. Future Research Directions	networks data and	
Reference	1. T. Shaw, Information Security and Privacy, American Bar Association,		
	 M. Bailey, Complete Guide to Internet Privacy, Anonymi Nerel Online, 2011. Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Privacy-F Publishing: An Overview, Morgan and claypool publisher 	Preserving Data	

Subject Code	Bioinformatics Algorithms	Credits: 3 (3-0-0)		
CS819	(BA)	Total hours:45		
Course Objectives	To explore fundamental algorithmic techniques in bioinformatics and computational biology that are enabling the current revolution in life sciences and medicine It will serve as the foundation course for students of computer science who are interested in doing research or pursue career in computational biology or in bioinformatics.			
Module 1				
	nolecular biology – Basic introduction including DNA, provolved in analyzing a DNA, role of bioinformatics	oteins, central dogma		
functions, His Multiple sequer approximation a	rshberg's space-saving algorithm, banded dyna ace alignments – sum-of-pairs scoring function, Carille algorithms, tree alignments.	mic programming.		
_	actures and algorithms – look-up tables, suffix arrayorithms, basic applications of suffix trees, lowest common	•		
Module 4				
Comparative ge	mbly – overlap-layout-consensus and graph nomics – Identifying gene clusters and evolutionarily of ltiple genome comparisons.	based methods. conserved sequences.		
Module 5				
	distance based methods including ultrametric and additival neluding parsimony and perfect phylogeny, heuristic methods			
Reference Books	 N. C. Jones & P. A. Pevzner, An Introduction Algorithms, MIT Press, 2004. R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biology analysis: probabilistic models of proteins and nuclein University Press, 1998. S. Aluru, Handbook of computational molecular biometric Hall/CRC, 2005. 	n to Bioinformatics gical sequence eic acids, Cambridge		

Subject Code	Graph Theory (GT)	Credits: 3 (3-0-0)	
CS820		Total hours: 45	
Course	The intension of this course is to introduce the subject of graph	n theory to computer	
Objectives	science students in a thorough way. While the course will cover all elementary		
	concepts such as coloring, covering, Hamiltonicity, planarity, co	nnectivity and so on,	
	it will also introduce the students to some advanced concepts.		
Module 1		8 Hours	
Definitions, pic	torial representation of a graph, isomorphic graphs, sub graphs, m	atrix	
representations	of graphs, degree of a vertex, special graphs, complements,	larger graphs from	
cut-vertices an	connected graphs and shortest paths, walks, trails, paths, cycles d cut-edges, blocks, connectivity, weighted graphs and shorter a's shortest path algorithm, Floyd-Warshall shortest path algorithm	st paths, weighted	
Module2		8 Hours	
	ons and characterizations, number of trees, Cayley's formula, as algorithm, Prim's algorithm, bipartite graphs, Eulerian graphs, an problem.		
Module 3		8 Hours	
	chings in bipartite graphs, Hall's theorem, Konig's theorem, pe Colorings, basic definitions, cliques and chromatic number		
Module 4		9 Hours	
graphs, planar planar graphs, Hamilton digra	s, Gupta-Vizing theorem, class-1 and class-2 graphs, edge-co- graphs, basic concepts, Euler's formula and its consequences, of 5-color-theorem, directed graphs, directed walks, paths and cyphs.	characterizations of	
Module 5		T	
Widuic 5		12 Hours	
Planarity (dual	ity, Euler's formula, characterization, 4-color theorem); Advan- ls, Ramsay theory, extremal graphs, random graphs); Applications	ced topics (perfect	
Planarity (dual graphs, matroid	ity, Euler's formula, characterization, 4-color theorem); Advands, Ramsay theory, extremal graphs, random graphs); Applications I. D. B. West, <i>Introduction to Graph Theory</i> , 2 nd edition, Prentice	ced topics (perfect	
Planarity (dual graphs, matroic Reference	ls, Ramsay theory, extremal graphs, random graphs); Applications	ced topics (perfect . Hall, 2000.	
Planarity (dual graphs, matroic Reference	ls, Ramsay theory, extremal graphs, random graphs); Applications I. D. B. West, <i>Introduction to Graph Theory</i> , 2 nd edition, Prentice	ced topics (perfect . Hall, 2000.	
Planarity (dual graphs, matroic Reference Books	ls, Ramsay theory, extremal graphs, random graphs); Applications I. D. B. West, <i>Introduction to Graph Theory</i> , 2 nd edition, Prentice 2. R. Diestel, <i>Graph Theory</i> (<i>Graduate Texts in Mathematics</i>), 2 nd Verlag, 2000. 3. J.A. Bondy and U.S.R. Murty, <i>Graph Theory</i> (<i>Graduate Texts in Springer</i> , 2011.	Hall, 2000. edition, Springer- n Mathematics),	
Planarity (dual graphs, matroic Reference Books	 Is, Ramsay theory, extremal graphs, random graphs); Applications I. D. B. West, <i>Introduction to Graph Theory</i>, 2nd edition, Prentice I. R. Diestel, <i>Graph Theory (Graduate Texts in Mathematics)</i>, 2nd Verlag, 2000. I. J.A. Bondy and U.S.R. Murty, <i>Graph Theory (Graduate Texts in Mathematics)</i> 	Hall, 2000. edition, Springer- n Mathematics),	

Subject Code	Duchahility and Statistics (D.C.S)	Credits: 3 (3-0-0)		
3	Probability and Statistics (P&S)			
CS821		Total hours: 45		
Course	Probability and Statistics is one of the most importan			
Objectives		mathematical sciences. Knowledge of these topics is critical to decision-		
	making and to the analysis of data. Using concepts of proba			
	individuals are able to predict the likelihood of an event occurring, organize			
36 11 4	and evaluate data, and identify the significance of statement			
Module 1		8 Hours		
	ets: sets and classes, limit of a sequence of sets, rings, sigma-ri			
	one classes. Probability: Classical, relative frequency and axion			
	dition rule and conditional probability, multiplication rule, total	probability, Bayes		
Module2	ndependence, problems.	8 Hours		
	ables: Discrete, continuous, mixed random variables, probability			
	stribution functions, mathematical expectation, moments, probability median and quantiles. Markov inequality Chebyshav's inequality	-		
	ction, median and quantiles, Markov inequality, Chebyshev's inequ	• • •		
Module 3		12 Hours		
	(Special) Discrete uniform, binomial, geometric, negative binomi			
	nuous uniform, exponential, gamma, Weibull, Pareto, beta, r	_		
	an, Cauchy, double exponential distributions, reliability and hazar			
-	illel systems, problems. (Joint): Joint, marginal and conditional di			
· ·	relation and regression, independence of random variables,			
_	roblems. (Sampling): The Central Limit Theorem, distributions of variance for a normal population, Chi-Square, t and F distribution	-		
Module 4	variance for a normal population, Cin-square, t and I distribution	10 Hours		
	nbiasedness, consistency, the method of moments and the me			
	mation, confidence intervals for parameters in one sample and tw			
	pulations, confidence intervals for proportions. Testing of Hy			
	potheses, the critical and acceptance regions, two types of error, po	-		
	I test, Neyman-Pearson Fundamental Lemma, tests for one sa			
1	ormal populations, tests for proportions, Chi-square goodness of fire	1 /		
Module 5	ormar populations, tests for proportions, om square goodness of in	7 Hours		
	ons: functions of random vectors, distributions of order statistic			
	n variables, problems.	os, oscistomos or		
Reference	1. V.K. Rohatgi, A.K. Md. E. Saleh, <i>An Introduction to Probability</i>	ty & Statistics. 2nd		
Books	edition, Wiley-Interscience, 2000.	,,, ,		
	2. J.S. Milton & J.C. Arnold, Introduction to Probability and Stat	istics - Principles		
	and Applications for Engineering and the Computing Sciences,	•		
	McGraw-Hill Higher Education, 2002.	•		
	3. H.J. Larson, Introduction to Probability Theory and Statistical	<i>Inference</i> , 3rd		
	edition, Wiley, 1982.			
1	4. S.M. Ross, Introduction to Probability & Statistics for Enginee	10		
1		ers and Scientists,		
	4 th edition, Elsevier AP, 2009. 5. S.M. Ross, <i>A First Course in Probability</i> , 9 th edition, Pearson, 2			

Subject Code	Program Analysis and	Credits: 3 (3-0-0)			
CS822	Verification (PAV) Total hours: 45				
Course Objectives	This course teaches techniques for model checking - technique for assessing functional properties communication systems. Model checking is an aut check the absence of errors and it is considered a effective debugging technique.	of information and omated technique to			
Module 1		9 hours			
verification proceed numerical algorithm	de verification, the mathematical model and numerical a dure and its benefits, design of coverage test suite, find m development, testing for code robustness and code effi- n-ordered approximations.	ding exact solutions,			
Module 2		11 hours			
refinement, programment any implementation program dependent program testing, dy	The semantic analysis – the precondition, the post condition, the principles of top-down refinement, program correctness – programs without loops, iterative programs, program test for any implementation – black box testing, static analysis – intermediate program representation, program dependencies, tell about a program without its execution, dynamic analysis – structural program testing, dynamic program analysis.				
Module 3		11 hours			
regular properties,	n – model checking, modeling concurrent systems, linear temporal logic, computation tree logic, equivalention, timed automata, probabilistic systems – Markov	nces and abstraction,			
Module 4		14 hours			
defining correctness search algorithms	oncurrent systems, building verification models, an over- s claims, using design abstraction, automata and logic, Pl and optimization, model abstraction, using SPIN and XS n model of a telephone switch, sample SPIN models.	ROMELA semantics,			
Reference Books	 P. Knupp, K. Salari, Verification of Computer Codes in Computational Science and Engineering, Chapman & Hall/CRC, 2002. J. Laski, W. Stanley, Software Verification and Analysis: An Integrated, Hands-On Approach, Springer, 2009. B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen, P. McKenzie, Systems and Software Verification: Model-Checking Techniques and Tools, Springer, 2001. G. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003. C. Baier, J. P. Katoen, K. G. Larsen, Principles of Model Checking, MIT Press, 2008. 				

Subject Code		Linear Algebra (LA)	Credits: 3 (3-0-0)	
CS823		Linear Algebra (LA)	Total hours: 45	
Course Objectives	Γ	o have a hand on in linear algebra to understand mat	trices and use them	
	to	o various engineering applications.		
Module 1	_		9 hours	
Introduction to vect	ors: Ve	ctors and linear combinations, dot products, matrices		
Solving linear equa	tions: `	Vectors and linear equations, idea of elimination,	eliminations using	
matrices, matrix of	eration	s, inverse of a matrix, LU and LDU factorization	ns, transposes and	
permutations			_	
Module 2			9 hours	
-	Vector spaces and subspaces: The null subspace of A: Solving Ax=0, the rank and row reduced form, basis and dimension, four fundamental subspaces			
Module 3		•	9 hours	
Orthogonality: Proj	ections,	least squares approximations, orthogonal bases and	Gram-Schmidt	
		determinants, Formulas for determinants, applicatio		
Module 4 9 hours				
Eigen values and E	igen ve	ctors: Introduction to Eigen values and Eigen vector	rs, diagonalization	
of a matrix, differe	ntial equ	uations, symmetric matrices, positive definite matrice	es,	
Module 5			9 hours	
Applications: Mat	rices in	n engineering, graphs and networks, Markov	w matrices linear	
programming, Four	ier serie	s, computer graphics, Gaussian elimination in practic	ce	
Reference	1. G.	Strang, Introduction to Linear Algebra, 4thE	dition, Wellesley-	
Books		nbridge Press, Wellesley, MA, 2009.		
	2. G. S	Strang, Linear algebra and its applications, Thomson	Books, 2006.	

Subject Code CS824		Number Theory (NT) Credits: 3 (3-0-0) Total hours: 45					
Course Object	ourse Objectives This course introduces the number theory, Algebraic structures and the						
		computational aspects of number theory.					
Module 1			8 Hours				
Preliminaries:	Well o	ordering principle, Mathematical Induction. Divisibilit	y Theory in Integers:				
Divisibility pr	opertie	es, Division Theorem, greatest common Divisor,	Euclidean algorithm,				
Diophantine eq	_l uation	. Primes and their distribution: The fundamental theore	m of arithmetic.				
Module2			15 Hours				
Theory of Con	grueno	ces: Basic properties of congruences, Divisibility tests	Linear congruences,				
Chinese Rema	inder	Theorem, Fermat's theorem, Euler's theorem, Qua	adratic Residues and				
Reciprocity. An	rithme	tic Functions, Diophantine Equations.					
Module 3		•	10 Hours				
Groups, Rings,	Finite	e fields, Elliptic Curves, Elliptic Curve arithmetic					
Module 4			12 Hours				
Large integer	comp	utations: Computations in Z _n ; Primality testing	of Integers; Integer				
Factorization a	algoritl	hms. Computations in groups, Rings and Fields. Al	gorithms for discrete				
logarithms; Po	olynom	nial arithmetic; Sequence generation; Algorithms for Fi	nite fields.				
Reference	1. N	N. Koblitz, A Course in Number theory and Crypto	ography, 2 nd edition,				
Books	S	Springer, 1994.					
	2. V	V. Shoup, A Computational Introduction to Number	Theory and Algebra,				
	(Cambridge Press, 2008.					
	3. I	H. Cohen, A course in Computational algebraic number	er theory, 4 th printing,				
	S	Springer, 2000.	_				
	4. F	R. Lidle, H. Niderreiter, Finite Fields (Encyclopedia og	f Mathematics and its				
	A	Applications), 2 nd edition, Cambridge University press,	2008.				

Subject Code		Complexity Theory (CT)	Credits: 3 (3-0-0)	
CS825			Total hours: 45	
Course Objectiv	ves	This course introduces computational complexit	y theory.	
Module 1			10 Hours	
Fundamental con	ncepts: p	roblems and algorithms, Turing machines, compu	ıtability.	
Module2			12 Hours	
Complexity Class	sses: P, I	NP and co-NP, Relationship between complexity	classes, Reduction and	
completeness, N	P-compl	ete problems, P vs NP.		
Module 3 12 Hours				
Diagonalization and Relativization. Space complexity: PSPACE and PSPACE-completeness; NL				
and NL-completeness. The polynomial hierarchy: optimization problems. Non-uniform				
complexity. Communication complexity and circuit lower bounds.				
Module 4 11 Hours			11 Hours	
Randomized con	Randomized computation: RP, BPP, ZPP. Error reduction. Probabilistic algorithms. Randomized			
space complexity. Approximation and Inapproximability. Interactive proofs.				
Reference	1. S. A	arora and B. Barak, Computational Complexity	: A Modern Approach,	
Books	Cam	bridge University Press, 2009,		
	2. C. H	. Papadimitriou, Computational Complexity, 1st e	edition, Addison Wesley,	
	1993) .		

Subject Code	Human Computer Interface	Credits: 3 (3-0-0)	
CS826	(HCI)	Total hours: 45	
Course	Human-Computer Interface (HCI) refers to the design, prototyping, and		
Objectives:	evaluation of user interfaces to computers. The following topics are covered by this course: human capabilities, interface technology, interface design methods and interface evaluation.		
Module 1		11 hours	

Human perception, human vision, Gestalt principles describing human visual perception, visual structure, color vision, peripheral vision, attention and memory, attention shape thought and action, recognition and recall, learning from experience, performing learned actions, problem

solving and calculation, factors affecting learning, time requirements.

Module 2

Licability of interactive systems guidelines principles and theories: development proc

Usability of interactive systems – guidelines, principles and theories; development processes – managing design processes, evaluating interface designs, software tools; interaction styles – direct manipulation and virtual environments, menu selection, form filling and dialog boxes, command and natural languages, interaction devices, collaboration; design issues – Quality of Service, balancing function and fashion, user manuals, online help and tutorials, information search and visualization; societal and individual impact of user interfaces.

Module 3 11 hours

Interaction design — introduction, the process, the user experience; understanding and conceptualizing interaction — conceptual models, interface metaphors, interaction types; cognitive aspects — cognition frameworks; social interaction; emotional interaction; interfaces — interface types, natural user interfaces, choosing interface.

Module 4 11 hours

Data gathering; data analysis, interpretation and presentation; practical issues in the process of interaction design; establishing requirements – data gathering and processing, task description, task analysis; design, prototyping and construction – conceptual design, physical design, scenarios, prototypes; evaluation – types of evaluation, evaluation case studies, inspections – heuristic evaluation and walkthroughs, analytics, predictive models; evaluation framework – DECIDE – a framework to guide evaluation.

- 1. B. Shneiderman, C. Plaisant, M. Cohen and S. Jacobs, *Designing the User Interface: Strategies for Effective Human-Computer Interaction*, 5th Edition, Person Education, 2009.
- 2. J. Johnson, Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules, Elsevier/Morgan-Kaufmann, 2010.
- 3. H. Sharp, Y. Rogers, J. Preece, *Interaction Design: Beyond Human Computer Interaction*, 3rd edition, Wiley, 2011.
- 4. D. Norman, *The Design of Everyday Things*, Currency/ Doubleday, 1990.

Course Curriculum

for

Master of Technology Programme

in

Electronics and Communication Engineering Department

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

Semester-wise Credit Distribution

Semester	Total Credits
I	19
II	17
III	14
IV	14
Total Credits	64

M.Tech. Program Name: VLSI

Semester-wise Distribution of the Courses

Semester I				
			Total Credits	Credits
SI. No.	Course Code	Course Name	(L-T-P)	
1	EC600	Digital IC Design	(3-0-0)	3
2	EC601	Analog IC Design	(3-0-0)	3
3	EC602	Semiconductor Device Theory and Modelling	(3-0-0)	3
4	EC603	Digital Signal Processing	(3-0-0)	3
5	EC604	IC Design Laboratory	(0-0-6)	3
6	EC605	Semiconductor Device Simulation Laboratory	(0-0-3)	2
7	EC606	Seminar	(0-0-3)	2
Total Credits				19

	Semester II				
			Total Credits	Credits	
SI. No.	Course Code	Course Name	(L-T-P)		
1	EC650	VLSI Testing and Testability	(3-0-0)	3	
2	EC651	VLSI Technology	(3-0-0)	3	
3		Elective I	(3-0-0)	3	
4		Elective II	(3-0-0)	3	
5	EC652	System Design Laboratory	(0-0-6)	3	
6	EC653	VIVA-VOCE	-	2	
7	HU650*	Communication Skills and Technical Writing	(1-0-2)	-	
Total C	Total Credits				

	Semester III			
			Total Credits	Credits
SI. No.	Course Code	Course Name	(L-T-P)	
1		Elective III	(3-0-0)	3
2		Elective IV	(3-0-0)	3
3	EC700	Major Project-I	(0-0-12)	8
Total Credits			14	

Semester IV				
			Total Credits	Credits
SI. No.	Course Code	Course Name	(L-T-P)	
1	EC750	Major Project-II	(0-0-21)	14
Total Credits		14		

List of Electives

Electives				
SI.	Course		Total Credits	
No.	Code	Course Name	(L-T-P)	Credits
1	EC800	Optoelectronics and Photonics	(3-0-0)	3
2	EC801	Architectural Design of IC	(3-0-0)	3
4	EC802	Digital Design using FPGA	(3-0-0)	3
5	EC803	System on CHIP	(3-0-0)	3
6	EC804	Mixed Signal Design	(3-0-0)	3
7	EC805	VLSI Embedded Systems	(3-0-0)	3
8	EC806	VLSI Design Automation	(3-0-0)	3
9	EC807	Compound Semiconductor Devices	(3-0-0)	3
10	EC808	Nano-electronic Device Engineering	(3-0-0)	3
11	EC809	Active Filter Design	(3-0-0)	3
12	EC810	Low Power VLSI Design	(3-0-0)	3
13	EC811	Power Management IC's	(3-0-0)	3
14	EC812	Advanced Topics in VLSI	(3-0-0)	3
15	EC813	Memory Design & Testing	(3-0-0)	3
16	EC814	IC for Broadband communication	(3-0-0)	3
17	EC815	CMOS RF IC Design	(3-0-0)	3
18	EC816	Advanced Antenna Theory	(3-0-0)	3
19	EC817	VLSI Signal Processing	(3-0-0)	3
20	EC818	Multi-rate Signal Processing	(3-0-0)	3

21	EC819	Multimedia Systems	(3-0-0)	3
22	EC820	Selected Topics in ECE - I		1
23	EC821	Selected Topics in ECE - II		2
24	EC822	Selected Topics in ECE - III	(3-0-0)	3

	Program Electives				
SI. No.	Course Code	Course Name	Total Credits (L-T-P)	Credits	
1	EC850	Data Structures and Algorithms	(3-0-0)	3	
2	EC851	Advanced Computer Architecture	(3-0-0)	3	
3	EC852	Optimization Techniques	(3-0-0)	3	
4	EC853	Linear Algebra	(3-0-0)	3	
5	EC854	Random Processes	(3-0-0)	3	

Core Subject Syllabus

Subject Code	Digital IC Daging	Credits: 3(3-0-0)
EC600	Digital IC Design	Total hours: 42
Course Objectives	To understand the fundamental properties of digital Integrate	ed circuits using basic
	MOSFET equations and to develop skills for various logic circuit	its using CMOS related
	design styles. The course also involves analysis of performance n	netrics.
Module 1	Implementation of strategies for digital ICs	10 hours
Custom Circuit design, C CMOs inverter, Power di	ell based and Array based design implementations. Static and Dyna ssipation, Logical effort.	mic Characteristics of
Module 2	Designing combinational and sequential circuits	14 hours
	ferent styles of logic circuits, Logical effort of complex gates, Static tes, Dynamic CMOS Logic. Timing metrics of sequential circuits, D	
Module 3	Interconnect and Timing Issues	12 hours
	nd performance estimation - Resistance, Capacitance aracteristics - Delay models –Timing issues in Digital circuits, Pow	ver dissipation. Impact
Module 4	Memory Design	6 hours
Read-Only Memories, Reell, Sense amplifiers. Reference Books	COM cells, Read-write memories (RAM), dynamic memory design.	, 6 transistor SRAM

- 1. Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic Digital Integrated Circuits A design perspective, Pearson, 2003.
- 2. M. Kang & Y. Leblebici, CMOS Digital Integrated Circuits, McGraw Hill, 1999.
- 3. John P. Uyemura, Introduction to VLSI Circuits, Wiley India Pvt. Ltd., 2012.
- 4. Eugene Fabricius, Introduction to VLSI Design, New Ed Edition, Tata McGraw Hill Education, 1990.
- 5. Material from the Journal of Solid-state Circuits and the International Solid-state Circuits Conference proceedings.

Analog IC Design	Credits: 3(3-0-0) Total hours: 42	
•	· ·	
CMOS amplifiers basics	12 hours	
_	This course covers the analysis and design of analog integrated basic building blocks to different implementations of the technology.	

Introduction to MOS Capacitances, passive components and their parasitics, small and large signal modelling and analysis. Different Single stage and Differential Amplifiers, Current Mirrors.

Module 2 Multi-stage amplifiers 12 hours

Telescopic and Folded cascode amplifiers, Slew-rate, Pole splitting, Two-stage amplifiers - analysis, Frequency response, Stability compensation, Common mode feedback analysis, feedback amplifier topologies.

Module 3 References 6 hours

Supply independent biasing, Bandgap reference, Constant-Gm biasing.

Module 4 Nonlinearity, Mismatch and Layout 10 hours

Noise: Types of Noise, noise model, Nonlinearity of Differential Circuits, Capacitor nonlinearity, Mismatch analysis, Offset cancellation techniques,

Layout Techniques

- 1. B. Razavi, Design of Analog CMOS Integrated Circuits, Mcgraw-Hill Education, 2002.
- 2. David Johns & Ken Martin, Analog Integrated Circuit Design, Wiley-India, 2008.
- 3. P. Allen & D. R. Holberg, CMOS Analog Circuit Design, Oxford Press, 2011.
- 4. P. Gray, P. Hurst, S. Lewis, R. Meyer, *Analysis and Design of Analog Integrated Circuits*, Wiley-India, 2008
- 5. Gregorian and Temes, Analog MOS Integrated Circuits for Signal Processing, Wiley-India, 2008.

Subject Code	Semiconductor Device Theory and	Credits: 3(3-0-0)	
EC602	Modelling	Total hours: 42	
Course Objectives	To familiarize with the physical concepts behind the operation devices and also covers high performance, high speed semicond VLSI systems.		
Module 1	Concentration and motion of carriers in Semiconductor bulk	8 hours	
Valence band and Energy band models of intrinsic and extrinsic semiconductors. Thermal equilibrium carrier			

concentration. Carrier transport phenomena, Recombination and generation.

10 hours Module 2 Quantitative theory of PN junctions

Band diagrams, electrostatics of a p-n junction diode, ideal static I-V characteristics and deviations including breakdown, ac small signal equivalent circuit, switching characteristics, Schottky junctions, Ohmic contacts.

Module 3	BJT	10 hours
		i

Bipolar device Design and Modeling, Small and large signal models, Non-ideal effects, breakdown voltage, charge storage, Multidimensional effects, Bipolar Device optimization & performance factors for digital and analog circuits, Brief overview of BJT CAD SPICE model and VBIC model introduction.

Module 4	MOSFET Alternate MOS structures	14 hours

Analysis of MOSFET, Calculation of threshold voltage. Static I-V characteristics of MOSFETs, MOSFET capacitances, C-V characteristics, Channel length modulation, body bias effect and short channel effects, MOS switch, MOSFET models for calculation, Alternate MOS structures (SOI devices and Multi-gate MOSFETs) in brief.

- 1. M. S. Tyagi, Introduction to Semiconductor materials and Devices, John Wiley & Sons, 1991.
- 2. S. M. Sze, Modern Semiconductor Device Physics, Wiley, 1998.
- 3. Yuan Taur & Tak H Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998.
- 4. Ben G. Streetman, Solid State Electronic Devices, Prentice Hall, Fifth Edition, 2000.
- 5. J. P. Colinge, FinFETs and other multigate transistors, Springer, 2007.

Subject Code	Digital Signal Processing	Credits: 3(3-0-0)
EC603	Digital Signal Processing	Total hours: 42
Course Objectives	To expose to the basic concepts in digital processing system design with emphasis on the digital filter design and related algorithmic and implementation issues. Specifically, focus will be on FIR, IIR Filters classical and optimized design techniques, issues related to finite word length and advantage of specific structures for implementation. Various specific digital filters will be discussed and their use for some signal processing applications will be also discussed.	
Module 1	Review of Signals and Systems	8 hours
Introduction to CT signals and systems, DT signals and systems, Frequency analysis of signals, Transform domain analysis of LTI systems, DFT- Properties, FFT algorithms.		
Module 2	Design of Digital Filters	12 hours
Digital filter structures, IIR Digital filter design and implementation, FIR digital filter design and implementation, Digital filter applications, Optimization Techniques in Filter Design.		
Module 3	Finite Word length problems in Digital Filters	12 hours
Representation of binary numbers in digital filters, Fixed and Floating point representation, Error due to quantization, truncation and round off, Implementation of different structures, Issues associated with IIR filters.		
Module 4	Introduction to Multi-rate Signal Processing	10 hours
Sampling rate conversion, Decimation by an integer factor, Interpolation by an integer factor, Sampling rate conversion by a rational factor, Sampling rate converter as a time variant system, Practical structures for		

Reference Books

- 1. John G. Proakis, and Dimitris G. Manolakis, *Digital Signal Processing Principles, Algorithms and Applications*, Pearson, 2002.
- 2. P.S.R. Diniz, E. A. B. da Silva, and S. L. Netto, *Digital Signal Processing System Analysis and Design*, Cambridge, 2010.
- 3. Sanjit K. Mitra, Digital Signal Processing A Computer-Based Approach, McGraw Hill, 2003.
- 4. Vinay K. Ingle and John G. Proakis, *Essential of Digital Signal Processing using MATLAB*, Cengage Learning, 2012.
- 5. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Pearson-Education, Delhi, 2004.
- 6. N. J. Fliege N J, Multirate Digital Signal Processing, John Wiley and sons, 1994.

decimators and interpolators. Multi stage implantation of digital filters.

Subject Code		Credits:3 (0-0-6)
EC604	IC Design Laboratory	Total hours: 84
Course Objectives	This course introduces CMOS schematic design, layout technique tools, netlist synthesis, place & route and timing verification. introduced in this course.	
Module 1	Digital IC design	

Schematic simulation of CMOS Inverter, power and delay issues and Layout techniques. Pre layout simulation, Parasitic extraction, Post layout simulation.

Design of Adders, Multiplier and Shifters, Synthesis with timing constraints, Pre layout simulation, Floor planning, Placement, Routing, Parasitic extraction, Post layout simulation.

Standard cell layout techniques.

Module 2 Analog IC design

Single stage amplifiers: Completer characterization of Common source amplifier, Common drain amplifiers, Common Gate amplifiers, Cascode amplifiers.

Differential amplifiers: Completer characterization of Single stage differential amplifiers, Folded Cascode, Telescopic amplifiers

Two-stage amplifiers. Layout techniques

- 1. James R.Armstrong, F.Gail Gray, *VHDL Design Representation and Synthesis*, Pearson Education, 2007.
- 2. Jan M Rabaey, *Digital Integrated Circuits A Design Perspective*, Prentice Hall, Second Edition, 2005.
- 3. Naveed A. Sherwani, Algorithms for VLSI Physical Design Automation, Springer, Third Edition, 1999.
- 4. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Education, 2002.
- 5. Allan Hastings, *The Art of Analog Layout*, Prentice Hall, Second Edition, 2005.

Subject Code	Semiconductor Device Simulation	Credits: 3 (0-0-3)
EC605	Laboratory	Total hours: 42
Course Objectives	This course covers the analysis and design of pn diode, BJT, device structures.	MOSFET and novel
Module 1	2D simulations	

Use device simulator to generate a pn diode structure. Simulate I-V characteristics and also get the C-V characteristics. Find the carrier concentration, electron and hole concentration, electric field, potential distribution (at different biases) and doping distribution across the structure. Check the current and capacitance values with hand calculations. Extract Vbi from capacitance characteristics. Freeze different models one used. Process simulates the same structure with same/similar doping levels. Exporting the process simulated structure in to device simulator, extract I-V and C-V characteristics and make similar observations as in device simulation and explain the differences if any.

Bipolar devices are integral part of high speed circuit. Any given MOSFET has a parasitic BJT. If not taken care in device design, the parasitic BJT may lead to very different behavior. The aim of these experiments is to understand the different effects in BJT. For a lateral/planar BJT, the following experiments can be performed:

- 1) Variation in α , β dc and γ with base doping and base width and respective current characteristics
- 2) Variation in α , β dc and γ with emitter width and respective current characteristics

Module 3 3D MOS device

Simulate a 3D MOS device (FINFET/SOI/Piller MOSFET, Tri-gate MOSFET GAA MOSFET) and obtain their characteristics.

- 1. User Manuals of respective software.
- 2. Jean- Pierrie Colinge, Silicon-on-insulator Technology: Materials to VLSI, Springer, Second Edition, 1997.
- 3. M.S. Tyagi, Introduction to Semiconductor materials and Devices, John Wiley & Sons, 1991.
- 4. J. P. Colinge, FinFETs and other multigate transistors, Springer, 2007.

Subject Code EC650	VLSI Testing and Testability	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	This course covers introduction to the concepts and techniques of VLSI (Very Large Scale Integration) design verification and testing. Details of test economy, fault modeling and simulation, defects, Automatic Test Pattern Generation (ATPG), design for testability, and built-in self-test (BIST) also covered.	
Module 1	Fundamental of VLSI testing	12 hours

Basic of VLSI testing, Scope of testing and verification in VLSI design process, Issues in test and verification of complex chips, embedded cores and SOCs.

Module 2 Fault Modeling and testing 12 hours

Fault models, fault detection and redundancy, fault equivalence and fault location, fault dominance, automatic test pattern generation, Design for testability, Scan design, Test interface and boundary scan. System testing and test for SOCs. Delay fault testing.

Module 3Test automation and Design verification10 hours

BIST for testing of logic and memories, Test automation, Design verification techniques based on simulation, analytical and formal approaches.

Module 4 Functional and Timing verification 8 hours

Functional verification, Timing verification, Formal verification, Basics of equivalence checking and model checking, Hardware emulation.

- 1. M. Abramovici, M. A. Breuer and A. D. Friedman, *Digital Systems Testing and Testable Design*, Jaico Publishing House, 1990.
- 2. T. Kropf, Introduction to Formal Hardware Verification, Springer Verlag, 2000.
- 3. Neil H. E. Weste and Kamran Eshraghian, *Principles of CMOS VLSI Design*, Addison Wesley, Second Edition, 1993.
- 4. Neil H. E. Weste and David Harris, *Principles of CMOS VLSI Design*, Addison Wesley, Third Edition, 2004.
- 5. M. Bushnell and V. D. Agrawal, *Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits*, Kluwer Academic Publishers, 2000.

Subject Code	VLSI Technology	Credits: 3 (3-0-0)	
EC651		Total hours: 42	
Course Objectives	This course aims at understanding the manufacturing methods	and their underlying	
	scientific principles in the context of technologies used in VLSI ch	ip fabrication.	
Module 1	Crystal Growth, Wafer manufacturing and Clean rooms	12 hours	
CMOS Process flow starti	ing from Substrate selection to multilevel metal formation, compari	son between bulk and	
SOI CMOS technologies.			
Crystal structure, Czoch manufacturing.	Crystal structure, Czochralski and FZ growth methods, Wafer preparation and specifications, SOI Wafer manufacturing.		
Clean rooms, wafer of Measurement methods.	eleaning and gettering: Basic concepts, manufacturing meth	ods and equipment,	
Module 2	Photolithography and Oxidation	10 hours	
Photolithography: Light sources, Wafer exposure systems, Photoresists, Baking and development, Mask making,			
Measurement of mask features and defects, resist patterns and etched features.			
Oxidation: Wet and Dry oxidation, growth kinetics and models, defects, measurement methods and			
characterization.	,		
Module 3	Diffusion and Ion-implantation	8 hours	
Diffusion: Models for diffused layers, Characterization methods, Segregation, Interfacial dopant pileup, oxidation			

Diffusion: Models for diffused layers, Characterization methods, Segregation, Interfacial dopant pileup, oxidation enhanced diffusion, dopant-defect interaction.

Ion-implantation: Basic concepts, High energy and ultralow energy implantation, shallow junction formation & modeling, Electronic stopping, Damage production and annealing, RTA Process & dopant activation

Module 4	Thin film Deposition, Etching Technologies and Back-end	12 hours
	Technology	

Thinfilm Deposition: Chemical and physical vapour deposition, epitaxial growth, manufacturing methods and systems, deposition of dielectrics and metals commonly used in VLSI, Modeling deposition processes.

Etching Technologies: Wet etching, Plasma etching, RIE, Etching of materials used in VLSI, Modeling of etching. **Back-end Technology:** Contacts, Vias, Multi-level Interconnects, Silicided gates and S/D regions, Reflow & planarization, Multi-chip modules and packaging.

- 1. James Plummer, M. Deal and P.Griffin, Silicon VLSI Technology, Prentice Hall Electronics, 2000.
- 2. Stephen Campbell, The Science and Engineering of Microelectronics, Oxford University Press, 1996.
- 3. S. M. Sze (Ed), VLSI Technology, McGraw Hill, Second Edition, 1988.
- 4. S.K. Ghandhi, VLSI Fabrication Principles, John Wiley Inc., New York, 1983.
- 5. C.Y. Chang and S. M. Sze (Ed), *ULSI Technology*, McGraw Hill Companies Inc, 1996.

Subject Code	System Degian Laboratory	Credits:3 (0-0-6)
EC652	System Design Laboratory	Total hours: 84
Course Objectives	This course covers the Laboratory topics based on the core a	and elective subjects.
	Example syllabus based on electives like System on chip or CN	MOS RF IC is given
	below.	
	 a) System on chip lab course introduces CAD tool for system design an implementation of Prototype SoC platform using FPGA and ARM processor boards. Xilinx ISE, EDK and ARM tool-chain will be used in this course. b) The objective of this course is to cover the design issue related to RF IO Design. 	
Module 1	System on chip	

Development of embedded systems in both ARM and FPGA platforms. Examples on multiprocessor environments. Application case studies of signal processing applications FFT, FIR, DCT, JPEG, H.264 etc. Custom IP interfacing techniques for different protocols for above applications. Embedded OS development on FPGA/ARM platforms and device driver development.

Mini Project

Module 2	RF IC Design	ı

Characterization of a MOS transistor for RF, Design of a tuned LNA and performance analysis, Design of a VCO and performance analysis, Design of a mixer based on a Gilbert cell.

Mini Lab Projects

- 1. Doug Amos, Austin Lesea and Rene Richter, FPGA-Based Prototyping Methodology Manual Best Practices in Design-for-Prototyping, Synopsys, Inc, Mountain View, 2010.
- 2. Ron Sass and Andrew G. Schmidt, *Embedded Systems Design with Platform FPGAs Principles and Practices*, Elsevier Inc, 2010.
- 3. J. Staunstrup and W. Wolf, *Data books of ARM7/ARM9*, *Hardware/Software Co-Design: Principles and Practice*, Kluwer Academic Publishers, 1997.
- 4. Silage, Dennis, Embedded Design Using Programmable Gate Arrays, Book stand Publishing, 2008.
- 5. K.V.K.K. Prasad, *Embedded Real Time Systems: Concepts, Design & Programming*, Dreamtech Publication, 2003.
- 6. G. DeMicheli, R. Ernst, and W. Wolf, *Readings in Hardware/Software Co-Design*, Academic Press, 2002.
- 7. User manual of the tools for RF IC design.
- 8. Razavi, B., RF microelectronics, 2nd ed. int. Pearson Education International, 2012.
- 9. Lee, T.H., *The design of CMOS radio-frequency integrated circuits*. 2nd ed. Cambridge University Press, 2004.

Subject Code	Seminar	Credits: 2 (0-0-3)
EC606		
Course Objectives	Students will have to choose a topic in current VLSI related areas and prepare a write up along with suitable presentation and demonstrated areas.	3 1

Subject Code	VIVA-VOCE	Credits: 2
EC654		
Course Objectives	Students will have to attend for a viva-voce in front of all the facult for the evaluation of the subjects studied in the first year (I and suitable demonstration.	•

Subject Code	Communication Skills and Technical	Credits: 0 (1-0-2)	
HU650* (Audit Course)	Writing	Total hours: 45	
Course Objectives	This course is meant for developing Professional Communic Writing Skills among the students. The Lab hours will give en Presentation and Seminar (on different emerging topics) followed and discussion.	nphasis on Technical	
Module 1		12 hours	
Introduction to Comm	nunication-Definition-Types-Classifications, Writing Exercises	-Paragraph- Précis-	
Summary/Executive Summary/Abstract			
Module 2		8 hours	
Technical Reports-Types-	Technical Reports-Types-Format-Nuances to be followed		
Module 3		10 hours	
Preparation of Technical	Document-Reports-Instruction Manuals-Project Proposal (Prefato	ory Part- Main Part-	
Terminal Section)			
Module 4		15 hours	
Presentation of Technical	Presentation of Technical Report (Kinesics, Proxemics, and Professional Ethics)		

- 1. Raman and Sharma, Communication Skills, OUP, 2011.
- 2. Mandel, Steve, *Technical Presentation Skills: A Practical Guide for Better Speaking* (Revised Edition), Crisp Learning, 2000.
- 3. Wood, Millett, The Art of Speaking, Drake Publishers, 1971.
- 4. Lencioni, Patrick, *The Five Dysfunctions of a Team*, John Wiley and Sons, 2006.

Subject Code EC800	Optoelectronics and Photonics	Credits: 3(3-0-0) Total hours: 42
Course Objectives	This course will cover basic laser theory, semiconductor physics, optical properties of semiconductors and quantum wells, optical detection and noises, electromagnetic waves. The primary emphasis will be on semiconductor materials and devices.	
Module 1	Semiconductor lasers	10 hours

Semiconductor lasers for optical fiber communications, Fabry-Perot cavity, heterostructure semiconductor lasers, single frequency semiconductor lasers, semiconductor lasers for coherent systems. Distributed feedback in Ga-As-P lasers.

Module 2	Photo detectors and Optical Receiver Operation	12 hours

Device structure and fabrication, photo-detectors for fiber optics, reverse bias photo-detectors, dark current, quantum efficiency, signal to notice ratio, types of detectors. Receivers for digital fiber optic communication systems: basic components, detectors for digital fiber optic receivers, PIN diode, Avalanche photodiode, Fronts ends for digital fiber optic receivers, equalizer for optical communication, receivers, PIN-FET receivers for longer wavelength communication systems.

Module 3	Transmission System	12 hours

Coherent optical fiber transmission systems, coherent detection principles, comparison of direct and coherent performance, homodyne and heterodyne systems. Nonlinear process in optical fibers, phase matching in waveguide, phase matched harmonic generation in waveguides. Second harmonic generation (SHG) in integrated optics, Cerenkov configuration SHG.

Module 4	Sensor and Devices	8 hours
----------	--------------------	---------

Optical fiber sensor and devices, intensity modulation through light interruption, distributed sensing with fiber optics. Basic principles of interferometric optical fiber sensor, signal processing in mono mode fiber optic sensor, photonic band gap materials.

- 1. G. Keiser, Optical fiber communication, McGraw-Hill, 2008.
- 2. J. Seniar, Optical fiber Communication, Prentice-Hall International, 1985.
- 3. A. K. Ghatak, *Introduction to optical fiber*, Cambridge University Press, 1998.
- 4. Max Born & Emil Wolf, *Principles of Optics*, Cambridge University Press, 1999.
- 5. Saleh & Teich, Fundamentals of Photonics, Wiley-Interscience, 2007.

Architectural Design of ICs	Credits: 3(3-0-0) Total hours: 42
This course covers algorithm, architecture and circuit design trade-offs to optimiz power, performance and area.	
	12 hours
	This course covers algorithm, architecture and circuit design trad-

VLSI Design flow, general design methodologies, Mapping algorithms into Architectures: Signal flow graph, data dependences, data-path synthesis, control structures, critical path and worst case timing analysis, concept of hierarchical system design; Data-path element: Data-path design philosophies, fast adder, multiplier, driver etc.

Module 2 12 hours

Data-path optimization, application specific combinatorial and sequential circuit design, CORDIC unit; Pipeline and parallel architectures: Architecture for real time systems, latency and throughput related issues, clocking strategy, power conscious structures, array architectures; Control strategies: Hardware implementation of various control structures, micro-programmed control techniques, VLIW architecture

Module 3 10 hours

Testable architecture: Controllability and observability, boundary scan and other such techniques, identifying fault locations, self-reconfigurable fault tolerant structures.

Module 4 8 hours

Trade-off issues: Optimization with regard to speed, area and power, asynchronous and low power system design, ASIC (application specific integrated circuits) and ASISP (application specific instruction set processors) design

- 1. U. Meyer-Baese, *Digital Signal Processing with Field Programmable Gate Arrays*, Springer-Verlag, 2001.
- 2. S. Y. Kung, VLSI Array Processors. Prentice, Prentice-Hall, 1988.
- 3. K. Parhi, VLSI Digital Signal Processing Systems, Wiley & Sons, 1999.
- 4. J. Rabaey, A. Chandrakasan and B. Nikolic, *Digital Integrated Circuits: A Design Perspective*, Prentice Hall, Second Edition, 2003.

Subject Code		Credits: 3(3-0-0)
EC802	Digital Design using FPGAs	Total hours: 42
Course Objectives	To learn field programmable gate array (FPGA) technologies and uti associated computer aided design (CAD) tools. To synthesize digital systewith testing strategies and construct test benches.	
Module 1	Introduction	08 hours

Digital system design options and trade-offs, Design methodology and technology overview, High Level System Architecture and Specification: Behavioural modelling and simulation.

Module 2 Tool for logic Implementation 12 hours

Hardware description languages, combinational and sequential design, state machine design, synthesis issues, test benches.

Overview of FPGA architectures and technologies: FPGA Architectural options, granularity of function and wiring resources, coarse vs fine grained, vendor specific issues (emphasis on Xilinx / Altera).

Module 3 Implementation on FPGA 12 hours

Logic block architecture: FPGA logic cells, timing models, power dissipation I/O block architecture: Input and Output cell characteristics, clock input, Timing, Power dissipation, Programmable interconnect - Partitioning and Placement, Routing resources, delays.

Module 4 Applications 10 hours

Applications - Embedded system design using FPGAs, DSP using FPGAs, Dynamic architecture using FPGAs, reconfigurable systems, application case studies. Simulation / implementation exercises of combinational, sequential and DSP kernels on Xilinx / Altera boards.

- 1. M. J. S. Smith, Application Specific Integrated Circuits, Pearson, 2000.
- 2. Peter Ashenden, Digital Design using Verilog, Elsevier, 2007.
- 3. W. Wolf, FPGA based system design, Pearson, 2004.
- 4. Clive Maxfield, *The Design Warriors's Guide to FPGAs*, Elsevier, 2004.

Subject Code EC803	System on Chip Design	Credits: 3(3-0-0) Total hours: 42
Course Objectives	This course covers SoC design and modeling techniques with emphasis on a exploration, assertion-driven design and the concurrent development of ha embedded software.	
Module 1	Low-level modeling and design refactoring	12 hours

Verilog RTL Design with examples. Simulation styles (fluid flow versus eventing). Basic RTL to gates synthesis algorithm. Using signals, variables and transactions for component inter-communication. SystemC overview. Structural hazards, retiming, refactoring.

Bus and cache structures, DRAM interface. SoC parts. Design exploration. Hardware/software interfaces and codesign. Memory maps. Programmer's model. Firmware development. Transactional modeling. Electronic systems level (ESL). IP-XACT. Instruction set simulators, cache modeling and hybrid models.

Module 3 Assertions for design, testing and synthesis 10 hours

Assertion based design: testing and synthesis. PSL/SVA assertions. Temporal logic compilation to FSM. Glue logic synthesis. Combinational and sequential equivalence. High-level Synthesis and Automated Assembly.

Module 4 Power control and power modeling 8 hours

Power consumption formulae. Pre-layout wiring estimates. Clock gating. Frequency and voltage dynamic scaling.

- 1. Lin, Y-L.S. Essential issues in SOC design: designing complex systems-on-chip, Springer, 2006.
- 2. Grotker, T., Liao, S., Martin, G. & Swan, S. System design with SystemC, Springer, 2002.
- 3. Ghenassia, F. *Transaction-level modeling with SystemC: TLM concepts and applications for embedded systems*, Springer, 2010.
- 4. D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner, *Embedded System Design: Modeling, Synthesis, Verification*, Springer, 2009.
- 5. G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

Subject Code	Mixed Signal Design	Credits: 3(3-0-0)
EC804	Mixed Signal Design	Total hours: 42
Course Objectives	This course covers theory and concepts to Integrate both Analog and Digital subsystem on a single monolithic chip to create an electronic system. The syllabus including primitive cells, biasing and references, op-amp designs, switched capacitor A/D D/A converters, and clock generation systems for digital and mixed signal.	
Module 1	Filter basics	10 hours

Analog continuous-time filters: passive and active filters, Basics of analog discrete-time filters and Z-transform, Sample and Hold Circuits, Switched-capacitor filter architectures.

Module 2 ADC and DAC 12 hours

Basics ADC, Successive approximation ADCs, Flash ADC, folding-and-interpolation ADC, Pipeline ADC, Introduction/Characterization of DACs, various architectures of high speed DAC

Module 3 Over sampled ADC 10 hours

Over sampled ADC: Working principle and architecture of a Sigma-delta ADC, multistage sigma-delta converters, Design of decimation filter.

Module 4 Advanced Topics 10 hours

VCO, Loop Filter, Charge pump, Precautionary measures for integrating analog and digital modules within an IC, floor planning and physical design of mixed signal IC design.

- 1. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Education, 2002.
- 2. David Johns & Ken Martin, Analog Integrated Circuit Design, Wiley-India, 2008.
- 3. P. Allen & D. R. Holberg, CMOS Analog Circuit Design, Oxford Press, 2011.
- 4. B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
- 5. Schreier & Temes, Understanding Delta-Sigma Data Converters, Wiley-IEEE Press, 2004.
- 6. Franco Maloberti, Data Converters, Springer-2007.
- 7. Jacob Baker, CMOS Mixed Signal Circuit Design, Wiley-IEEE Press, Second Edition, 2009.

Subject Code		Credits: 3(3-0-0)
EC805	VLSI & Embedded systems	Total hours: 42
Course Objectives	The course covers prototype development of embedded VLSI system. The course focuses on software application by mapping of functions onto hardware components. I addition to the conceptual foundations, this course also covers various design methodologies and platforms based on ARM and FPGA.	
Module 1	Embedded System on chip platforms	5 hours

Introduction to embedded system and design methodology for ARM and FPGA devices, Prototype development of embedded application advantages, design challenges, Differences between General Purpose Processor, Digital signal Processor, ASIC and FPGA based System On Chip.

Module 2	MPSoC platform for FPGAs and ARM	25 hours

Embedded Computer Organization, emphasis on different embedded processors and multiprocessor and architectures. Application profiling, Hardware-software co-design, Simple & Autonomous I/O Controllers, Custom IP (Intellectual-Property) hardware design for System-On-a-Chip; Design of Master and Slave Bus protocols based IPs, Bus protocols (AXI, PLB, FSL, NPI etc.). Concepts & types of Memory and interfacing, Cache Memory, Cache mapping techniques and impact on system performance, Design Metrics, General purpose peripherals (interrupt, timer, clock, DMA etc.) and special purpose peripherals Serial Transmission techniques & Standards, Wireless protocols, and advanced high speed buses.

Module 3	Analysis and case-studies	12 hours

Architecture exploration of IP, System Level Design Trade-offs, Power, Energy, Performance and Area. Frequency, memory and power, Productivity, Reusability, Clocking and Synchronisation issues, Co-simulation using different simulators, system level optimization, Design for Test, Advanced design Methodologies using HLS for an application like JPEG 2000, MJPEG, H.264, Embedded operating systems for SoC platforms.

- 1. Ron Sass and Andrew G. Schmidt, *Embedded Systems Design with Platform FPGAs Principles and Practices*, Elsevier Inc, 2010.
- 2. Doug Amos, Austin Lesea and Rene Richter, FPGA-Based Prototyping Methodology Manual Best Practices in Design-for-Prototyping, Synopsys, Inc, Mountain View, 2010.
- 3. Embedded System Design: A unified Hardware/Software Introduction, Frank Vahid, and Tony Givargis.
- 4. Lin, Y.L.S., Essential issues in SOC design: designing complex systems-on-chip, Springer, 2006.
- 5. Sloss, Andrew, Dominic Symes, and Chris Wright, ARM system developer's guide: designing and optimizing system software. Morgan Kaufmann, 2004.
- 6. G. DeMicheli, R. Ernst, and W. Wolf, *Readings in Hardware/Software Co-Design*, Academic Press, 2002.
- 7. Peter J. Ashenden, *Digital Design: An Embedded Systems Approach Using Verilog*, Morgan Kaufmann Publication, 2008.

Subject Code EC806	VLSI Design Automation	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	The objective of physical design automation is to carry out mapping of the given structural representation into layout representation optimally using computers so that the resulting layout satisfies topological, geometric, timing and power-consumption constraints of the design.		
Module 1	VLSI CAD basics	12 hours	

VLSI CAD Flow, Chip Layout styles, High-level synthesis, Algorithm Design Approaches for VLSI CAD, models for physical design, Graph theory fundamentals.

Module 2	Partitioning and Routing	12 hours
----------	--------------------------	----------

Partitioning, Floorplanning-tutte's approach, Graph-theoretic models of floorplans, Placement-general problem, quality metrics, Gordian, Design Rule Check, Compaction, Clock and Power Routing–Global routing, Channel routing.

Module 3 Optimization and Synthesis 10 hours

Optimization techniques, Logic synthesis and Technology Mapping-Dynamic Programming, Dagon, VLSI and Circuit Design Issues including power and delay analysis.

Module 4 New topics in VLSI CAD 8 hours

Design consideration for Analog and Mixed Signal Design. Emerging topics in the VLSI CAD.

- 1. S. M. Sait, and H. Youssef, *VLSI Physical Design Automation: Theory and Practice*, World Scientific, 1999
- 2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, MIT Press, Third Edition, 2009.
- 3. C. J. Alpert, D. P. Mehta, S. S. Sapatnekar, *Handbook of Algorithms for Physical Design Automation*, Auerbach Publications, 2008.
- 4. Sung Kyu Lim, Practical Problems in VLSI Physical Design Automation, Springer, 2008.
- 5. Naveed A Sherwani, Algorithms for VLSI Physical Design Automation, Third Edition, 1998.

Subject Code EC807	Compound Semiconductor Devices	Credits: 3 (3-0-0) Total hours: 42	
Course Objectives	The goal of this course is to impart the elements of III-V compound semiconductor materials and their related electronic and photonic devices.		
Module 1	Introduction to compound semiconductor	12 hours	

Compound semiconductor crystals, structural, optical properties and electrical properties, free carrier concentration and Fermi-Dirac integral, III-V alloys, Fermi level pinning, theories of barrier formation and of current flow, diffusive vs. ballistic flow; contrasts with p-n diodes.

Module 2 Heterostructures 12 hours

E-x Profiles, modulation doping. Conduction parallel to heterojunction; mobility in semiconductors and carrier scattering mechanisms, Conduction normal to junction: I-V models and characteristics.

Module 3 MESFETs 10 hours

Basic concept, models for terminal characteristics; accounting for velocity saturation. Dynamic models: large signal switching transients; small signal, high f models. Fabrication sequences; application-specific designs, examples of fabrication sequences.

Module 4 HFETs & HBTs 8 hours

Basic device, theory, Deep level problem, non-ideal behaviour, pseudomorphic solution, RF characteristics,.

- 1. M. S. Shur, M. S, *Physics of Semiconductor Devices*, Prentice-Hall, 1990.
- 2. Adachi, Sadao, *Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP*, John Wiley & Sons, 1992.
- 3. S. M. Sze, High Speed Semiconductor Devices, Wiley, 1990.
- 4. S. M. Sze, *Physics of Semiconductor Devices*, Wiley, Second Edition, 1981.

Subject Code	Nano-Electronic Device Engineering	Credits: 3(3-0-0)
EC808		Total hours: 42
Course Objectives	This course will introduce the rapidly developing field of nano-engineering materials and various device structures with special focus on their electronic properties.	
Module 1	Device Physics and Introduction to scaling issues	12 hours

Challenges going to sub-100 nm MOSFETs – fundamental limits for MOS operation, SCEs and DIBL effects, sub-threshold current, velocity saturation, Oxide layer thickness, tunneling, High-K gate dielectrics, effects of high-K gate dielectrics on MOSFET performance, power density, non-uniform dopant concentration, interconnect and lithography issues.

Module 2 Novel Device Structures

12 hours

Novel MOS-based devices – Multiple gate MOSFETs, Silicon-on-nothing, Silicon-on-insulator devices, FD SOI, PD SOI, FinFETs, vertical MOSFETs, strained Si devices. SiGe HBTs.

Module 3 Hetero structure based devices

10 hours

Hetero structure based devices – Type I, II and III Heterojunction, Si-Ge heterostructure, hetero structures of III-V and II-VI compounds - resonant tunneling devices, MODFET/HEMT, Carbon nanotubes based devices – CNFET, characteristics, Spin-based devices – spinFET, characteristics.

Module 4 Quantum Effects

8 hours

Quantum structures – quantum wells, quantum wires and quantum dots, Single electron devices – charge quantization, energy quantization, Coulomb blockade, Coulomb staircase, Bloch oscillations

- 1. Mircea Dragoman and Daniela Dragoman, *Nanoelectronics Principles & devices*, Artech House Publishers, 2005.
- 2. Karl Goser, Nanoelectronics and Nanosystems: *From Transistors to Molecular and Quantum Devices*, Springer 2005.
- 3. Mark Lundstrom and Jing Guo, *Nanoscale Transistors: Device Physics, Modeling and Simulation*, Springer, 2005.
- 4. Vladimir V Mitin, Viatcheslav A Kochelap and Michael A Stroscio, *Quantum heterostructures*, Cambridge University Press, 1999.
- 5. S. M. Sze (Ed), High speed semiconductor devices, Wiley, 1990.
- 6. H.R. Huff and D.C. Gilmer, *High Dielectric Constant Materials for VLSI MOSFET Applications*, Springer 2005.
- 7. B. R. Nag, *Physics of Quantum Well Devices*, Springer 2002.
- 8. E. Kasper, D. J. Paul, Silicon Quantum Integrated Circuits Silicon-Germanium Heterostructures Devices: Basics and Realisations, Springer, 2005.

Subject Code	Active Filter Design	Credits: 3(3-0-0)	
EC809	Active ritter Design	Total hours: 42	
Course Objectives	To understand the fundamental concepts involved in the design of Continuous-time filters. To develop the skills required to design and verify the various filter circuit using op-amps and OTA's.		
Module 1	Filter Fundamentals	10 hours	
Filter Characterization, Continuous-Time Filter Functions, Steps in Filter design, Butterworth, Chebyshev & Inverse-Chebyshev filter response and pole locations. The Approximation Problem.			
Module 2	Ladder filter structures	10 hours	
LC ladder filter - prototype & synthesis; Frequency transformation of low-pass filter. Active elements, Impedance converters, Characteristics of IC op-amps, The Ideal Operational Transconductance Amplifier (OTA).			
Module 3	Realizations of active filters	12 hours	
Active-RC filters, Gm-C filters- Elementary Transconductance Building blocks, off-set problems, Limitations of opamp based filters. Characterization of on-chip integrated continuous time filters.			
Module 4	Switched capacitor circuits	10 hours	
Switched capacitor filters- First-order building blocks- Second order sections.			

- 1. R. Schaumann and M.E. Van Valkenburg, *Design of Analog Filters*, Oxford University Press, 2003.
- 2. P. V. Ananda Mohan, Current-Mode VLSI Analog Filters Design and Applications, Birkhauser, 2003.
- 3. Gobind Daryanani, Properties of Active networks synthesis and Design, Wiley, First Edition, 1976.
- 4. M.E. Van Valkenburg, *Analog Filter Design*, Oxford University Press, 1995.
- 5. T. Deliyannis, Y. Sun and J. K. Fidler, Continuous-Time Active Filter Design, CRC Press, 1998.
- 6. Material from the Journal of Solid-state Circuits and the International Solid-state Circuits Conference proceedings.

Subject Code	I D VICID	Credits: 3 (3-0-0)
EC810	Low-Power VLSI Design	Total hours: 42
Course Objectives	To understand the critical requirements and implementation circuits. The course also covers critical issue related to microelectronic circuits.	•
Module 1	Introduction	08 hours
Introduction: Need for low power VLSI chips, Sources of power dissipation on Digital Integrated circuits,		
Emerging Low power approaches. Device & Technology Impact on Low Power: short circuit and leakage in		
CMOS, Dynamic dissipation in CMOS.		
Module 2	Low-Voltage CMOS Circuits	10 hours

Introduction, Design style, Leakage current in Deep sub-micron transistors, device design issues, minimizing short channel effect, Low voltage design techniques using reverse Vgs, steep sub threshold swing and multiple threshold voltages, Testing with elevated intrinsic leakage, multiple supply voltages.

Module 3	Circuit and logics	12 hours
----------	--------------------	----------

Low Power Circuits: Transistor and gate sizing, network restructuring and Reorganization, Special Flip Flops & Latches design, Low power digital cells library.

Logic level- Gate reorganization, signal gating, logic encoding, state machine encoding, pre-computation logic.

Module 4 Architecture and system	12 hours
----------------------------------	----------

Low power Architecture & Systems: Power & performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, low power arithmetic components.

Adiabatic Computation, Pass Transistor Logic Synthesis.

- 1. Gary K. Yeap, Practical Low Power Digital VLSI Design, KAP, 2002
- 2. Kaushik Roy, and Sharat Prasad, Low-Power CMOS VLSI Circuit Design, Wiley, 2000.
- 3. Anantha P. Chandrakasan, and Robert W. Brodersen, *Low Power Digital CMOS Design*, Kluwer Academic Publications, 1995.
- 4. Rabaey, and Pedram, Low Power Design Methodologies, Kluwer Academic, 1997
- 5. Philip Allen, and Douglas Holberg, CMOS Analog Circuit Design, Oxford University Press, 2002.

Subject Code	Darrian Managament ICa	Credits: 3(3-0-0)
EC811	Power Management ICs	Total hours: 42
Course Objectives	This course covers operation principles of different dc-dc converges power converters, switched-capacitor power converters and line and analysis of voltage references are also covered.	
Module 1		12 hours
Introduction to DC to DC converter, Mechanisms of switching loss, Switching in Inductor, Buck converter, Synchronous Buck converter, Boost converter, Cuk Converter, dc-ac inverters, Small-signal ac modeling, and analysis of various DC to DC converters.		
Module 2		12 hours

Single ended primary inductance converter, interleaved converters, PWM building blocks, Various control techniques, PWM control of DC-DC converter, Stabilization.

Module 3 8 hours

Zero current switching DC-DC converters, Zero Voltage switching DC-DC converter, ZVS converter, flyback converter, resonant converters, PWM for Class D audio amplifier.

Module 4 10 hours

Voltage references, Temperature and power supply sensitivity, Analysis of negative feedback circuits, voltage regulators.

Applications emphasized include dc-dc converters for computer power and portable applications, dc-ac inverters for gas discharge lighting ballasts and wireless power transfer, LED drivers and solar micro-inverters.

- 1. Gabriel Rincon-Mora, Analog IC Design with Low Dropout Regulators, McGraw-Hill, 2009.
- 2. Marian K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters, Wiley, 2008.
- 3. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer, Second Edition, 2001.

Subject Code	Advanced Topics in VLSI	Credits: 3(3-0-0)
EC812	ravancea ropies in vest	Total hours: 42
Course Objectives	This course covers the advanced topics in the VLSI Design and end to one specific domain of integrated circuit design. Most often, application space that has become particularly relevant in recent serial links, ultra-low-power design, wireless transceiver design.	this will address an
Module 1		21 hours
Topics on Wireless transceiver design, Sensor design, Wireless body area networks, RF ID		
Module 2		21 hours
Topics on Ultra low power design, Serial links etc.		

References

- 1. Journal of Solid-State Circuits (JSSC)

- Transactions of Circuits and Systems I (TCAS-I)
 Transactions of Circuits and Systems II (TCAS-II)
 Transactions on Very Large Scale Integration Systems (TVLSI)
- 5. IEEE Journal on Emerging and Selected Topics in Circuits and Systems
- 6. Other relevant Journal and conference papers

Subject Code	Marra Pori an & Tostina	Credits: 3(3-0-0)
EC813	Memory Design & Testing	Total hours: 42
Course Objectives	This course covers the analysis, design and testing of Memory basic building blocks. Memory technologies like DRAM, sinterfacing circuits are covered.	· ·
Module 1		12 hours
Review of CMOS circuit design, architectures, Open and folded arrays, sensing basics, refresh, kickback, SRAM		
(Read and Write operation, 6T, 8T cell implementation etc.), floating-gate architectures, sense amplifiers, Sensing		

using Sigma-Delta Modulation.

Module 2 12 hours

Introduction to DRAM, High speed DRAM architectures, bandwidth, latency, and cycle time, Power, Timing circuits, Control logic, FLASH (FLASH array sensing and programming), Charge Pump, PROM, EPROM

Module 3 10 hours

RAM Fault Modeling, RAM Electrical Testing, RAM Pseudorandom Testing, Megabit DRAM Testing, IDDQ Fault Modeling and Testing, Application Specific Memory Testing.

General Design for Testability Techniques, RAM Built-in Self-Test (BIST), Embedded Memory DFT and BIST Techniques, Advanced BIST and Built-in Self-Repair Architectures. DFT and BIST for ROMs, Memory Error-Detection and Correction Techniques, Memory Fault-Tolerance Designs.

Module 4 8 hours

Reliabilities issues, Topics in Advanced Memory Technology, Application Specific Memories and Architectures, High Density memory package Technologies.

- 1. Betty Prince, Semiconductor Memories: A Handbook of Design, Manufacture and Application, Wiley, Second Edition, 1996.
- 2. Keeth, Baker, Johnson, and Lin, DRAM Circuit Design: Fundamental and High-Speed Topics, Wiley-IEEE, 2007.
- 3. Jacob Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE, Third Edition, 2010.
- 4. Ashok K. Sharma, Semiconductor Memories: Technology, Testing, and Reliability, Wiley-IEEE, 2013.

Subject Code	IC for Broadband communication	Credits: 3(3-0-0)
EC814		Total hours: 42
Course Objectives	The objective of this course is to study digital signal transmission over lossy and dispersive channels, equalization, IC broadband amplifiers, feed-forward and decision feedback equalization, clock and data recovery circuits. It provides an understanding of signal degradation, techniques to combat them, and integrated circuit implementation of these techniques.	
Module 1	Digital signal transmission	12 hours
Digital signal transmis	sion over lossy and dispersive channels: Eye diagrams; Eye closure	; crosstalk, and jitter;

Digital signal transmission over lossy and dispersive channels: Eye diagrams; Eye closure; crosstalk, and jitter; Synchronization: clock and data recovery circuits using phase locked loops and delay locked loops,

Module 2	Equalization	12 hours	
Equalization: Transmit pr	re-emphasis, Receive feed-forward equalization, and decision feedbare	ack equalization.	
Module 3	IC broadband amplifiers for transmitter and receiver	10 hours	
	•		
Integrated circuit implementation of broadband amplifiers for transmission and reception, feed-forward and			
decision feedback equaliz	cation.		
Module 4	Clock and data recovery circuits	8 hours	

Module 4 Clock and data recovery circuits 8 hours

Clock and data recovery circuits, multiplexers, and demultiplexers.

- 1. David Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997.
- 2. Y. Tsividis, *Mixed Analog Digital VLSI Devices and Technology (An introduction)*, World Scientific, 2002.
- 3. Gray, Hurst, Lewis, and Meyer, *Analysis and design of Analog Integrated Circuits*, John Wiley and Sons, Fifth Edition, 2009.
- 4. K. R. Laker and W.M.C. Sansen, *Design of Analog Integrated Circuits and Systems*, McGraw-Hill, 1994
- 5. Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.

Subject Code EC815	CMOS RF IC Design	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	The objective of this course is to cover the circuit designing implementation techniques at RF frequencies specific to CMOS techniques.	•
Module 1	Historical Aspects	8 hours

Historical Aspects — From Maxwell to current wireless standards, The bridge between communication system designer and RF IC designer, common system characterization, RF system characterization.

Module 2 Transceiver Architectures 8 hours

Transceiver Architectures — motivation for the individual blocks, lumped, passive RLC, RF properties of MOS, Tuned amplifiers.

Module 3 Low Noise Amplifier and mixer 14 hours

Noise sources, cascades, Low Noise Amplifier — design examples, Mixers — Introduction, active and passive.

Module 4 Oscillators & synthesizers 12 hours

Analysis fundamentals and inductors, LC oscillators and VCOs, Frequency Synthesizers: Principles, design, Integer N vs. Fractional PLL.

- 1. T. H. Lee, *The Design of Radio-Frequency Integrated Circuits*, Cambridge University Press, 2004.
- 2. B. Leunge, VLSI for Wireless Communication, Personal Education Electronics and VLSI series, Pearson Education, 2002.
- 3. B. Razavi, RF Microelectronics, Prentice Hall, 1998.

Subject Code EC816	Advanced Antenna Theory	Credits: 3(3-0-0) Total hours: 42
Course Objectives	The main objective is to study modern antenna concepts for various applications. The course will explain basic antenna parameters, different types of antenna and array configurations. The concepts can further be extended in the VLSI domain for RF IC design.	
Module 1	Fundamental Concepts	10 hours

Physical concept of radiation, Radiation pattern, near-and far-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency.

Module 2 Radiation from Wires and Loops. 10 hours

Infinitesimal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop.

Module 3Aperture, Reflector and Broadband Antennas.12 hours

Huygens' principle, radiation from rectangular and circular apertures, radiation from sectoral and pyramidal horns, prime-focus parabolic reflector antennas, Log-periodic and Yagi antennas, frequency independent antennas, broadcast antennas.

Module 4Microstrip Antennas and Antenna Arrays10 hours

Basic characteristics of microstrip antennas, feeding methods, methods of analysis, design of rectangular and circular patch antennas, Analysis of uniformly spaced arrays with uniform and non-uniform excitation amplitudes.

- 1. C. A. Balanis, Antenna Theory and Design, John Wiley & Sons, Third Edition, 2005.
- 2. W. L. Stutzman, and G. A. Thiele, *Antenna Theory and Design*, John Wiley & Sons, Second Edition, 1998.
- 3. R. S. Elliot, Antenna Theory and Design, Wiley-IEEE Press, Revised Edition, 2003.

Subject Code EC817	VLSI Signal Processing	Credits: 3(3-0-0) Total hours: 42
Course Objectives	This course covers the various VLSI architectures and algorithms for digital signal processing. This course describes the basic ideas about digital signal processing. This course also describes the techniques of critical path and algorithmic strength reduction in the filter structures.	
Module 1	DSP Concepts	12 hours

Linear system theory, DFT, FFT, realization of digital filters. Typical DSP algorithms, DSP applications. Data flow graph representation of DSP algorithm.

Module 2 Architectural Issues 10 hours

Binary Adders, Binary multipliers, Multiply Accumulator (MAC) and Sum of Product (SOP). Pipelining and Parallel Processing, Retiming, Unfolding, Folding and Systolic architecture design.

Module 3Fast Convolution10 hours

Cook-Toom algorithm, modified Cook-Toom algorithm, Winograd algorithm, modified Winograd algorithm, Algorithmic strength reduction in filters and transforms, DCT and inverse DCT, parallel FIR filters.

Module 4Power Analysis in DSP systems10 hours

Scaling versus power consumption, power analysis, power reduction techniques, power estimation techniques, low power IIR filter design, Low power CMOS lattice IIR filter.

- 1. Keshap K. Parhi, VLSI Digital Signal Processing Systems, Design and Implementation, John Wiley, 2007.
- 2. U. Meyer-Baese, Digital Signal processing with Field Programmable Arrays, Springer, 2007.
- 3. V. K. Madisetti, VLSI Digital Signal Processors: An Introduction to Rapid Prototyping and Design Synthesis, IEEE Press, New York, 1995.
- 4. S. Y. Kung, H. J. Whitehouse, VLSI and Modern Signal Processing, Prentice Hall, 1985.

Subject Code EC818	Multi-rate Signal Processing	Credits: 3(3-0-0) Total hours: 42
Course Objectives	This course covers the basic ideas about decimator, interpolator, multi-rate filter design and DFT filter banks. This course also describes the design of filter bank and efficient implementation of the filter banks.	
Module 1	Introduction	10 hours

Introduction, Sampling and Signal Reconstruction, Sampling rate conversion, Decimation by an integer factor, Interpolation by an integer factor, Sampling rate conversion by a rational factor, Sampling rate converter as a time variant system, Practical structures for decimators and interpolators.

Module 2Multi-rate filter design10 hours

Direct form and Polyphase FIR structures, FIR structures with time varying Coefficients, Design of FIR filters for sampling rate conversion, Multistage design of decimator and interpolator, Applications of Interpolation and decimation in signal processing.

Module 3 Maximally Decimated Filter Banks 10 hours

Introduction, errors created in QMF bank, alias free QMF system, power symmetric QMF banks, M-channel filter banks, polyphase representation, perfect reconstruction systems; Paraunitary Perfect Reconstruction (PR) Filter Banks, lossless transfer matrices, filter bank properties induced by paraunitariness, two channel FIR paraunitary QMF banks, two channel paraunitary QMF lattice, M-channel FIR paraunitary filter banks;

Module 4	Linear Phase Perfect Reconstruction QMF Banks	12 hours

Introduction, lattice structures for linear phase FIR PR QMF banks, formal synthesis of linear phase FIR PR QMF lattice; Cosine modulated Filter Banks, efficient polyphase structures, cosine modulated perfect reconstruction systems. Applications of Multirate Signal Processing: Analysis of audio, speech, image and video signals.

- 1. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Pearson-Education, 2004.
- 2. N. J. Fliege N J. Multirate Digital Signal Processing, John Wiley and sons, 1994.
- 3. J. G. Proakis, & D. G. Manolakis, *Digital Signal Processing Principles, Algorithms and Applications*, Prentice Hall of India, 2002.
- 4. S. K. Mitra, Digital Signal Processing-A Computer Based Approach, Tata McGraw Hill, 2003.

Subject Code EC819	Multimedia-Systems	Credits: 3(3-0-0) Total hours: 42	
Course Objectives	The objective of the course is to learn hardware accelerators for embedded systems. The course covers basics of embedded processing systems and various algorithms for multimedia and ima	sics of embedded multimedia, image	
Module 1	Multimedia Application	5 hours	

An extensive overview of state-of-the-art techniques, traditional development flows and algorithms on multimedia, image and multimedia processing, audio processing and highlight their limitations in the light of performance, power, and memory requirements. Programmable and custom architectures and algorithms, advanced video memories hierarchies and specialized (multi-/many-core) hardware processor architectures and design methods (e.g., Pipelined MPSoCs, Stream Processors, and Stochastic Processors).

Module 2	Algorithms and Embedded systems	17 hours
----------	---------------------------------	----------

Review of various architecture types, design consideration, memory reuse mechanisms, sub-task scheduling, architecture evaluation, resource sharing; High performance architectures, wavelet VLSI architectures; DCT architectures; lossless coders, Advanced arithmetic architectures and design methodologies: division and square root; finite field arithmetic; cordic algorithms and architectures for fast and efficient vector-rotation implementation; advanced systolic design; low power design; power estimation approaches; system exploration for custom low power data storage and transfer; hardware description and synthesis of DSP systems.

Module 3	Architectures for multimedia CODEC module	20 hours

Design and analysis of several light-weight multimedia and image processing algorithms and computation management techniques. Study of various architectures for motion estimation, Intra prediction, Integer discrete cosine transform, motion compensation, deblocking filter, entropy coder, system integration and Future generation hardware codecs.

- 1. Richardson, Iain E, The H.264 advanced video compression standard, John Wiley & Sons, 2011.
- 2. Articles on IEEE Transactions on Circuits and Systems for Video Technology, Multimedia, VLSI Systems, consumer electronics etc.,.
- 3. Lee, Jae-Beom, and Hari Kalva. *The VC-1 and H. 264 video compression standards for broadband video services*. Vol. 32, Springer, 2008
- 4. Parhi, Keshab K., and Takao Nishitami, *Digital signal processing for multimedia systems*, CRC Press, 1999.
- 5. Parhi, Keshab K, *VLSI digital signal processing systems: design and implementation*, John Wiley & Sons, 2007.
- 6. Tian, Xiaohua, M. Le Thinh, and Yong Lian, *Entropy Coders of the H. 264/AVC Standard*, Springer, 2011.
- 7. Lin, Youn-Long Steve, et al. VLSI Design for Video Coding, Springer, 2010.
- 8. Ramachandran, and Seetharaman, *Digital VLSI systems design*, springer, 2007.

Subject Code EC820	Selected Topics in ECE-I	Credits: 1 Total hours: 14
Course Objectives	This course covers the current topics in the ECE and emphasis will be given to application space that has become particularly relevant in recent times.	
Syllabus can be framed ac	ecording to the need.	

Subject Code EC821	Selected Topics in ECE-II	Credits: 2 Total hours: 28
Course Objectives	This course covers the current topics in the ECE and emphasis will be given application space that has become particularly relevant in recent times.	
Syllabus can be framed a	ccording to the need.	

Subject Code EC822	Selected Topics in ECE-III	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	This course covers the current topics in the ECE and emphasis will be given to application space that has become particularly relevant in recent times.	
Syllabus can be framed ac	ecording to the need.	

Program Electives

Subject Code	Data Structures & Algorithms	Credits: 3 (3-0-0)
EC850	Duta Structures a rings remins	Total hours: 42
Course Objectives	Following this course, students will be able to: 1) Solve problems us as linear lists, stacks, queues, hash tables, binary trees, heaps, to search trees, and graphs and writing programs for these solutions. 2 algorithm design methods such as the greedy method, divide programming, backtracking, branch and bound and writing programs	ournament trees, binary 2) Solve problems using and conquer, dynamic
Module 1		4 hours
Introduction to data Elementary Operation	structures and objectives, basic concepts Arrays: one dimensions.	nal, multi-dimensional,
Module 2		6 hours
•	on, elementary operations and applications such as infix to postst Queues: Simple queue, circular queue, dequeue, elementary operation	•
Module 3		8 hours
Linked lists: Linear, of manipulation.	circular and doubly linked lists, elementary operations and application	
Module 4		8 hours
•	resentation, tree traversal, complete binary tree, heap, binary search treed 2-3 tree and other operations and applications of trees.	ee, height balanced
Module 5		8 hours
	on, adjacency list, graph traversal, path matrix, spanning tree; intechniques, algorithms on sorting: selection sort, bubble sort, quick sorbinary search.	_
Module 6	(Miscellaneous Topics)	10 hours
•	dress tables, hash tables, hash functions, open addressing, search treesy trees. B – Trees, binomial heaps, fibonacci heaps, data structures	
Trees-Tries-Text com	pression, text similarity testing-range trees, priority search trees, quad	trees and k-d trees.
Reference books		
2003.2. Ellis Horo	Aho, John E Hopcroft, Jeffrey D. Ullman, <i>Data structures & algorit</i> owitz, Sartaj Sahni and Dinesh Mehta, <i>Fundamentals of data structure</i> lgotia Publications, Second Edition, 2006.	•
3. Michael T	T. Goodrich, Roberto Tamassia, <i>Data Structures and algorithms in Ja</i> th Edition, 2010.	va, John Wiley & Sons,
4. Thomas H	H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, Intra	roduction to algorithms,

MIT Press, Second Edition, 2003.

Subject Code EC851	Advanced Computer Architecture	Credits: 3(3-0-0) Total hours: 42
Course Objectives	The objective of the course is to cover concepts related to parallel computer mode advanced processors, pipelining, multiprocessors, and memory hierarchy design optimal performance of the system.	
Module 1	Parallel Computer Models	10 hours

Classification of parallel computers, multiprocessors and multicomputer, conditions of parallelism, data and resource dependencies, grain size and latency, grain packing and scheduling, program flow mechanisms, system interconnect architectures.

Module 2	Advanced Processors	12 hours

Principles of scalable performance, performance metrics and measures, superscaler and vector processors, advanced processor technology, CISC scalar processors, RISC scalar processors, superscalar processors, VLIW architectures, vector and symbolic processors.

Module 3	Pipelining and Multiprocessors	12 hours
----------	--------------------------------	----------

Linear pipeline processor, nonlinear pipeline processor, instruction pipeline design, mechanisms for instruction pipelining, dynamic instruction scheduling, branch handling techniques, branch prediction, arithmetic pipeline design, multifunctional arithmetic pipelines, Multiprocessors and multi computers, multiprocessor system interconnects, cache coherence and synchronization mechanisms, message passing schemes.

Module 4	Memory Hierarchy Design	8 hours

Cache basics & cache performance, reducing miss rate and miss penalty, multilevel cache hierarchies, main memory organizations, design of memory hierarchies.

- 1. K. Hwang, Advanced Computer Architecture, TMH, 2001.
- 2. W. Stallings, Computer Organization and Architecture, McMillan, 1990.
- 3. M. J. Quinn, Designing Efficient Algorithms for Parallel Computer, McGraw Hill, 1994.

Subject Code EC852	Optimization Techniques	Credits: 3 (3-0-0) Total hours: 42
Course Objectives	The objective of this course is to study convex optimization techniques, non-linear programming with unconstrained and constrained optimization problems, reliability theory and dynamic programming.	
Module 1	Convex optimization techniques	12 hours

Convex sets and functions, constrained optimization methods: Introduction, Kuhn-Tucker conditions, convex optimization, Lagrange multipliers.

Module 2 Non-linear programming 8 hours

One-dimensional minimization method, search method, unconstrained and constrained optimization theory and practices.

Module 3 Reliability 10 hours

Basic concepts, conditional failure rate function, Failure time distributions, Certain life models, Reliability of a system in terms of the reliability of its components, series system, and Parallel system.

Module 4Dynamic Programming12hours

Multistage decision problems, computation procedure and case studies. Fundamentals of queuing system, Poisson process, the birth and death process, special queuing methods.

- 1. S. S. Rao, Optimization: Theory and Practices, New Age Int. (P) Ltd. Publishers, 2009.
- 2. E. K. P. Chong, and S. H. Zak, An Introduction to Optimization, John Wiley & Sons, 2013.
- 3. A. L. Peressimi, F. E. Sullivan, J. J. Uhl, *Mathematics of Non-linear Programming*, Springer Verlag, 1993.

Subject Code		Credits: 3 (3-0-0)
Susject Sout	Linear Algebra	01001031 0 (0 0 0)
EC853		Total hours: 42
Course Objectives	This course covers the fundamentals of linear algebra a	nd matrices theory. It is intended
	as a broad course from engineering perspective. The f	irst part covers the vector space,
	transformations and matrices theory and also provid	es the geometrical setting. The
	second part is intended to solve practical problems and	provide algorithmic solutions.
Module 1	Vector Space	5 hours
Vector Spaces, vect	or algebra, subspaces, basis vectors, Linear Transform	mations and Matrices, matrix
=	determinant, inverse, condition number;	
Module 2	Characteristic Equation	5 hours
Eigen values and vect	tors of matrices and eigenvalue decomposition; Hermitian a	and symmetric matrices, positive
definite matrices, unita	ary matrices, projection matrices and other special matrices;	
Module 3	Inner Product Space	5 hours
Inner product spaces a	nd vector norms, Gramm-Schmidt orthonormalization; biline	ear forms;
Module 4	Solution of Equations	5 hours
Solution of equations:	Gaussian Elimination, pivoting, LU and Cholesky factorization	ions;
Module 5	Orthogonolization	7 hours
Orthogonalization and	Least Squares: Householder and Givens Matrices, QR factor	rizations, Full Rank Least
•	Rank Deficient LS Problem;	
Module 6	Eigen Value Problem	8 hours
-	e Problem: power iterations, symmetric QR algorithm, Jacobi	methods, tridiagonal methods,
SVD, Lanczos and Arr Module 7	Iterative Methods	7 hours
Midule /	iterative Methods	7 nours
Iterative Methods for	Linear Systems: Jacobi and Gauss-Seidel iterations, SOR me	ethods;
Reference Books		
1 Calabani	Was Land Marie Committee University	D Th.: 1 E 1'.' 1006
	Van Loan, <i>Matrix Computations</i> , Johns Hopkins University	
2. Strang, <i>Lii</i>	near Algebra and its Application, Cengage Learning, Fourth	edition, 2005.

- 3. Horn and Johnson, *Matrix Analysis*, Cambridge University Press, 1990.
- 4. Hoffman and Kunze, *Linear Algebra*, Prentice Hall, Second Edition, 2009.

Subject Code EC854	Random Processes	Credits: 3(3-0-0) Total hours: 42
Course Objectives	This course covers the foundations and major concepts in random processes which are required for communications and signal processing concepts.	
Module 1	Preliminaries Independence and Conditional Probability Bandom Variables of	8 hours

Axioms of Probability, Independence and Conditional Probability, Random Variables and their Distribution, Functions of Random Variables, Expectation, Frequently used Distributions, Jointly Distributed Random Variables, Cross Moments, Conditional Densities,

Module 2 Convergence of Sequence of Random Variables 10 hours

Various types of Convergence, Cauchy Criteria for Convergence, Limit Theorems, Convex Functions and Jensen's Inequality, Chernoff Bound and Large Deviation Theory.

Module 3Random Vectors and MMSE Estimation10 hours

Basic Definitions, The Orthogonality Principle of MMSE Estimation, Gaussian Random Vectors, Linear Innovations Sequences, Discrete Time Kalman Filtering

Module 4 Random Processes 14 hours

Random Processes, Stationarity, Counting Processes and Poisson Process, Markov Process, Discrete Time Markov Chain, Continuous Time Markov Chain, Renewal Theory, Introduction to Martingales.

- 1. Bruce Hajek, An Exploration of Random Processes for Engineers, Class Notes, 2014.
- 2. Sheldon Ross, Stochastic Processes, John Wiley and Sons, 1996.
- 3. Dimitri Bertsekas, John Tsitsiklis, Introduction to Probability, Athena Scientific, First Edition, 2002.
- 4. A Papoulis, S. U. Pillai, *Probability, Random Variables and Stochastic Processes*, Tata McGraw-Hill, Fourth Edition, 2002.

Course Curriculum

for

Master of Technology Programme

in

Power Electronics and Power Systems

Department of Electrical and Electronics Engineering

National Institute of Technology Goa

Farmagudi, Ponda, Goa - 403 401

M.Tech I – Semester

Semester-wise Credits Distribution

Semester	Total Credits
I	12+4+2=18
	(4-Programme Core + 2-Labs+1-Seminar)
II	9+3+4+2=18
	(3-Programme Core +1-Elective+ 2-Labs+1- Viva)
III	06+08 =14
	(2-Electives + Major Project -I)
IV	14
	(Major Project Work-II)
Total Credits	64

Sl. No	Sub. Code	Subjects	L-T- P	Credits
1	EE600	Power Electronic Converters & Drives	3-0-0	3
2	EE601	Machine Modeling & Analysis	3-0-0	3
3	EE602	Advanced Power system Analysis	3-0-0	3
4	EE603	Renewable Energy Systems	3-0-0	3
5	EE604	Power Electronics Laboratory	0-0-3	2
6	EE605	Simulation Laboratory	0-0-3	2
7	EE606	Seminar	0-0-3	2
		Total Credits		18

	M.Tech II – Semester				
Sl. No	Sub. Code	Subjects	L-T- P	Credits	
1	EE650	Advanced Electric Drives	3-0-0	3	
2	EE651	HVDC & FACTS	3-0-0	3	
5	EE652	Systems & Control Theory	3-0-0	3	
3	EE8xx	Elective-I	3-0-0	3	
4	EE653	DSP & FPGA Laboratory	0-0-3	2	
5	EE654	Electric Drives Laboratory	0-0-3	2	
6	EE655	Viva		2	
7	HU650	Communication Skills and Technical Writing	1-0-2	0	
		Total Credits		18	

		M.Tech III - Semester		
Sl. No	Sub. Code	Subjects	L-T- P	Credits
1	EE8xx	Elective – II	3-0-0	3
2	EE8xx	Elective – III	3-0-0	3
3	EE700	Major Project-I	0-0-12	08
		Total Credits		14

	M.Tech IV- Semester				
Sl. No	Sub. Code	Subjects	L-T- P	Credits	
1	EE750	Major Project-II	0-0-21	14	
		Total Credits		14	

List of Electives

	Program Electives				
SI. No.	Course Code	Course Name	Total Credit (L-T-P)	Credits	
		Elective-I			
1	EE 801	Modelling and Simulation of Power Electronic Systems	3(3-0-0)	3	
2	EE 802	Advanced Power Electronics	3(3-0-0)	3	
3	EE 803	Photovoltaic and its Applications	3(3-0-0)	3	
		Elective-II			
1	EE 804	Power System Dynamics & Control	3(3-0-0)	3	
2	EE805	Smart Electric Grid	3(3-0-0)	3	
3	EE 806	Power Quality	3(3-0-0)	3	
		Elective-III			
1	EE807	Soft Computing	3(3-0-0)	3	
2	EE 808	DSP Controlled Drives	3(3-0-0)	3	
3	EE 809	Digital Control Theory	3(3-0-0)	3	
4	EE810	Optimal Control	3(3-0-0)	3	

Course Contents

Subject Code	Power Electronic Converters &	Credits: 3 (3-0-0)
EE600	Drives	Total hours: 45
35 3 3 4	·	

Module 1

Phase controlled converters: Single phase Half controlled and fully controlled converters, input power factor and harmonic factor, single phase dual converters, power factor Improvements. Three phase half controlled and fully controlled converters, evaluation of input power factor and harmonic factor and effect of input line inductance, power factor improvement, 12 pulse/18 pulse converter, dual converters, front end converter or synchronous link converters.

Basic power electronic drive system and components, Different types of loads, shaft-load coupling systems. Stability of power electronic drive. Torque-speed characteristics of converter controlled separately excited dc motor in continuous and discontinuous mode of conduction.

Module 2

DC-DC converters: Study of Class - A, B, C, and D choppers, non-isolated and isolated DC-DC converters. Separately excited DC motor drive using DC-DC converters, four quadrant operation, dynamic and regenerative braking.

Module 3

Inverters: single phase inverters, three phase inverters, pulse width modulation techniques, multilevel inverters.

Module 4

Induction to motor drives: Equivalent circuit, speed control, slip power recovery schemes. Synchronous motor drives: Operation with fixed frequency and variable frequency source. Closed-loop control of drives: D.C drives, A.C. Drives.

- 1. M.H. Rashid: Power Electronics-circuits, Devices and Applications, 3rd Edition, PHI, 2005.
- 2. Ned Mohan, T.M. Undeland and William P. Robbins: Power Electronics: Converters, Applications, 3rd Edition, John Wiley & Sons, 2009
- 3. S.B. Dewan, Gordon R. Slemon and A. Straughen: Power Semiconductor Drives, John Wiley Pub., 1996.
- 4. B.K. Bose: Modern Power Electronics and AC Drives, 1st Edition, Pearson, 2002.
- 5. Philip T. Krein: Elements of Power Electronics, Oxford University Press.
- 6. John G. Kassakian, Martin F. Schlect, Geroge C. Verghese: Principles of Power Electronics, Pearson Education.
- 7. R. Krishnan: Electronic motor drives modeling Analysis and control I Edition Prentice Hall India.

Subject Code
EE601

Machine Modelling & Analysis

Credits: 3 (3-0-0) Total hours: 45

Module 1

Basic principles of electric machine analysis: Magnetically coupled circuits, Electro-magnetic (EM) energy conversion, Single and double excited systems. Machine windings and air-gap MMF, Winding inductances and voltage equations, Production of electromagnetic torque.

Module 2

Reference frame theory: Equations of transformation, transformation between reference frames, variables observed from various frames. Theory of symmetrical induction machines: Voltage and torque expression, state-space model of Induction motor in'd-q-0' variables. Computer simulation of arbitrary reference frame.

Module 3

Theory of synchronous machines: Voltage and torque equations, equations in arbitrary reference frame. Concept of sub-transients, transient armature inductances and field time constant, Operation of synchronous machine under asynchronous running, Hunting and small oscillations, Synchronizing and damping torques, equal area criteria, computer simulation.

Module 4

Field aspects of electrical machines: Vector potential, Classical two-dimensional analysis of air gap field. Field analysis and performance calculation in linear Induction motor and linear synchronous motor. Finite element method of calculation, vector potentials in machines and actual boundaries, magnetic saturation.

- 1. P. C. Krause, O. Wasynczuk and S.D. Sudhoff: Analysis of Electric Machinery and Drive Systems, 2nd Edition, IEEE Press, 2002.
- 2. J. Meisel: Principles of Electromechanical Energy Conversion, R.E. Krieger, 1984.
- 3. N. Bianchi: Electrical Machine Analysis using Finite Elements, CRC Press, 2005
- 4. P.S. Bhimbra: Generalized Theory of Electrical Machines, Khanna Publishers, 2006.

Subject Code EE602

Advanced Power System Analysis

Credits: 3 (3-0-0)
Total hours: 45

Module 1

Network Modelling: Formation of network matrices, Singular and non-singular Transformation. Algorithms for formation of bus admittance and bus impedance matrices with mutually coupled branches, Sparsity Technique and optimal ordering.

Module 2

Load flow: Load flow-Newton Raphson method, Decoupled ,Fast decoupled Load flow, Sensitivity factors,Multi area power flow analysis, ATC assessment, DC power flow model.

Module 3

Fault and Contigency Analysis: Balanced and unbalanced faults, Digital simulation techniques in fault analysis, Z Bus method in contingency analysis, Contingency Analysis of DC Model, System Reduction for Contingency and Fault Studies.

Module 4

Security and State Estimation:Security assessment, State Estimation in Power Systems, Maximum Likelihood Weighted Least-Squares Estimation, State Estimation of an AC Network, Detection and Identification of Bad measurements, Network Observability and Pseudo-measurements.

- 1. Stagg.G.W , El. Abiad.A.H: Computer Methods in Power System Analysis, McGra w Hill.
- 2. Kundur.P: Power System Stability and Control, McGraw Hill
- 3. Wood.A.J and Wollenberg.B.F: Power Generation Operation and Control, John Wiley and sons, New York.
- 4. D. P. Kothari and I. J. Nagrath: Modern Power System Analysis, Tata McGraw Hill Publishing Co. Ltd.

- 5. J. Arrilaga, C. P. Arnold, B. J. Harker: Computer Modelling of Electric Power System, John Wiley & Sons.
- 6. K.Mahailnaos, D. P. Kothari, S. I. Ahson: Computer Aided Power System Analysis & Control, Tata McGraw Hill Publishing Co. Ltd.
- 7. G. T. Heydt: Computer Analysis Methods for Power Systems, Macmillan Publishing Company, NewYork.
- 8. L. P. Singh: Advanced Power System Analysis and Dynamics, New Age International Publishers, New Delhi.

Subject Code EE 603	Renewable Energy Systems	Credits: 3 (3-0-0) Total hours: 45
------------------------	--------------------------	---------------------------------------

Module 1

Non-renewable reserves and resources; renewable resources, Transformation of Energy.

Distributed Generation, renewable energy economics.

Solar Power: Solar processes and spectral composition of solar radiation; Radiation flux at the Earth's surface. Solar collectors. Types and performance characteristics.

Photo-Voltaic power plants: Solar energy, generation of electricity PV cell characteristic, Stand alone system with DC and AC loads with and without battery storage, Grid connected PV systems, Maximum Power Point Tracking

Fuel cells: Fuel cells, commercial and manufacturing issues, equivalent circuit, Applications.

Module 2

Wind Energy: Wind energy conversion, efficiency limit for wind energy conversion, types of converters, aerodynamics of wind rotors, power- speed and torque - speed characteristics of wind turbines, wind turbine control systems. conversion to electrical power: induction and synchronous generators, grid connected and self-excited induction generator operation, constant voltage and constant frequency generation with power electronic control, single and double output systems, reactive power compensation, characteristics of wind power plant, applications.

Module 3

Tidal Energy: Wave characteristics. Conversion systems and their performance features. Application. Geothermal energy: Biological conversion of Energy.

Module 4

Induction generators: operating principle, self-excited induction generator, speed and voltage control, performance analysis, semi variable speed induction generator, variable speed induction generators with full and partial rated power converter topologies, isolated systems, self excited induction generator

Module 5

Energy Storage systems: Parameters, lead-acid batteries, ultra-capacitors, flywheels, superconducting magnetic storage system, pumped hydroelectric energy storage, compressed air energy storage.

- 1. S. N. Bhadra, D. Kastha, S. Banerjee: Wind Electrical Systems, Oxford Univ. Press, 2005.
- 2. S.A. Abbasi, N. Abbasi: Renewable Energy Sources and Their Environmental Impact, Prentice Hall of India, 2004.
- 3. Felix A. Farret and M. Godoy Simões: Integration of Alternative Sources of Energy, John Wiley & Sons,2006.
- 4. R. Teodorescu, M. Liserre and Pedro Rodríguez: Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, 2011.

Subject Cod EE604	Power Electronics Laboratory	Credits: 2 (0-0-3) Total hours: 45		
1) Single	phase Half and Full controlled Converter with R-L and R	L-L-E loads.		
2) Three	-phase Half and Full controlled Converter with R-L and R-	·L-E loads.		
3) Single	e phase AC voltage controller feeding R and R-L loads.			
4) Characteristics of Power Semiconductor devices (SCR, Triac etc.).				
5) DC-to	-DC Switched Mode Converters.			
6) 1-Ф	6) 1- Φ & 3- Φ Inverter with square wave, quasi-square wave and SPWM Control			
	1. M.H. Rashid: Power Electronics-circuits, Devices and Appl	lications, 3rd Edition, PHI,		
Reference 2005.				
books 2. Ned Mohan, T.M. Undeland and William P. Robbi Electronics: Converters, Applications, 3rd Edition, John Wiley & Sons, 2009				

Subject Cod EE605	Power Electronics Simulation	Credits: 2 (0-0-3) Total hours: 45	
LEGGE	Laboratory	Total hours. 43	
Modelling of I	DC-DC converters		
Study of differ	rent PWM techniques		
Study on the 'c	dq0' transformation in various frames of reference		
Modelling of DC motor, Induction motor and synchronous motor drives			
Reference books 1. M.H. Rashid: Power Electronics-circuits, Devices and Applications, 3rd Edition, PHI, 2005. 2. Ned Mohan, T.M. Undeland and William P.Robbins: Power Electronics: Converters, Applications, 3rd Edition, John Wiley & Sons, 2009.			

Subject Code
EE650

Advanced Electric Drives

Credits: 3 (3-0-0) Total hours: 45

Module 1

Basic power electronic drive system and components, Different types of loads, shaft-load coupling systems. Stability of power electronic drive.

Scalar and Vector control of Induction motor, Direct torque and flux control of Induction motor.

Module 2

Self-controlled synchronous motor drive, Vector control of synchronous motor drive.

Module 3

Switched reluctance motor drive, Brushless DC motor drive, Permanent magnet drives and Industrial drives.

- 1. B.K. Bose: Modern Power Electronics and AC Drives, 1st Edition, Pearson, 2002.
- 2. Bin-Wu: High-power Converters and AC Drives, IEEE Press, John Wiley & Sons, 2006
- 3. R. Krishnan: Electric Motor drives Modelling, Analysis and Control, PHI India Ltd. 2002.

Subject Code	HVDC and FACTS	Credits:3 (3-0-0)
EE 651		Total hours: 45

Module 1

Historical development of HVAC and HVDC links, comparison, economics of power transmission, technical performance, reliability, limitations, application of dc transmission, description of DC Transmission System, types of DC links and converter station, planning for HVDC transmission. Modern trends in DC transmission.

Module 2

HVDC transmission analysis of HVDC converters, pulse number, analysis with and without overlap, converter bridge characteristics, converter and HVDC system control, principles of dc link control- starting and stopping of dc link, power control.

Introduction to harmonics & filters, generation of harmonics, types of ac filters.

Module 3

Power flow in AC Systems. Definition of FACTS, power flow control, constraints of maximum transmission line loading. Benefits of FACTS transmission line compensation: uncompensated line, shunt compensation. Series compensation, phase angle control.

Module 4

Static shunt compensators: SVC and STATCOM. Operation and control of TSC, TSR, TCR and STATCOM, compensator control, comparisons between SVC and STATCOM.

Static series compensation: TSSC, SSSC, TCBR, TCPAR. Operation and control applications

Module 5

Unified Power Flow Controller: circuit arrangement, operation and control of UPFC, basic principle of P and Q control, independent real and reactive power flow control, applications, introduction to interline power flow controller.

introduction to interime power now controller.			
Reference books	 K. R. Padiyar: HVDC Power transmission System, New age International, 1996. N.G Hingorani, L. Gyugyi: Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press Book, Standard Publishers and Distributors, Delhi, 2001. J. Arrillaga: HVDC transmission, IET, 1998. E.X. Kimbark: Direct Current Transmission, Vol. I, Wiley Interscience, Newyork, 1971. K. R. Padiyar: Power System Dynamics, Stability and Control, 2nd Edition, B.S. Publishers. 1994. X.P. Zang, C. Rehtanz and B. Pal: Flexible AC Transmission Systems: Modeling and Control, Birkhauser, 2006. Y. H. Song and A. T. Johns: Flexible AC Transmission Systems, IET, 1999. 		
I			

Subject Code
EE652

Systems and Control Theory

Credits: 3 (3-0-0) Total hours: 45

Module 1

Review of matrices, vector space, group, rings, and fields.

Module 2

State Space Description: State space representations of systems, state variable modelling of dynamical systems, transfer functions, solution of state equation, transient response, stability of linear systems, Lyapunov methods.

Module 3

System Analysis: controllability, observability, duality, equivalent systems, system decomposition, diagonal form, controllable and observable canonical forms, state space realizations and minimal realizations.

Module 4

State Feedback Design: Linear State variable feedback, pole placement for single and multivariable systems, optimal control concept, solution of linear quadratic regulator problem, system decoupling, direct transfer function design procedures.

Module 5

State Estimation and Servo Control: State observer, reduced order observers, combined observer-controller system, integral control, asymptotic tracking and regulation, robust servo control design.

Module 6

Nonlinear system Dynamics & Control: Analysis of Modelling equations: state-plane Analysis, Principles of linearization, Describing function methods, Introduction to Nonlinear Control Techniques: Sliding mode control, feedback linearization methods.

- 1.S.H. Zak: Systems and Control, Oxford Univ. Press, 2003.
- 2. H.K. Khalil: Nonlinear Systems, Prentice Hall, N.J., 2002.
- 3. R. C. Dorf and R. H. Bishop: Modern Control Systems, Prentice Hall, 2001.
- 4. K. Ogata: Modern Control Engineering, Pearson, 2006.

Subject Coo EE653	DSP & FPGA Laboratory	Credits: 2 (0-0-3) Total hours: 45	
CCS introduct	ion, aliasing, quantization		
Saw tooth way	e generation		
Single pulse , multiple pulse, sin-triangle and space vector modulation PWM generation Digital filter design			
FPGA based n	notor control applications		
Reference books 1. Hamid A. Toliyat: DSP Based Electromechanical Motion Control, 1st Edition, Clarence Press, 2004. 2. Bin-Wu: High-power Converters and AC Drives, IEEE Press, John Wiley & Society 2006			

3. Wolf: FPGA based system design, Dorling kindersley, 2004.

Subject Code	Electric Drives Laboratory	Credits: 2 (0-0-3)
EE654		Total hours: 45

Thyristorised drive for 1hp DC motor with closed loop control

Single phase & three phase half control and fully controlled bridge rectifier fed separately excited DC motor drive

Four quadrant chopper drive for separately excited DC motor drive

Speed control of 3 phase wound rotor Induction motor

Implementation of single pulse, multiple pulse, sine-triangle and space vector modulation PWM schemes with DSP controller.

	1. M.H. Rashid: Power Electronics-circuits, Devices and Applications, 3rd Edition, PHI,		
Reference	2005.		
books	2. Ned Mohan, T.M. Undeland and William P.Robbins: Power Electronics:		
	Converters, Applications, 3rd Edition, John Wiley & Sons, 2009.		

Subject Code	Communication Skills and Technical	Credits: 0 (1-0-2)	
HU650*(Audit	Whiting	Total hours: 15 Hrs	
Course)	Writing		
Module 1		12 hours	
Communication-De	finition-Types-Classifications, Presentation Skills-Do's and Do	on'ts, Reports-Types-	
Format-Ethics to be	followed.		
Module 2		12 hours	
Writing Skills: Technical Document-Reports-Instruction Manuals-Project Proposal			
Module 3		10 hours	
Writing Exercises: Precis-Summary/Executive Summary/Abstract			
Module 4		8 hours	
Preparation of Report- Prefatory Part- Main Part- Terminal Section			
D - f D1			

- 5. Raman & Sharma, Communication Skills, New Delhi: OUP, 2011.
- 6. Mandel, Steve, *Technical Presentation Skills: A Practical Guide for Better Speaking* (Revised Edition), Crisp Learning, 2000.
- 7. Wood, Millett, The Art of Speaking, New York: Drake Publishers, 1971.
- 8. Lencioni, Patrick, *The Five Dysfunctions of a Team*: NJ, John Wiley and Sons, 2006.

Electives

Subject Cod EE801	Modeling and Simulation of Power Electronic Systems	Credits: 3 (3-0-0) Total hours: 45
Module 1		
Introduction to ODE solvers, steps of using ODE solvers, Types of mathematical models, Developing a model, Mathematical modeling of simple electrical, Mechanical and electro mechanical systems.		
Module 2		
Simulation of power electronic converters: State-space representation, Trapezoidal integration, M and N method.		
Module 3		
Modeling: steady state analysis of converters, dynamic analysis of converters, state space average modeling, PWM modeling ,modeling of converters operating in continuous and discontinuous conduction mode, converter transfer functions. Simulation of electric drives: Modeling of different PWM Techniques, Modeling and simulation of Induction motor, V/f Control of Induction motor and Vector controlled 3-Ph Induction motor.		
Module 4		
Control Techniques in Power Electronics: State space modelling and simulation of linear systems, conventional controllers using small signal models, Fuzzy control, Hysteresis controllers, Output and state feedback switching controllers. Modeling, simulation of switching converters with state space averaging, State Space Averaging Technique and its application in simulation and design of power converters.		
Reference books	 M. B. Patil, V. Ramnarayanan and V. T. Ranganathan: S Converters, 1st Edition, Narosa Publishers, 2010. Ned Mohan, T.M. Undeland and William P.Robbins: Applications, 3rd Edition, John Wiley & Sons, 2009. Chee-Mun Ong: Dynamic Simulation of Electric Machine 	Power Electronics: Converters,

Subject Code
EE802

Advanced Power Electronics

Credits: 3 (3-0-0)
Total hours: 45

Module 1

Non-isolated dc-dc converters: Buck, boost, buck-boost, Cuk, SEPIC, Zeta in DCM and CCM, solated dc-dc converters: Flyback, forward, Cuk, half bridge, push-pull and bridge in DCM and CCM. Single-phase, single-stage converters (SSSSC), power factor correction. Their application in SMPS, UPS, welding and lighting systems.

Module 2

Single-phase improved power quality ac-dc converters: Buck, boost, buck-boost, PWM VSC (Voltage source converters), multilevel VSCs, PWM CSC (Current voltage source converters).

Module 3

Three-phase improved power quality ac-dc converters: VSC, multiplevel VSCs, multiplevel VSCs, PWM CSC (Current voltage source converters). Multiplevel ac-dc converters: Diode and thyristor based converters, power factor correction.

Module 4

Solid state controllers for motor drives: Vector control and direct torque control of induction, synchronous, permanent magnet sine fed, synchronous reluctance motors, Permanent magnet brushless dc (PMLDC) and switched reluctance motors, LCI (load commutated inverter) fed large rating synchronous motor drives, Energy conservation and power quality improvements in these drives.

- 1. M.H. Rashid: Power Electronics-circuits, Devices and Applications, 3rd Edition, PHI, 2005.
- 2. Ned Mohan, T.M. Undeland and William P. Robbins: Power Electronics Converters, Applications, 3rd Edition, John Wiley & Sons, 2009.
- 3. Marian K. Kazimierczuk: Pulse-width Modulated DC-DC Power Converters, John Wiley & Sons Ltd., 1st Edition, 2008.
- 4. Robert W. Erickson and DraganMaksimovic: Fundamentals of Power Electronics, Springer, 2nd Edition, 2001

Subject Code EE 803

Photovoltaic and its applications

Credits: 3 (3-0-0) Total hours: 45

Module 1

Solar energy: solar insolation vs world energy demand, current energy consumption from different sources, environmental and health effects. Sustainable Energy: production and storage, resources and utilization.

Module 2

Photovoltaic (PV): Fundamentals of solar cells, types of solar cells, semiconducting materials, band gap theory, absorption of photons, excitation and photoemission of electrons, band engineering, Solar cell properties and design, p-n junction photodiodes, depletion region, electrostatic field across the depletion layer, electron and holes transports, device physics, charge carrier generation, recombination and other losses, I-V characteristics, output power, single junction and triple-junction solar panels, metal-semiconductor hetero junctions and semiconducting materials for solar cells.

solar cell applications: pv cell interconnection, module structure and module fabrication, equivalent circuits, load matching, efficiency, fill factor and optimization for maximum power; design of stand-alone PV systems, system sizing, device structures, device construction, installation, measurements, DC to AC conversion, inverters, on-site storage and grid connections.

Module 3

Optical engineering: Optical design, anti-reflection coatings, beam splitters, surface structures for maximum light absorption, operating temperature Vs. conversion efficiency, types of solar energy concentrators, fresnel lenses and fresnel reflectors, operating solar cells at high incident energy for maximum power output. Cost analysis and environmental issues: Cost analysis and pay back calculations for different types of solar panels and collectors, installation and operating costs; environmental and safety issues, protection systems, performance monitoring.

Module 4

Thin film solar cells: Single crystal, polycrystalline and amorphous silicon solar cells, cadmium telluride thin-film solar cells, conversion efficiency; current trends in photovoltaic research and applications, nanotechnology applications, quantum dots, solution based processes solar cell production. Photo electrochemical cells for hydrogen production: photo electrochemical electrolysis, photoelectron chemical cells for hydrogen production, solar hydrogen efficiency, hydrogen storage, hydrogen economy.

- 1. Jenny Nelson: The Physics of Solar Cells, Imperial College Press, 2003
- 2. Stephen J. Fonash: Solar Cell Device Physics, 2nd edition ,Academic Press
- 3. Soteris A. Kalogirou: Solar Energy Engineering: Processes and Systems, Academic Press, 2009
- 4. F Lasnier: Photovoltaic Engineering Handbook CRC Press

Subject Code EE804

Power System Dynamics and Control

Credits: 3 (3-0-0)
Total hours: 45

Module 1

Modelling: Synchronous machine theory and modelling:- armature and field structure, Parks transformation, machine with multiple pole pairs-mathematical description, d-q transformation, per unit representation, equivalent circuit for d-q axes, steady state analysis- voltage-current and flux linkage, phasor representation, rotor angle – steady state equivalent circuit, Excitation system modelling-excitation systems block diagram - system representation by state equations- State space representation concept, Eigen properties of the state vectors.

Module 2

Stability Analysis: Small signal stability analysis -small signal stability of a single machine connected to infinite bus system, classical representation of generator, small signal stability of a multi machine connected to infinite bus system. Characteristics of small - signal stability problems.

Transient stability- Concept of transient stability, response to a step change in mechanical power input, Swing equation, multi-machine analysis, factors influencing transient stability, numerical integration method, Euler method, R-K method (4rth order), critical clearing time and angle,methods for improving transient stability.

Voltage stability:- Basic concept, transmission system characteristics, generator characteristics, load characteristics, PV curve, QV curve and PQ curve, characteristics of reactive power compensating devices. Voltage collapse and prevention of voltage collapse.

Module 3

Power System Stabilizer: Block diagram of PSS, system state matrix including PSS, analysis of stability, small-signal stability improvement methods: delta-omega and delta P-omega stabilizers. Frequency-based stabilizers, Digital Stabilizer, Excitation control design Exciter gain, Phase lead compensation, Stabilizing signal washout stabilizer gain, Stabilizer limits

- 1. Kundur: Power System Stability and Control, McGraw-Hill
- 2. Anderson.P.M and Fouad: Power System Control and Stability", IEEE Press Power Engineering Series
- 3. K R Padiyar: Power system Dynamics Stability and Control, B S Publication.
- 4. Peter W. Sauer and M APai: Power system Dynamics Stability, Pearson Education Asia.
- **5.** Nasser Tleies: Power Systems Modelling and Fault Analysis, Elsevier, 2008.

Subject Code
EE805

Smart Electric Grid

Credits: 3 (3-0-0) Total hours: 45

Module 1

Introduction to Smart Grid-Smart Grid Functions - Advantages - Indian Smart Grid - Key Challenges for Smart Grid

Module 2

Smart Grid Architecture -Components and Architecture of Smart Grid Design - Transmission and Distribution Automation - Computational Intelligence Techniques - Distribution Generation Technologies.

Module 3

Introduction to Renewable Energy Technologies - Micro grids - Storage Technologies - Electric Vehicles andplug - in hybrids - Environmental - Synchro Phasor Measurement Units (PMUs) - Wide Area MeasurementSystems (WAMS) - Control of Smart Power Grid System

Module 4

Introduction to Factory & Process Automation, PLC, Networking standards. Vertical Integration of Industrial Automation, field bus and Ethernet.Supervisory Control and Data Acquisition (SCADA), introduction to SCADA: grid operation and Control.Distributed Control Systems (**DCS**), difference between SCADA system and DCS, architecture, local control unit, Programming language, communication facilities, operator interface, engineering interfaces.

- 1. Stuart Borlase: Smart Grids: Infrastructure, Technology, and Solutions, Series: Electric Power and Energy Engineering Published: October 24, 2012 by CRC Press
- 2. Gil Masters: Renewable and Efficient Electric Power System, Wiley-IEEE Press, 2004.
- 3. A.G. Phadke and J.S. Thorp: Synchronized Phasor Measurements and their Applications, Springer, 2008.
- 4. T. Ackermann: Wind Power in Power Systems, 2nd Edition, John Wiley & Sons, 2012
- 5. Michael P. Lukas: Distributed Control Systems, Van NostrandReinfold Company, 1995.

Subject Code EE806	Power Quality	Credits: 3 (3-0-0) Total hours: 45

Module 1

Introduction to power quality: terms and definitions: overloading, under voltage, over voltage. Concepts of transients: short duration variations such as interruption, long duration variation such as sustained interruption. Voltage sag, voltage swell, voltage imbalance, voltage fluctuation, over voltages, under voltages, power frequency variations. Harmonics: harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics: harmonics Vs transients. Effect of harmonics, harmonic distortion, voltage and current distortion, harmonic indices, inter harmonics, resonance. Harmonic distortion evaluation, devices for controlling harmonic distortion, passive and active filters. IEEE and IEC standards of power quality.

Module 2

Introduction to APF technology, solutions for mitigation of harmonics, classification of power filters- passive filters, active filters, hybrid filters; active filters applications depending on power quality issues; selection of power filters; categorization of active power filter: converter based categorization, topology based categorization, supply system based categorization, selection considerations of APFS; technical and economic considerations.

Module 3

Introduction to active power filter control strategies: shunt active filter basic compensation principle, Clark's transformations, parks transformations, active power filter control strategies, signal conditioning, current control techniques for derivation of gating signals, generation of gating signals to the devices of the APF, hysteresis current control scheme and adaptive hysteresis current control scheme, derivation of compensating signals, compensation in frequency domain, compensation in time domain.

Module 4

Control strategies: Instantaneous active and reactive power (p-q) control strategy, Instantaneous active and reactive current (I_d-I_q) control strategy and perfect harmonic cancellator.

Introduction to Dc link voltage regulation: DC link voltage regulation with PI Controller, Type-1 fuzzy logic controller, Type-2 fuzzy logic controller, and neural networks.

H. Akagi: Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press, 2007. Reference books G.T. Heydt: Electric Power Quality, 2nd Edition, West Lafayette, IN, Stars in a Circle Publications, 1994. M.H.J Bollen: Understanding Power Quality Problems: Voltage Sags and Interruptions, NewYork, IEEE Press, 1999.

Subject Code	Soft Computing	Credits: 3 (3-0-0)
EE 807		Total hours: 45

Module 1

Introduction to biological and artificial neuron models, operations of artificial neuron, types of neuron activation function, history of artificial neural systems development, Mc-culloch-Pitts neuron model, ANN architectures, neural dynamics (activation and synaptic), neural processing, learning strategies, learning rules.

Module 2

Classification model, features, and decision regions, discriminant functions, models of Artificial Neural Networks: feed forward network, feedback network, single and multilayer feed forward neural networks- introduction, perceptron models: discrete, continuous and multi-category, training algorithms: discrete and continuous perceptron networks, perceptron convergence theorem, limitations of the single layer perceptron model (XOR Problem), Applications; credit assignment problem, generalized delta rule, Back Propagation Algorithm (BPA), learning difficulties and improvements.

Module 3

Associative memories: Hebbian learning, general concepts of associative memory (associative matrix, association rules, hamming distance, Bidirectional Associative Memory (BAM) architecture, architecture of Hopfield network: discrete and continuous versions, storage and recall algorithm. Neural network applications: process identification, control, fault diagnosis and load forecasting.

Module 4

Introduction to classical sets - properties, operations and relations; fuzzy sets, membership, uncertainty, operations, properties, fuzzy relations, cardinalities, membership functions. Fuzzification, membership value assignment, development of rule base and decision making system, fuzzy inference systems: Mamdani max-min and max-product composition scheme, defuzzification to crisp sets, defuzzification methods: COA, BOA, MOM, SOM, and LOM. Design of control rules: trapezoidal MF, triangular MF and Gaussian MF. Rule base fuzzy logic applications: fuzzy logic control and fuzzy classification. Applications of fuzzy systems.

Module 5

Evolutionary Computation: Different variants, Genetic Algorithm.; Hybrid Systems: ANFIS, Fuzzy Filtered NN & Neural Fuzzy Systems, GA tuned Fuzzy System. Introduction to Type-2 FLC: The structure of Type-2 FLC, Type-2 fuzzy inference system with different fuzzy MFs (Trapezoidal membership function, Triangular membership function and Gaussian MF).

- 1. J. M. Zurada: Introduction to artificial neural networks, Jaico publishers, 1997.
- 2. Simon Haykin: Neural Networks A Comprehensive Foundation, Prentice Hall

	3. J. S. R. Jang, C. T. Sun , E. Mizutani: Neuro-Fuzzy and Soft Computing	A
Reference books	Computational Approach to Learning and Machine Intelligence, PHI, 2002. 4. Timothy J Ross: Fuzzy Logic with Engineering Applications, TMH, 2007. 5. B.Kosko: Fuzzy Engineering, Prentice Hall, 1997	

Subject Cod EE808	DSP Controlled Drives	Credits: 3 (3-0-0) Total hours: 45	
Module 1			
Overview of TMSLF2407 or Advanced DSP controllers: Instruction Set, Interrupts, ADC, Event managers.			
Module 2			
Implementation of PWM schemes: Single pulse , Multiple pulse , Sine triangle PWM, Space vector PWM.			
Module 3			
Clarke's and park's transformations: Implementation of Clarke's and Park's transformation,			
Module 4			
DSP-Based Control of Stepper Motors, BLDC Motors, synchronous motors, Induction Motor			
	1. Hamid A. Toliyat: DSP Based Electromechanical Motion Control, 1st Edition, CR		
Reference Press, 2004.			
books	2. Bin-Wu: High-power Converters and AC Drives, IEEE P 2006	Press, John Wiley & Sons,	
	3. R. Krishnan: Electric Motor drives - Modelling, Analysis an	d Control, PHI India	

Subject Code
EE809

Digital Control Theory

Credits: 3 (3-0-0) Total hours: 45

Module 1

Introduction to Digital Control Systems: Continuous-time Vs Discrete-time Systems, Digital Control Vs Digital Signal Processing (DSP), Signal Discretization, Continuous-time System Analysis, Discrete-time System Analysis, Continuous-time Controller Design, Controller Design for Discrete-time Systems, Controller Implementation.

Module 2

State Variables Approach to Discrete time Systems: Definition of the State Vector, The MIMO Transfer Function Matrix G(z), State Transformations, Observability and Controllability, Solution of State Equations.

Module 3

Direct Design of Digital Control Systems Using Transform Techniques: Z-plane Specification of Control System, Design by Discrete Equivalent, Root Locus Design in the z-plane.

Module 4

Design of Digital Control Systems: A State Space Approach, Control Law Design, State Feedback, Estimator Design, Regulator Design.

Module 5

The Effect of Quantization, Analysis of Finite Precision Errors, Limit Cycles, Optimal control, Parameter estimation, Adaptive control.

- 1. K. Zhou, J. Doyle, and K. Glover: Robust and Optimal Control, Prentice-Hall, 1996.
- 2. K. Zhou and J. C. Doyle: Essentials of Robust Control, Prentice Hall, 1996

Subject Code EE810	Optimal Control	Credits: 3 (3-0-0) Total hours: 45	
Module 1			
Calculus of	Variations: problems of Lagrange, Mayer and Bolza, Eu	uler-Language equation and	
transversality of	onditions, Lagrange multiplier technique		
Module 2			
Dynamic programming, Numerical solution techniques, Static and dynamic optimization, Parameter optimization			
Module 3	Module 3		
Pontryagin's principle: theory, application to minimum time, control problems, and terminal control problem			
Module 4			
Dynamic progr	amming: Belaman's principle of optimality, multistage decision	n processes	
Module 5			
Linear regulator problem: matrix Riccati equation and its solution, Tracking problem, Computational methods in optimal control, Application of mathematical programming, singular perturbations			
	1. M. Athans and P.L. Falb: Optimal Control, McGraw Hill, 20	007	
	2. S.P. Sethi and G.L. Thompson: Optimal Con Kluwer Academic Publishers, 2000	trol Theory, 2nd edition,	
Reference books	3. D.P. Bertsekas: Dynamic Programming and Optimal Cont Athena Scientific, 2005	rol, Volume I, 3rd edition,	
	4. M. Green, D.E. Johnson and D.J. N. Limebeer: Linear Rob	oust Control, Prentice Hall,	

Digitized Dec 2007